
DYNAMICAL CORES OF TOPOLOGICAL
POLYNOMIALS

ALEXANDER BLOKH, LEX OVERSTEEGEN, ROSS PTACEK,
AND VLADLEN TIMORIN

Abstract. We define the (dynamical) core of a topological poly-
nomial (and the associated lamination). This notion extends that
of the core of a unimodal interval map. Two explicit descriptions of
the core are given: one related to periodic objects and one related
to critical objects.

1. Introduction and the main result

1.1. Motivation. Complex dynamics studies, among other topics, li-
mit behavior of points under iterations of complex polynomials. This
problem is meaningful if we consider the restriction of a polynomial to
its Julia set as elsewhere the limit behavior of points is easy to describe.
Since in many cases polynomial Julia sets are one-dimensional continua,
one can consider the problem as a far reaching generalization of the
similar problem for simple one-dimensional spaces such as an interval.

A popular one-dimensional family is that of unimodal interval maps,
i.e. interval maps with unique turning point. Often such maps f are
considered on [0, 1] and normalized by assuming that the turning point
in question is a local maximum and that f(0) = f(1) = 0. It is easy
to see that the only case when such map f can exhibit non-trivial
dynamics is when f 2(c) < c < f(c). Moreover, all points of [0, 1] either
eventually map to [f 2(c), f(c)], or converge to a fixed point of f . The
interval [f 2(c), f(c)] is often called the core of f ; we prefer to call it
the dynamical core of f . In the quadratic polynomial case, when 0 is a
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repelling fixed point, all points of [0, 1] except 0 and 1 are eventually
mapped to the core of f . A similar notion can be introduced for self-
mappings of graphs (i.e. one-dimensional branched manifolds).

In these cases the dynamical core is a small invariant subcontinuum
which captures the limit sets of all but finitely many points of the
space; clearly, subsets smaller than the entire space which nevertheless
contain limit sets of all but finitely many points are of interest in dy-
namics. However, one can also think of the dynamical core as a small
invariant subcontinuum which contains the limit sets of all cutpoints
of the space. In this form the notion of the dynamical core can be
extended to polynomials with locally connected Julia sets. Still, one
should justify one’s interest in the dynamics of cutpoints of connected
Julia sets J as then, barring some exceptional cases, the set of cut-
points is not a “big” subspace of J (e.g., in the locally connected case
the set of cutpoints is of zero harmonic measure and of first category
in J).

In our view, one reason for studying the set of cutpoints of J , de-
spite its small size, is that the set of cutpoints carries the bulk of the
structural information about J . Indeed, suppose that J is locally con-
nected and neither an arc nor a Jordan curve. Then it follows from
a result of Hausdorff [Hau37], that the set of endpoints of J is always
homeomorphic to the set of all irrational numbers (this can also be
seen directly by a straightforward argument). Loosely speaking, Julia
sets differ inasmuch as their sets of cutpoints differ. This shows the
importance of the dynamics of cutpoints and provides a justification
for our interest in the dynamical core of a complex polynomial.

1.2. Preliminary version of main results. Topological polynomials
are topological dynamical systems that generalize complex polynomi-
als with locally connected Julia sets restricted to their Julia sets and
considered up to topological conjugacy. Note that every complex poly-
nomial f of degree d with locally connected Julia set J gives rise to an
equivalence relation ≈ on the unit circle S1 = {z ∈ C | |z| = 1} such
that two points in S1 are equivalent if and only if the corresponding
external rays land at the same point of J . Such an equivalence relation
≈ is forward invariant under the map σd : S1 → S1, σd(z) = zd, in the
sense that σd(z) ≈ σd(w) whenever z ≈ w.

The topological dynamics of f on the Julia set can be recovered from
the equivalence relation ≈ as follows: we consider the quotient space
J≈ = S1/ ≈ and the map f≈ : J≈ → J≈ induced by σd. Then the
map f≈ : J≈ → J≈ is topologically conjugate to the map f |J : J → J .
We define a σd-invariant lamination ∼ as an equivalence relation on



DYNAMICAL CORES OF TOPOLOGICAL POLYNOMIALS 3

S1 subject to certain assumptions similar to those satisfied by ≈ above
(see Section 2 for a more complete description). The set J∼ = S1/ ∼
is called the topological Julia set. Then the map f∼ : J∼ → J∼ is
defined as the map induced on J∼ by σd and is called a topological
polynomial. There is a natural embedding of J∼ into the plane and a
natural extension of f∼ as a branched self-covering of the plane. We
will write f∼ for both the topological polynomial and its extension to
the plane. The components of the complement of J∼ in the plane are
called Fatou components (of f∼).

Define an atom of a topological polynomial f∼ as either a singleton in
J∼ or the boundary of some bounded Fatou component. A cut-atom is
by definition an atom, whose removal disconnects the topological Julia
set. In particular, a point a ∈ J∼ is a cutpoint if {a} is a cut-atom.

An atom A of J∼ is said to be a persistent cut-atom if all its iterated
f∼-images are cut-atoms. A periodic atom A of minimal period q is
said to be rotational if either A is a cutpoint, and f q

∼ gives rise to a
non-trivial permutation of the germs of complementary components of
A in J∼, or A is the boundary of some Fatou component such that
f q
∼ : A→ A is of degree one and different from the identity.
A continuum C ⊂ J∼ is said to be complete if, for every bounded

Fatou component U of f∼, the intersection Bd(U)∩C is either empty, or
a singleton, or the entire boundary Bd(U). Let ICf∼(A) (or IC(A) if ∼
is fixed) be the smallest complete invariant continuum in J∼ containing
a set A ⊂ J∼; we call IC(A) the dynamical span of A. Recall that the
ω-limit set ω(Z) of a set (e.g., a singleton) Z ⊂ J∼ is defined as

ω(Z) =
∞∩
n=1

∞∪
i=n

f i
∼(Z).

Definition 1.1 (Dynamical core). The (dynamical) core COR(f∼) of
f∼ is the dynamical span of the union of the ω-limit sets of all persistent
cut-atoms. The union of all periodic cut-atoms of f∼ is denoted by
PC(f∼) = PC and is called the periodic core of f∼. Finally, the union
of all periodic rotational atoms of f∼ is denoted by PCrot(f∼) = PCrot

and is called the periodic rotational core of f∼.

One of the aims of our paper is to illustrate the analogy between
the dynamics of topological polynomials on their cutpoints and cut-
atoms and interval dynamics. E.g., it is known, that for interval maps
periodic points and critical points play a significant, if not decisive,
role. The main purpose of this paper is to establish similar facts for
topological polynomials. To give a flavor of the main results, below we
give a non-technical version of one of them.
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Theorem 1.2. The dynamical core of f∼ coincides with IC(PC(f∼)).
If J∼ is a dendrite, then COR = IC(PCrot(f∼)).

In Section 2, we state a full version of Theorem 1.2 in which we deal
with several types of the dynamical core. Observe, that the so-called
growing trees [BL02a] are related to the notion of the dynamical core.

Theorem 1.2 is related to the corresponding results for maps of the
interval: if g is a piecewise-monotone interval map then the closure of
the union of the limit sets of all its points coincides with the closure of
the set of its periodic points (see, e.g., [Blo95], where this is deduced
from similar results which hold for all continuous interval maps, and
references therein). Theorem 1.2 shows the importance of the periodic
cores of f∼. We also introduce the notion of a critical atom and prove
in Theorem 3.13 that the dynamical cores of a topological polynomial
equal the dynamical spans of critical atoms of the restriction of f∼ onto
these cores.

Acknowledgements. During the work on this project, the fourth author
has visited Max Planck Institute for Mathematics (MPIM), Bonn. He is
very grateful to MPIM for inspiring working conditions. All the authors
would like to thank the referee for useful and thoughtful suggestions.

2. Preliminaries

Let D be the open unit disk and Ĉ be the complex sphere. For
a compactum X ⊂ C, let U∞(X) be the unbounded component of
C \X. The topological hull of X equals Th(X) = C \ U∞(X). Often

we use U∞(X) for Ĉ \ Th(X), including the point at infinity. If X
is a continuum, then Th(X) is a non-separating continuum, and there

exists a Riemann map ΨX : Ĉ\D → U∞(X); we always normalize it so
that ΨX(∞) = ∞ and Ψ′

X(z) tends to a positive real limit as z → ∞.
Consider a polynomial P of degree d ≥ 2 with Julia set JP and

filled-in Julia set KP = Th(JP ). Extend zd : C → C to a map θd on

Ĉ. If JP is connected then ΨKP
= Ψ : C \ D → U∞(KP ) is such that

Ψ◦θd = P ◦Ψ on the complement of the closed unit disk [DH85a, Mil00].
If JP is locally connected, then Ψ extends to a continuous function

Ψ : Ĉ \ D → Ĉ \KP , and Ψ ◦ θd = P ◦ Ψ on the complement of the
open unit disk; thus, we obtain a continuous surjection Ψ: Bd(D) → JP
(the Carathéodory loop). Identify S1 = Bd(D) with R/Z.

2.1. Laminations. Let JP be locally connected, and set ψ = Ψ|S1 .
Define an equivalence relation ∼P on S1 by x ∼P y if and only if ψ(x) =
ψ(y), and call it the (σd-invariant) lamination of P . Equivalence classes
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of ∼P are pairwise unlinked : their Euclidian convex hulls are disjoint.
The topological Julia set S1/ ∼P= J∼P

is homeomorphic to JP , and
the topological polynomial f∼P

: J∼P
→ J∼P

is topologically conjugate
to P |JP . One can extend the conjugacy between P |JP and f∼P

: J∼P
→

J∼P
to a conjugacy on the entire plane.

An equivalence relation ∼ on the unit circle, with similar properties
as ∼P above, can be introduced abstractly without any reference to
the Julia set of a complex polynomial.

Definition 2.1 (Laminations). An equivalence relation ∼ on the unit
circle S1 is called a lamination if it has the following properties:
(E1) the graph of ∼ is a closed subset in S1 × S1;
(E2) if t1 ∼ t2 ∈ S1 and t3 ∼ t4 ∈ S1, but t2 ̸∼ t3, then the open
straight line segments in C with endpoints t1, t2 and t3, t4 are disjoint;
(E3) each equivalence class of ∼ is totally disconnected.

Definition 2.2 (Laminations and dynamics). A lamination ∼ is called
(σd-)invariant if:
(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(D2) for any ∼-class g, the map σd : g → σd(g) extends to S1 as an
orientation preserving covering map such that g is the full preimage of
σd(g) under this covering map.
(D3) all ∼-classes are finite.

Part (D2) of Definition 2.1 has an equivalent version. A (positively
oriented) hole (a, b) of a compactum Q ⊂ S1 is a component of S1 \Q
such that movement from a to b inside (a, b) is in the positive direction.
Then (D2) is equivalent to the fact that for a ∼-class g either σd(g)
is a point or for each positively oriented hole (a, b) of g the positively
oriented arc (σd(a), σd(b)) is a positively oriented hole of σd(g).

For a σd-invariant lamination ∼ we consider the topological Julia set
S1/ ∼= J∼ and the topological polynomial f∼ : J∼ → J∼ induced by
σd. The quotient map p∼ : S1 → J∼ extends to the plane with the only
non-trivial fibers being the convex hulls of ∼-classes. Using Moore’s
Theorem one can extend f∼ to a branched-covering map f∼ : C → C
of the same degree. The complement of the unbounded component of
C \J∼ is called the filled-in topological Julia set and is denoted by K∼.
If the lamination ∼ is fixed, we may omit ∼ from the notation.

A particular case is when J∼ is a dendrite (a locally connected con-

tinuum containing no simple closed curve) and so Ĉ \ J∼ is a simply
connected neighborhood of infinity. It is easy to see that if a lamina-
tion ∼ has no domains (i.e., if convex hulls of all ∼-classes partition
the entire unit disk), then the quotient space S1/ ∼ is a dendrite.
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For points a, b ∈ S1, let ab be the (perhaps degenerate) chord with
endpoints a and b. For A ⊂ S1 let Ch(A) be the convex hull of A in C.

Definition 2.3 (Leaves and gaps of a lamination). If A is a ∼-class,
we call an edge ab of Bd(Ch(A)) a leaf (if a = b, we call the leaf
aa = {a} degenerate, cf. [Thu85]). All points of S1 are also called
leaves. Normally, leaves are denoted as above, or by a letter with a
bar above it (b̄, q̄ etc), or by ℓ. The family of all leaves of ∼, denoted
by L∼, is called the geometric lamination (geo-lamination) generated
by ∼. Denote the union of all leaves of L∼ by L+

∼. The closure of a
non-empty component of D \L+

∼ is called a gap of ∼. If G is a gap, we
talk about edges of G; if G is a gap or leaf, we call the set G′ = S1 ∩G
the basis of G.

Extend σd (keeping the notation) linearly over all individual chords
in D, in particularly over leaves of L∼. Note, that even though the
extended σd is not well defined on the entire disk, it is well defined on
L+

∼ (as well as on every individual chord in the disk).
A gap or leaf U is said to be (pre)periodic if σm+k

d (U ′) = σm
d (U

′)
for some m ≥ 0, k > 0. If m above can be chosen to be 0, then U is
called periodic. If U is (pre)periodic but not periodic then it is called
preperiodic.

Infinite gaps of a σd-invariant lamination ∼ are called Fatou gaps.
Let G be a Fatou gap; by [Kiw02] G is (pre)periodic under σd. If a
Fatou gap G is periodic, then by [BL02a] its basis G′ is a Cantor set
and the quotient map ψG : Bd(G) → S1, collapsing all edges of G to
points, is such that ψG-preimages of points are points or single leaves.

Definition 2.4 (Siegel gaps and gaps of degree greater than 1). Sup-
pose that G is a periodic Fatou gap of minimal period n. By [BL02a]
ψG semiconjugates σn

d |Bd(G) to a map σ̂G = σ̂ : S1 → S1 so that either
(1) σ̂ = σk : S1 → S1, k ≥ 2 or (2) σ̂ is an irrational rotation. In
case (1) call G a gap of degree k. In case (2) G is called a Siegel gap.
A (pre)periodic gap eventually mapped to a periodic gap of degree k
(Siegel) is also said to be of degree k (Siegel). Domains (bounded com-
ponents of the complement) of J∼ are said to be of degree k (Siegel) if
the corresponding gaps of L∼ are such.

Various types of gaps and domains described in Definition 2.4 corre-
spond to various types of atoms of J∼; as with gaps and domains, we
keep the same terminology while replacing the word “gap” or “domain”
by the word “atom”. Thus, the boundary of a (periodic) Siegel domain
is called a (periodic) Siegel atom, the boundary of a (periodic) Fatou
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domain of degree k > 1 is called a (periodic) Fatou atom of degree k
etc.

2.2. Complete statement of main results. Let f∼ : J∼ → J∼ be a
topological polynomial. Recall that an atom is either a point of J∼ or
the boundary of a bounded component of C \ J∼.

A persistent cut-atom of degree 1 is either a non-(pre)periodic per-
sistent cut-atom, or a (pre)periodic cut-atom of degree 1; (pre)periodic
atoms of degree 1 are either (pre)periodic points or boundaries of Siegel
gaps (recall, that all Siegel gaps are (pre)periodic). A persistent cut-
atom of degree k > 1 is a Fatou atom of degree k. A recurring theme
in our paper is the fact that in some cases the dynamical span of a
certain set A and the dynamical span of the subset B ⊂ A consisting
of all periodic elements of A with some extra-properties (e.g., being a
periodic cut-atom, a periodic cut-atom of degree 1 etc) coincide. We
call a periodic atom A of period n and degree 1 rotational if σn

d |p−1
∼ (A)

has non-zero .

Definition 2.5 (Dynamical cores). The (dynamical) core COR(f∼) of
f∼ is the dynamical span of the union of the ω-limit sets of all persistent
cut-atoms. The union of all periodic cut-atoms of f∼ is denoted by
PC(f∼) = PC and is called the periodic core of f∼.

The (dynamical) core of degree 1 COR1(f∼) of f∼ is the dynam-
ical span of the ω-limit sets of all persistent cut-atoms of degree 1.
The union of all periodic cut-atoms of f∼ of degree 1 is denoted by
PC1(f∼) = PC1 and is called the periodic core of degree 1 of f∼.

The (dynamical) rotational core CORrot(f∼) of f∼ is the dynamical
span of the ω-limit sets of all wandering persistent cutpoints and all
periodic rotational atoms. The union of all periodic rotational atoms of
f∼ is denoted by PCrot(f∼) = PCrot and is called the periodic rotational
core of f∼.

Clearly, CORrot ⊂ COR1 ⊂ COR and PCrot ⊂ PC1 ⊂ PC. Observe,
that in the case of dendrites the notions become simpler and some
results can be strengthened. Indeed, first of all in this case we can
talk about cutpoints only. Secondly, COR = COR1 and PC = PC1.
A priori, then CORrot could be strictly smaller than COR, however
Theorem 1.2 shows that CORrot = COR.

Theorem 2.6. The dynamical core of f∼ coincides with IC(PC(f∼)).
The dynamical core of degree 1 of f∼ coincides with IC(PC1(f∼)). The
rotational dynamical core coincides with IC(PCrot(f∼)). If J∼ is a den-
drite, then COR = IC(PCrot(f∼)).
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There are two other main results in Section 3. As the dynam-
ics on Fatou gaps is simple, it is natural to consider the dynamics
of gaps/leaves which never map to Fatou gaps, or the dynamics of
gaps/leaves which never map to ‘maximal concatenations” of Fatou
gaps which we call super-gaps (these notions are made precise in Sec-
tion 3). We prove that the dynamical span of limit sets of all persistent
cut-atoms which never map to the p∼-images of super-gaps coincides
with the dynamical span of all periodic rotational cut-atoms located
outside the p∼-images of super-gaps (recall that p∼ is the quotient map
generated by ∼). In fact, the “dendritic” part of Theorem 2.6 follows
from that result.

A result similar to Theorem 2.6, using critical points and atoms
instead of periodic ones, is proven in Theorem 3.13. Namely, an atom
A is critical if either A is a critical point of f∼, or f∼|A is not one-to-
one. In Theorem 3.13 we prove, in particular, that various cores of a
topological polynomial f∼ coincide with the dynamical spans of critical
atoms of the restriction of f∼ onto these cores.

If J∼ is a dendrite, then critical atoms are critical points and The-
orem 2.6 is closely related to the interval, even unimodal, case. Thus,
Theorem 2.6 can be viewed as a generalization of the corresponding
results for maps of the interval.

2.3. Geometric laminations. The connection between laminations,
understood as equivalence relations, and the original approach of Thur-
ston’s [Thu85], can be explained once we introduce a few key notions.
Assume that a σd-invariant lamination ∼ and its associated geometric
lamination L∼ are given.

Thurston’s idea was to study similar collections of chords in D ab-
stractly, i.e., without assuming that they are generated by an equiva-
lence relation on the circle with specific properties.

Definition 2.7 (Geometric laminations, cf. [Thu85]). A geometric
prelamination L is a set of (possibly degenerate) chords in D such that
any two distinct chords from L meet at most in a common endpoint; L
is called a geometric lamination (geo-lamination) if all points of S1 are
elements of L, and

∪
L is closed. Elements of L are called leaves of L

(leaves may be degenerate). The union of all leaves of L is denoted by
L+.

Definition 2.8 (Gaps of geo-laminations). Suppose that L is a geo-
lamination. The closure of a non-empty component of D \ L+ is called
a gap of L. Thus, given a geo-lamination L we obtain a cover of D by
gaps of L and (perhaps, degenerate) leaves of L which do not lie on
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the boundary of a gap of L (equivalently, are not isolated in D from
either side). Elements of this cover are called L-sets. Observe that the
intersection of two different L-sets is at most a leaf.

In the case when L = L∼ is generated by an invariant lamination
∼, gaps might be of two kinds: finite gaps which are convex hulls
of ∼-classes and infinite gaps which are closures of domains (of ∼),
i.e. components of D \ L+

∼ which are not interiors of convex hulls of
∼-classes.

Definition 2.9 (Invariant geo-laminations, cf. [Thu85]). A geometric
lamination L is said to be an invariant geo-lamination of degree d if
the following conditions are satisfied:

(1) (Leaf invariance) For each leaf ℓ ∈ L, the set σd(ℓ) is a (perhaps
degenerate) leaf in L. For every non-degenerate leaf ℓ ∈ L, there
are d pairwise disjoint leaves ℓ1, . . . , ℓd in L such that for each
i, σd(ℓi) = ℓ.

(2) (Gap invariance) For a gap G of L, the set H = Ch(σd(G
′))

is a (possibly degenerate) leaf, or a gap of L, in which case
σd|Bd(G) : Bd(G) → Bd(H) is a positively oriented composi-
tion of a monotone map and a covering map (a monotone map
is a map such that the full preimage of any connected set is
connected).

Note that some invariant geo-laminations are not generated by equiv-
alence relations. We will use a special extension σ∗

d,L = σ∗
d of σd to the

closed unit disk associated with L. On S1 and all leaves of L, we set
σ∗
d = σd (in Definition 2.3, σd was extended over all chords in D, includ-

ing leaves of L). Otherwise, define σ∗
d on the interiors of gaps using a

standard barycentric construction (see [Thu85]). Sometimes we lighten
the notation and use σd instead of σ∗

d. We will mostly use the map σ∗
d

in the case L = L∼ for some invariant lamination ∼.

Definition 2.10 (Critical leaves and gaps). A leaf of a lamination ∼ is
called critical if its endpoints have the same image. A L∼-set G is said
to be critical if σd|G ′ is k-to-1 for some k > 1. E.g., a periodic Siegel gap
is a non-critical ∼-set, on whose basis the first return map is not one-
to-one because there must be critical leaves in the boundaries of gaps
from its orbit. We define precritical and (pre)critical objects similarly
to how (pre)periodic and preperiodic objects are defined above.

We need more notation. Let a, b ∈ S1. By [a, b], (a, b) etc we mean
the appropriate positively oriented circle arcs from a to b, and by |I|
the length of an arc I in S1 normalized so that the length of S1 is 1.
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2.4. Stand alone gaps and their basic properties.

Definition 2.11 (Return time and related notions). Let f : X → X
be a self-mapping of a set X. For a set G ⊂ X, define the return time
(to G) of x ∈ G as the least positive integer nx such that fnx(x) ∈ G,
or infinity if there is no such integer. Let n = miny∈G ny, define DG =
{x : nx = n}, and call the map fn : DG → G the return map (of G).

E.g., if G is the boundary of a periodic Fatou domain of period n
of a topological polynomial f∼ whose images are all pairwise disjoint
until fn

∼(G) = G, then DG = G and the corresponding return map on
DG = G is the same as fn

∼.
We have already introduced the notion of a gap of a lamination or

of a geo-lamination. Below we will describe a closed convex set in D
which has all the properties of a gap of a geo-lamination, but for which
no corresponding lamination is specified.

Definition 2.12 (Stand alone gaps). If A ⊂ S1 is a closed set such that
all the sets Ch(σi(A)) are pairwise disjoint, then A is called wandering.
If there exists n ≥ 1 such that all the sets Ch(σi

d(A)), i = 0, . . . , n −
1 have pairwise disjoint interiors while σn

d (A) = A, then A is called
periodic of period n. If there exists m > 0 such that all Ch(σi(A)), 0 ≤
i ≤ m+ n− 1 have pairwise disjoint interiors and σm

d (A) is periodic of
period n, then we call A preperiodic. Moreover, suppose that |A| ≥ 3,
A is wandering, periodic or preperiodic, and for every i ≥ 0 and every
hole (a, b) of σi

d(A) either σd(a) = σd(b) or the positively oriented arc
(σd(a), σd(b)) is a hole of σi+1

d (A). Then we call A (and Ch(A)) a
σd-stand alone gap.

Recall that in Definition 2.4 we defined Fatou gaps G of various
degrees as well as Siegel gaps. Given a periodic Fatou gap G we also
introduced the monotone map ψG which semiconjugates σd|Bd(G) and
the appropriate model map σ̂G : S1 → S1. This construction can be
also done for stand alone Fatou gaps G.

Indeed, consider the basis G ∩ S1 = G′ of G (see Definition 2.3) as
a subset of Bd(G). It is well-known that G′ coincides with the union
A ∪ B of two well-defined sets, where A is a Cantor subset of G′ or
an empty set and B is a countable set. In the case when A = ∅, the
map ψG simply collapses Bd(G) to a point. However, if A ̸= ∅, one can
define a semiconjugacy ψG : Bd(G) → S1 which collapses all holes of G′

to points. As in Definition 2.4, the map ψG semiconjugates σd|Bd(G) to
a circle map which is either an irrational rotation or the map σk, k ≥ 2.
Depending on the type of this map we can introduce for periodic infinite
stand alone gaps terminology similar to Definition 2.4. In particular,
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if σd|Bd(G) is semiconjugate to σk, k ≥ 2 we say that G is a stand alone
Fatou gap of degree k.

Definition 2.13 (Rotational sets). If G is a periodic stand alone gap
such that G′ is finite and contains no refixed points, then G is said to
be a finite (periodic) rotational set. Finite rotational sets and Siegel
gaps G are called (periodic) rotational sets. If such G is invariant, we
call it an invariant rotational set.

The maps σk serve as models of return maps of periodic gaps of
degree k ≥ 2. For rotational sets, models of return maps are non-
trivial rotations.

Definition 2.14 (Rotation number). A number τ is said to be the
rotation number of a periodic set G if for every x ∈ G′ the circular
order of points in the orbit of x under the return map of G′ is the same
as the order of points 0,Rotτ (0), . . . where Rotτ : S1 → S1 is the rigid
rotation by the angle τ .

It is easy to see that to each rotational set G, one can associate its
well-defined rotation number τG = τ (in the case of a finite rotational
set, the property that endpoints of holes are mapped to endpoints of
holes implies that the circular order on G′ remains unchanged under
σ). Since G′ contains no points which are fixed under its return map by
our assumption, τ ̸= 0. Given a topological polynomial f∼ and an f∼-
periodic point x of minimal period n, we can associate to x the rotation
number ρ(x) of σn

d restricted to the ∼-class p−1
∼ (x), corresponding to x

(recall, that p∼ : S1 → J∼ = S1/ ∼ is the quotient map associated to
∼); then if ρ(x) ̸= 0 the set p−1

∼ (x) is rotational, but if ρ(x) = 0 then
the set p−1

∼ (x) is not rotational.
The following result allows one to find fixed stand alone gaps or

points of specific types in some parts of the disk; for the proof see
[BFMOT10]. It is similar in spirit to a fixed point result by Goldberg
and Milnor [GM93].

Theorem 2.15. Let ∼ be a σd-invariant lamination. Consider the
topological polynomial f∼ extended over C. Suppose that e1, . . . , em ∈
J∼ are m points, and X ⊂ K∼ is a component of K∼ \ {e1, . . . , em}
such that for each i we have ei ∈ X and either f∼(ei) = ei and the
rotation number at ei is zero, or f∼(ei) belongs to the component of
K∼ \ {ei} which contains X. Then at least one of the following claims
holds:

(1) X contains an invariant domain of degree k > 1;
(2) X contains an invariant Siegel domain;
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(3) X ∩ J∼ contains a fixed point with non-zero rotation number.

For dendritic topological Julia sets J∼ the claim is easier as cases (1)
and (2) above are impossible. Thus, in the dendritic case Theorem 2.15
implies that there exists a rotational fixed point in X ∩ J∼.

Let U be the convex hull of a closed subset of S1. For every edge ℓ of
U , let HU(ℓ) denote the hole of U that shares both endpoints with ℓ (if
U is fixed, we may drop the subscript in the above notation). Notice
that in the case when U is a chord there are two ways to specify the
hole. The hole HU(ℓ) is called the hole of U behind (at) ℓ. In this
situation we define |ℓ|U as |HU(ℓ)|.

Lemma 2.16. Suppose that ℓ = xy is a non-invariant leaf such that
there exists a component Q of the complement of its orbit whose closure
contains σn

d (ℓ) for all n ≥ 0. Then the leaf ℓ is either (pre)critical or
(pre)periodic.

Proof. Suppose that ℓ is neither (pre)periodic nor (pre)critical. Then it
follows that there are infinitely many leaves in the orbit of ℓ such that
both complementary arcs of the set of their endpoints are of length
greater than 1

2d
. Since the corresponding holes of Q are pairwise dis-

joint, we get a contradiction. �

3. Dynamical core

In Section 3 we fix ∼ which is a σd-invariant lamination, study the
dynamical properties of the topological polynomial f∼ : J∼ → J∼, and
discuss its dynamical core COR(f∼). For brevity, we write f , J , p,
COR etc for f∼, J∼, p∼ : S1 → J , COR(f∼), respectively, throughout
Section 3. Note that, by definition, every topological Julia set J in this
section is locally connected.

3.1. Super-gaps. Let ℓ be a leaf of L∼. We equip L∼ with the topol-
ogy induced by the Hausdorff metric. Then L∼ is a compact and metric
space. Suppose that a leaf ℓ has a neighborhood (in L∼!) which con-
tains at most countably many leaves of L∼. Call such leaves countably
isolated and denote the family of all such leaves CI∼ = CI. Clearly,
CI is open in L∼. Moreover, CI is countable. To see this note that CI,
being a subset of L∼, is second countable and, hence, Lindelöf. Hence
there exists a countable cover of CI all of whose elements are countable
and CI is countable as desired. In terms of dynamics, CI is backward
invariant and almost forward invariant (it is forward invariant except
for critical leaves in CI because their images are points which are never
countably isolated).
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It can be shown that if we remove all leaves of CI from L∼ (this is in
the spirit of cleaning of geometric laminations [Thu85]), the remaining
leaves (if any) form an invariant geometric lamination Lc

∼ (“c” coming
from “countable cleaning”). One way to see this is to use an alter-
native definition given in [BMOV11]. A geo-lamination (initially not
necessarily invariant in the sense of Definition 2.9) is called a sibling
d-invariant lamination or just sibling lamination if (a) for each ℓ ∈ L
either σd(ℓ) ∈ L or σd(ℓ) is a point in S1, (b) for each ℓ ∈ L there
exists a leaf ℓ′ ∈ L with σd(ℓ

′) = ℓ, and (c) for each ℓ ∈ L with non-
degenerate image σd(ℓ) there exist d disjoint leaves ℓ1, . . . , ℓd in L with
ℓ = ℓ1 and σd(ℓi) = σd(ℓ) for all i. By [BMOV11, Theorem 3.2], sibling
invariant laminations are invariant in the sense of Definition 2.9. Now,
observe that L∼ is sibling invariant. Since CI is open and contains the
full grand orbit of any leaf in it which never collapses to a point and
the full backward orbit of any critical leaf in it, Lc

∼ is also sibling in-
variant. Thus, by [BMOV11, Theorem 3.2] Lc

∼ is invariant in the sense
of Definition 2.9. Infinite gaps of Lc

∼ are called super-gaps of ∼. Note
that all finite gaps of Lc

∼ are also finite gaps of L∼.
Let L0

∼ = L∼ and define Lk
∼ inductively by removing all isolated

leaves from Lk−1
∼ .

Lemma 3.1. There exists n such that Ln
∼ = Lc

∼; moreover, Lc
∼ con-

tains no isolated leaves.

Proof. We first show that there exists n such that Ln+1
∼ = Ln

∼ (i.e.,
Ln

∼ contains no isolated leaves). We note that increasing i may only
decrease the number of infinite periodic gaps and decrease the number
of finite critical objects (gaps or leaves) in Li

∼. Therefore we may
choose m so that Lm

∼ has a minimal number of infinite periodic gaps
and finite critical objects. If Lm

∼ has no isolated leaves, then we may
choose n = m. Otherwise, we will show that we may choose n = m+1.

Suppose that Lm
∼ has an isolated leaf ℓ. Then ℓ is a common edge

of two gaps U and V . Since finite gaps of L∼ (and, hence, of all Li
∼)

are disjoint we may assume that U is infinite. Moreover, it must be
that V is finite. Indeed, suppose that V is infinite and consider two
cases. First assume that there is a minimal j such that σj

d(U) = σj
d(V ).

Then σj−1
d (ℓ) is critical and isolated in Lm

∼ . Hence Lm+1
∼ has fewer finite

critical objects than Lm
∼ , a contradiction with the choice of m. On the

other hand, if U and V never have the same image, then in Lm+1
∼ their

periodic images will be joined. Then Lm+1
∼ would have a periodic gap

containing both such images which contradicts the choice of m with
the minimal number of infinite periodic gaps. Thus, V is finite.
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Figure 1. An example of 2-step cleaning for quadratic lam-
inations. Above: the quadratic lamination L0 with a qua-

dratic gap between the leaves 5
17

12
17 and 7

34
27
34 , and the corre-

sponding Julia set (basilica tuned with basilica tuned with
basilica). In the middle: the first cleaning L1 of L0 — the

lamination with a quadratic gap between the leaves 1
5
4
5 and

3
10

7
10 , and the corresponding Julia set (basilica tuned with

basilica). Below: the second cleaning L2 of L0 — the lami-

nation with a quadratic gap between the leaves 1
3
2
3 and 1

6
5
6 ,

and the corresponding Julia set (basilica). Note that the
next cleaning L3 is empty and coincides with Lc. Thus, the
unique super-gap of L0 coincides with the entire unit disk.
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Furthermore, the other edges of V are not isolated in any lamination
Lt

∼, t ≥ m. For if some other edge q̄ of V were isolated in Lt
∼, then it

would be an edge of an infinite gap H, contained in the same gap of
Lt+1

∼ as U . If σr
d(H) = σr

d(U) for some r, then V is (pre)critical and
the critical image of V is absent from Lt+1

∼ , a contradiction with the
choice of m. Otherwise, periodic images of H and U will be contained
in a bigger gap of Lt

∼, decreasing the number of periodic infinite gaps
and again contradicting the choice of m. By definition this implies that
all edges of V except for ℓ stay in all laminations Lt

∼, t ≥ m and that
Lm+1

∼ has no isolated leaves.
Choose n so that Ln

∼ contains no isolated leaves. It is well-known that
a compact metric space without isolated points is locally uncountable.
Hence Ln

∼ = Lc
∼ as desired. �

Lemma 3.2. If ∼ is a lamination, then the following holds.

(1) Every leaf of L∼ inside a super-gap G of ∼ is (pre)periodic or
(pre)critical; every edge of a super-gap is (pre)periodic.

(2) Every edge of any gap H of Lc
∼ is not isolated in Lc

∼ from outside
of H; all gaps of Lc

∼ are pairwise disjoint. Moreover, gaps of
Lc

∼ are disjoint from leaves which are not their edges.
(3) There are no infinite concatenations of leaves in Lc

∼. Moreover,
the geo-lamination Lc

∼ gives rise to a lamination ∼c such that
the only difference between Lc

∼ and L∼c is as follows: it is pos-
sible that one edge of certain finite gaps of ∼c is a leaf passing
inside an infinite gap of Lc

∼.
(4) Any periodic Siegel gap is a proper subset of its super-gap.

Proof. (1) An isolated leaf ℓ of any lamination Lk
∼ is either (pre)periodic

or (pre)critical. Indeed, since two finite gaps of Lk
∼ are not adja-

cent, ℓ is an edge of an infinite gap V . Then by Lemma 2.16, ℓ is
(pre)critical or (pre)periodic. Since in the process of constructing Lc

∼
we remove isolated leaves of laminations Lk

∼, we conclude that all leaves
inside a super-gap of ∼ (i.e., a gap of Lc

∼) are either (pre)periodic or
(pre)critical.

Let G be a gap of ∼. Since by Lemma 3.1 Lc
∼ contains no isolated

leaves, every edge of G is a limit of leaves from outside of G. Hence the
only gaps of Lc

∼ which can contain a critical leaf in their boundaries are
those which collapse to a single point (if a gap H of Lc

∼ has a critical
edge ℓ = lim ℓi, then leaves σd(ℓi) separate the point σd(ℓ) from the
rest of the circle which implies that σd(H) = σd(ℓ) is a point). Thus,
super-gaps have no critical edges, and by Lemma 2.16 all their edges
are (pre)periodic.
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(2) Every edge of any gap H of Lc
∼ is not isolated in Lc

∼ from outside
of H by Lemma 3.1. Moreover, no point a ∈ S1 can be an endpoint
of more than two leaves of L∼ because L∼ is a geometric lamination
generated by an equivalence relation. Hence, no point a ∈ S1 can be
an endpoint of more than two leaves of Lc

∼ either. This implies that if
G is a gap, then it is disjoint from all leaves which are not its edges.
Indeed, suppose otherwise. Then there exists a vertex a of G and a
leaf ℓ1 = ax which is not an edge of G. Then there is an edge ℓ2 of G
which emanates from a and by the above there is a gap H with edges
ℓ1 and ℓ2 (H is squeezed in-between G and ℓ1). This implies that ℓ2
is isolated, a contradiction. Thus, two gaps cannot have edges which
“touch” at an endpoint. The beginning of the paragraph implies that
two gaps cannot have a common edge either. We conclude that all gaps
of Lc

∼ are pairwise disjoint and that all gaps of Lc
∼ are disjoint from all

leaves which are not their edges.
(3) There are no infinite concatenations of leaves in Lc

∼ because there
are no such concatenations in L∼. Now it is easy to see that the geo-
metric lamination Lc

∼ gives rise to a lamination (equivalence relation)
which we denote ∼c. Two points a, b ∈ S1 are said to be ∼c-equivalent
if there exists a finite concatenation of leaves of Lc

∼ connecting a and
b. Since all leaves of Lc

∼ are non-isolated, it follows that the geo-
lamination Lc

∼ and the geo-lamination L∼c associated to ∼c can only
differ as claimed.

(4) Clearly a Siegel gap U is contained in a super-gap. To see that
it does not coincide with a super-gap, observe that there exists a non-
negative integer k such that σk

d(U) has a critical edge. Then by (1),
σk
d(U) (and hence U itself) is properly contained in a super-gap. �

Proposition 3.3. If X is a persistent cut-atom of J of degree one
such that p−1(X) is a subset of some super-gap of ∼, then either X is
the boundary of a Siegel domain, or X is a (pre)periodic point which
eventually maps to a periodic cutpoint. In any case, X eventually maps
to PC1.

Proof. We may assume that X = x is a persistent cutpoint. Then
the ∼-class p−1(x) is non-trivial. If the boundary of this ∼-class con-
sists of (pre)critical leaves only, then the entire class gets eventually
collapsed, which is a contradiction with fn(x) being cut-atoms for all
n ≥ 0. Therefore, there is a leaf ℓ on the boundary of p−1(x) that is
not (pre)critical. Then this leaf is (pre)periodic by Lemma 3.2, hence
p−1(x) is also (pre)periodic, and eventually maps to a periodic gap or
leaf. �
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3.2. Proof of Theorem 2.6. Lemma 3.4 studies intersections be-
tween atoms and complete invariant continua.

Lemma 3.4. Let X ⊂ J be an invariant complete continuum and A
be an atom intersecting X but not contained in X. Then A∩X = {x}
is a singleton, A is the boundary of a Fatou domain, and one of the
following holds: (1) for some k we have f i(A)∩X = {f i(x)}, i < k and
fk(A) ⊂ X, or (2) f i(A) ∩ X = {f i(x)} for all i and there exists the
smallest n such that fn(A) is the boundary of a periodic Fatou domain
of degree r > 1 with fn(x) being a point of fn(A) fixed under the return
map.

Proof. Since X is complete, we may assume that A∩X = {x} is a sin-
gleton and A is the boundary of a Fatou domain such that f i(A)∩X =
{f i(x)} for all i. Choose the smallest n such that fn(A) is periodic.
If fn(x) is not fixed by the return map of fn(A), then another point
from the orbit of x belongs to fn(A) ∩X, a contradiction. �

Lemma 3.5 rules out certain dynamical behavior of points.

Lemma 3.5. Suppose that x ∈ J is a non-(pre)critical cutpoint. Then
there exists n ≥ 0 such that at least two components of J \ {fn(x)}
contain forward images of fn(x).

Proof. An equivalent statement which we will actually work with in
the proof can be given as follows: there exists no non-(pre)critical non-
degenerate ∼-class X such that for every n, all the sets fn+k(X), k > 0
are contained in the same hole of fn(X).

By way of contradiction suppose that such ∼-class X exists. Let us
show that then the iterated images ofX cannot converge (along a subse-
quence of iterations) to a critical leaf ℓ. Indeed, suppose that σnk

d (X) →
ℓ so that σ

nk+1

d (X) separates σnk
d (X) from ℓ. Then σnk+1

d (X) → σd(ℓ),

where σd(ℓ) is a point of S1. Since σ
nk+1+1
d (X) separates σd(ℓ) from

σnk+1
d (X) for a sufficiently large k, it follows by the assumption that

the entire orbit of σnk(X) must be contained in a small component of
D\σnk(X), containing σd(ℓ). As this can be repeated for all sufficiently
large k, we see that the limit set of X has to coincide with the point
σd(ℓ), a contradiction. Hence X contains no critical leaves in its limit
set.

Note that the assumptions of the lemma imply that X is wandering.
By [Chi04] if X is not a leaf then it contains a critical leaf in its limit
set. This implies that X must be a leaf. For each image σn

d (X) let
Qn be the component of D \ σn

d (X) containing the rest of the orbit of
X. Let Wn =

∩n
i=0Qi. Then Wn is a set whose boundary consists of
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finitely many leaves-images of X alternating with finitely many circle
arcs. On the next step, the image σn+1

d (X) of X is contained in Wn,
and becomes a leaf on the boundary of Wn+1 ⊂ Wn.

Consider the set W =
∩
Wn. For an edge ℓ of W , let HW (ℓ) be

the hole of W behind ℓ. When saying that a certain leaf is contained
in HW (ℓ), we mean that its endpoints are contained in HW (ℓ), or,
equivalently, that the leaf is contained in the convex hull of HW (ℓ).
If W is a point or a leaf, then the assumptions on the dynamics of
X made in the lemma imply that X converges to W but never maps
to W . Clearly, this is impossible. Thus, we may assume that W is a
non-degenerate convex subset of D whose boundary consists of leaves
and possibly circle arcs. The leaves in Bd(W ) can be of two types:
limits of sequences of images of X (if ℓ is a leaf like that, then images
of X which converge to ℓ must be contained in HW (ℓ)), and images
of X. It follows that the limit leaves from the above collection form
the entire limit set of X; moreover, by the above there are no critical
leaves among them.

Let us show that this leads to a contradiction. First assume that
among boundary leaves of W there is a limit leaf q̄ = xy of the orbit
of X (here (x, y) = HW (q̄) is the hole of W behind q̄). Let us show
that q̄ is (pre)periodic. Indeed, since q̄ is approached from the outside
of W by images of X, and since all images of X are disjoint from W ,
it follows that (σd(x), σd(y)) is the hole of W behind σd(q̄). Then by
Lemma 2.16 and because there are no critical leaves on the boundary of
W (by the first paragraph of the proof) we see that q̄ is (pre)periodic.
Let ℓ is an image of q̄ which is periodic. Since ℓ is a repelling leaf, we see
that images of X approaching ℓ from within HW (ℓ) are repelled farther
away from ℓ inside HW (ℓ). Clearly, this contradicts the properties of
X.

Now assume that there are no boundary leaves ofW which are limits
of images of X = uv. Then all boundary leaves of W are images of
X. Let us show that then there exists N such that for any i ≥ N
we have that if the hole HW (ℓ) of W behind ℓ = σi

d(X) is (s, t) then
HW (σd(ℓ)) = (σd(s), σd(t)). Indeed, first we show that if HW (ℓ) = (s, t)
while HW (σd(ℓ)) = (σd(t), σd(s)), then (s, t) contains a σd-fixed point.
To see that, observe that in that case σd-image of [s, t] contains [s, t]
and the images of s, t do not belong to (s, t). This implies that there
exists a σd-fixed point in [s, t]. Since there are finitely many σd-fixed
points, it is easy to see that the desired number N exists. Now we
can apply Lemma 2.16 which implies that X is either (pre)periodic or
(pre)critical, a contradiction. �
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Now we study dynamics of super-gaps and the map as a whole. Our
standing assumption from here through Theorem 3.8 is that ∼ is a
lamination and L∼ is such that Lc

∼ is not empty (equivalently, S1 is
not a super-gap). Denote the union of all periodic super-gaps by SG.
Then there are finitely many super-gaps in SG, none of which coincides
with S1, and, by Lemma 3.2, they are disjoint. Choose N∼ = N as the
minimal number such that all periodic super-gaps and their periodic
edges are σN

d -fixed. By Lemma 3.2 each super-gap has at least one
σN
d -fixed edge and all its edges eventually map to σN

d -fixed edges.
Consider a component A of J \ p(SG). There are several σN

d -fixed
super-gaps bordering p−1(A), and each such super-gap has a unique

well-defined edge contained in p−1(A). If all these edges are σN
d -fixed,

we call A settled. By Theorem 2.15, a settled component A contains
an element of PCrot \ p(SG) denoted by yA. In this way, we associate
elements of PCrot \ p(SG) to all settled components of J \ p(SG).

Lemma 3.6. If ℓ is not a σN
d -fixed edge of a σN

d -fixed super-gap H,
then the component of J \ p(ℓ) which contains p(H), contains a settled
component of J \ p(SG). In particular, settled components exist.

Proof. Set ℓ0 = ℓ. Choose a σN
d -fixed edge ℓ′0 of H and a component

B0 of J \ p(SG) such that ℓ′0 is contained in the closure of p−1(B0). If
B0 is settled, we are done. Otherwise find a super-gap H1 with an edge
ℓ1 such that ℓ1 is not σ

N
d -fixed and borders p−1(B0), then proceed with

ℓ1 as before with ℓ0.
In the end we will find a settled component of J \ p(SG) in the

component of J \ p(ℓ) containing p(H). Indeed, on each step we find a
new σN

d -fixed super-gap different from the preceding one. Since there
are finitely many σN

d -fixed super-gaps, we either stop at some point,
or form a cycle. The latter is clearly impossible. Thus, there exists a
non-empty collection of settled components A. �

Given any subcontinuum X ⊂ J and x ∈ X, a component of X \{x}
is called an X-leg of x. An X-leg of x is called essential if x eventually
maps into this leg. An X-leg is said to be critical if it contains at least
one critical atom; otherwise a leg is called non-critical.

Recall that by Definition 2.13 we call a periodic atom rotational if it
is of degree 1 and its rotation number is not zero. Then PCrot \ p(SG)
is the set of all periodic rotational atoms x which are not contained
in p(SG) (any such x is a point by Lemma 3.2). Finally, define CORs

as the dynamical span of the limit sets of all persistent cut-atoms x
(equivalently, cutpoints) which never map into p(SG). Observe that if
J is a dendrite, then CORs = COR.
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Lemma 3.7. Every x-essential J-leg of every point x ∈ J contains a
point of PCrot \ p(SG).
Proof. Let L be an x-essential J-leg of x. Denote by A the component
of L \ p(SG) which contains x in its closure. If L contains no p-images
of σN

d -fixed super-gaps (which implies that L = A), then the claim
follows from Theorem 2.15 applied to A. Otherwise there are finitely
many super-gaps U1, . . . , Ut such that p(Ui) borders A. For each i let us
take a point x′i ∈ Bd(p(Ui)) that separates x from the rest of p(Ui). If
all the points x′i are g-fixed, then we are done by Theorem 2.15 applied
to A. If there exists i such that the point x′i is not g-fixed, then, by
Lemma 3.6, x′i separates the point x from some settled component B,
which in turn contains an element yB ∈ PCrot \ p(SG). Thus, in any
case every x-essential leg of x ∈ J contains a point of PCrot \ p(SG)
and the lemma is proven. �

Observe, that by Lemma 3.7 for a non-(pre)periodic persistent cut-
point x there exists n such that fn(x) separates two points of PCrot \
p(SG) because, by Lemma 3.5, some iterated g-image of x has at least
two x-essential J-legs.

Theorem 3.8. If x is a persistent cutpoint that is never mapped to
p(SG) then there is n ≥ 0 such that fn(x) separates two points of
PCrot \ p(SG) and is a cutpoint of IC(PCrot \ p(SG)) so that CORs =
IC(PCrot \ p(SG)).

Moreover, there exist infinitely many persistent periodic rotational
cutpoints outside p(SG), CORs ⊂ CORrot, and any periodic cutpoint
outside p(SG) separates two points of PCrot \ p(SG) and is a cutpoint
of CORs, of COR1 and of COR.

Proof. By Lemma 3.7 and the remark after that lemma we only need
to consider the case of a g-periodic cutpoint y of J outside p(SG) (a
priori it may happen that y above is an endpoint of CORs). We want
to show that y separates two points of PCrot \p(SG). Indeed, a certain
power (σN

d )k of σN
d fixes p−1(y) and has rotation number zero on p−1(y).

Choose an edge ℓ of p−1(y) and consider the component B of J \ {y}
such that p−1(B) contains ℓ.

Then (σN
d )k fixes ℓ while leaves and gaps in p−1(B) close to ℓ are

repelled away from ℓ inside p−1(B) by (σN
d )k. Hence their p-images are

repelled away from y inside B by the map gk. By Lemma 3.7, there is
an element (a point) tB ∈ PCrot \ p(SG) in B. As this applies to all
edges of p−1(y), we see that y separates two points of PCrot\p(SG). As
PCrot \ p(SG) ⊂ CORs ⊂ COR, this proves that any periodic cutpoint
outside p(SG) separates two points of PCrot \ p(SG) and is a cutpoint
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of CORs (and, hence, of COR1 and of COR). This also proves that
for a (pre)periodic persistent cutpoint x there exists n such that fn(x)
separates two points of PCrot \ p(SG); by the above, it suffices to take
r such that gr(x) = fNr(x) is periodic and set n = Nr.

Let us prove that there are infinitely many points of PCrot in any
settled component A. Indeed, choose a g-periodic point y ∈ A as above
such that a certain power (σN

d )k of σN
d which fixes p−1(y) has rotation

number zero on p−1(y). Choose an edge ℓ of p−1(y) and consider the

component B of A \ {y} such that p−1(B) contains ℓ. Then leaves

and gaps in p−1(B), which are close to ℓ, are repelled away from ℓ

inside p−1(B) by (σN
d )k. Hence their p-images are repelled away from

y inside B by gk. By Theorem 2.15, this implies that there exists a
gk-fixed point z ∈ B with non-zero rotation number. Replacing A by
a component of A \ z, we can repeat the same argument. If we do
it infinitely many times, we will prove that there are infinitely many
points of PCrot in any settled component. �

Corollary 3.9 follows immediately from Theorem 3.8. Observe that
if J is a dendrite, then SG = p(SG) = ∅, and hence COR = COR1 =
CORs.

Corollary 3.9. If J is a dendrite, then COR = COR1 = CORs =
CORrot = IC(PCrot). Furthermore, for any persistent cutpoint x there
is n ≥ 0 such that fn(x) separates two points from PCrot (thus, at some
point x maps to a cutpoint of COR). Moreover, any periodic cutpoint
separates two points of PCrot and therefore is itself a cutpoint of COR.

Proof. Left to the reader. �

Corollary 3.9 implies the last, dendritic part of Theorem 2.6. The
rest of Theorem 2.6 is proven below.

Proof of Theorem 2.6. By definition, IC(PC) ⊂ COR, IC(PC1) ⊂
COR1 and IC(PCrot) ⊂ CORrot. To prove the opposite inclusions, ob-
serve that by definition in each of these three cases it suffices to consider
a persistent cut-atom X which is not (pre)periodic. By Proposition 3.3
and because all Fatou gaps are eventually periodic, this implies that X
never maps to p(SG). Hence, in this case, by Theorem 3.8, there exists
n such that fn(X) separates two points of PCrot \ p(SG) and therefore
is contained in

IC(PCrot \ p(SG)) ⊂ IC(PCrot) ⊂ IC(PC1) ⊂ IC(PC),

which proves all three inclusions of the theorem. �
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3.3. Critical Atoms. Theorems 1.2 and 3.8 give explicit formulas for
various versions of the dynamical core of a topological polynomial f
in terms of various sets of periodic cut-atoms. These sets of periodic
cut-atoms are most likely infinite. It may also be useful to relate the
sets COR or CORs to a finite set of critical atoms.

In the next lemma, we study one-to-one maps on complete continua.
To do so we need a few definitions. The set of all critical points of
f is denoted by Crf = Cr. The p-preimage of Cr is denoted by Cr∼.
We also denote the ω-limit set of Cr by ω(Cr) and its p-preimage by
ω(Cr∼). A critical atom is the p-image of a critical gap or a critical leaf
of L∼. Thus, the family of critical atoms includes all critical points of
f and boundaries of all bounded components of C \ J on which f is
of degree greater than 1, while boundaries of Siegel domains are not
critical atoms. An atom of J is said to be precritical if it eventually
maps to a critical atom.

Lemma 3.10. Suppose that X ⊂ J is a complete continuum containing
no critical atoms. Then f |X is one-to-one.

Proof. Otherwise, choose points x, y ∈ X with f(x) = f(y), and con-
nect x and y with an arc I ⊂ X. If there are no Fatou domains with
boundaries in X, then I is unique. Otherwise for each Fatou domain
U with Bd(U) ⊂ X, separating x from y in X, there are two points
iU , tU ∈ Bd(U), each of which separates x from y in X, such that I
must contain one of the two subarcs of Bd(U) with endpoints iU , tU .
Note that f(I) is not a dendrite since otherwise there must exist a
critical point of f |I . Hence we can choose a minimal subarc I ′ ⊂ I so
that f(I ′) is a closed Jordan curve (then f |I′ is one-to-one except for
the endpoints x′, y′ of I ′ mapped into the same point).

It follows that f(I ′) is the boundary of a Fatou domain U (otherwise
there are points of J “shielded” from infinity by points of f(I ′) which
is impossible). The set f−1(U) is a finite union of Fatou domains, and
I ′ is contained in the boundary of f−1(U). Therefore, there are two
possible cases. Suppose that I ′ is a finite concatenation of at least two
arcs, each arc lying on the boundary of some component of f−1(U).
Then, as I ′ passes from one boundary to another, it must pass through
a critical point, a contradiction. Suppose now that I ′ is contained in
the boundary of a single component V of f−1(U) which implies that
Bd(V ) ⊂ X is a critical atom, a contradiction. �

Clearly, (pre)critical atoms are dense. In fact, they are also dense
in a stronger sense. To explain this, we need the following definition.
For a topological space X, a set A ⊂ X is called continuum-dense
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(or condense) in X if A ∩ Z ̸= ∅ for each non-degenerate continuum
Z ⊂ X (being non-degenerate means containing more than one point).
The notion was introduced in [BOT06] in a different context.

Let us introduce a relative version of the notion of a critical atom.
Namely, let X ⊂ J be a complete continuum. A point a ∈ X is critical
with respect to X if in a neighborhood U of a in X the map f |U is not
one-to-one. An atom A ⊂ X is critical with respect to X if it is either
a critical point with respect to X or a Fatou atom A ⊂ X of degree
greater than 1.

Lemma 3.11. Let I ⊂ X be two non-degenerate continua in J such
that X is complete and invariant. Suppose that X is not a Siegel
atom. Then fn(I) contains a critical atom of f |X for some n. Thus,
(pre)critical atoms are condense in J (every continuum in J intersects
a (pre)critical atom).

Proof. If I contains more than one point of the boundary Bd(U) of a
Fatou domain U , then it contains an arc K ⊂ Bd(U). As all Fatou
domains are (pre)periodic, K maps eventually to a subarc K ′ of the
boundary Bd(V ) of a periodic Fatou domain V . If V is of degree greater
than 1, then eventually K ′ covers Bd(V ); since in this case Bd(V ) is
a critical atom of f |X , we are done. If V is Siegel, then every point of
Bd(V ) is eventually covered by K ′. Since we assume that X is not a
Siegel atom, it follows that a critical point of f |X belongs to Bd(V ),
and again we are done.

By the preceding paragraph, from now on we may assume that non-
empty intersections of I with boundaries of Fatou domains are single
points. By [BL02a], I is not wandering; we may assume that I∩f(I) ̸=
∅. Set L =

∪∞
k=0 f

k(I). Then L is connected, and f(L) ⊂ L. If L
contains a Jordan curve Q, then Q is the boundary of an invariant
Fatou domain. If L∩Q = ∅, then L is in a single component of J \Q,
hence L∩Q is at most one point, a contradiction. Choose the smallest
k with fk(I)∩Q ̸= ∅; by the assumption fk(I)∩Q = {q} is a singleton.
Since the orbit of I cannot be contained in the union of components
of J \ {q} disjoint from Q, there exists m with fm(I) ∩Q not being a
singleton, a contradiction.

Hence L is an invariant dendrite, and all cutpoints of L belong to
images of I. Suppose that no cutpoint of L is critical. Then f |L is
a homeomorphism (if two points of L map to one point, there must
exist a critical point in the open arc connecting them). However, it is
proven in [BFMOT10] that if D ⊂ J is an invariant dendrite, then it
contains infinitely many periodic cutpoints. Hence we can choose two
points x, y ∈ L and a number r such that f r(x) = x, f r(y) = y. Then
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the arc I ′ ⊂ L connecting x and y is invariant under the map f r which
is one-to-one on I ′. Clearly, this is impossible inside J (it is easy to
see that a self-homeomorphism of an interval with fixed endpoints and
finitely many fixed points overall must have a fixed point attracting
from at least one side which is impossible in J). �

We need new notation. Let CrA(X) be the set of critical atoms
of f |X ; set CrA = CrA(J). Also, denote by PC(X) the union of all
periodic cut-atoms of X and by PC1(X) the set of all periodic cut-
atoms of X of degree 1.

Lemma 3.12. Let X ⊂ J be an invariant complete continuum which
is not a Siegel atom. Then the following facts hold.

(1) For every cutpoint x of X, there exists an integer r ≥ 0 such
that f r(x) either (a) belongs to a set from CrA(X), or (b) sep-
arates two sets of CrA(X), or (c) separates a set of CrA(X)
from its image. In any case f r(x) ∈ IC(CrA(X)), and in cases
(b) and (c) f r(x) is a cutpoint of IC(CrA(X)). In particu-
lar, the dynamical span of all cut-atoms of X is contained in
IC(CrA(X)).

(2) PC(X) ⊂ IC(CrA(X)). In particular, if X = IC(PC(X)) then
X = IC(CrA(X)).

Proof. (1) Suppose that x does not eventually map to CrA(X). Then
all points in the forward orbit of x are cutpoints of X (in particular,
there are at least two X-legs at any such point).

If f r(x) has more than one critical X-leg for some r ≥ 0, then f r(x)
separates two sets of CrA(X). Assume that fk(x) has one critical X-
leg for every k ≥ 0. By Lemma 3.10, each non-critical X-leg L of fk(x)
maps in a one-to-one fashion to some X-leg M of fk+1(x). There is a
connected neighborhood Uk of fk(x) in X so that f |Uk

is one-to-one.
We may assume that Uk contains all of the non-critical legs at fk(x).
Hence there exists a bijection φk between components of Uk \ fk(x)
and components of f(Uk) \ fk+1(x) showing how small pieces (germs)
of components of X \ {fk(x)}, containing fk(x) in their closures, map
to small pieces (germs) of components of X \ {fk+1(x)}, containing
fk+1(x) in their closures.

By Lemma 3.11 choose r > 0 so that a non-critical X-leg of f r−1(x)
maps to the critical X-leg of f r(x). Then the bijection φr−1 sends the
germ of the critical X-leg A of f r−1(x) to a non-critical X-leg B of
f r(x). Let C ⊂ A be the connected component of X \ (CrA(X) ∪
{f r−1(x)}) with f r−1(x) ∈ C; let R be the union of C and all the
sets from CrA(X) non-disjoint from C. Then f(R) ⊂ B while all the
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critical atoms are contained in the critical leg D ̸= B of f r(x). It
follows that f r(x) separates these critical atoms from their images. By
definition of IC(CrA(X)) this implies that either f r(x) belongs to a
set from CrA(X), or f r(x) is a cutpoint of IC(CrA(X)). In either case
f r(x) ∈ IC(CrA(X)). The rest of (1) easily follows.

(2) If x is a periodic cutpoint of X then, choosing r as above, we see
that f r(x) ∈ IC(CrA(X)) that implies that x ∈ IC(CrA(X)) (because
x is an iterated image of f r(x) and IC(CrA(X)) is invariant). Thus,
all periodic cutpoints of X belong to IC(CrA(X)). Now, take a peri-
odic Fatou atom Y . If Y is of degree greater than 1, then it has an
image fk(Y ) which is a critical atom of f |X . Thus, Y ⊂ IC(CrA(X)).
Otherwise for some k the set fk(Y ) is a periodic Siegel atom with crit-
ical points on its boundary. Since X is not a Siegel atom itself, fn(Y )
contains a critical point of f |X . Hence the entire Y is contained in
the limit set of this critical point and again Y ⊂ IC(CrA(X)). Hence
each periodic Fatou atom in X is contained in IC(CrA(X)). Thus,
PC(X) ⊂ IC(CrA(X)) as desired. �

We can now relate various dynamical cores to the critical atoms con-
tained in these cores. First first let us consider the following heuristic
example. Suppose that the lamination ∼ of sufficiently high degree has
an invariant Fatou gap V of degree 2 and, disjoint from it, a super-gap
U of degree 3. The super-gap U is subdivided (“tuned”) by an invari-
ant quadratic gap W ⊂ U with a critical leaf on its boundary (or a
finite critical gap sharing an edge with its boundary as in Figure 2)
so that W concatenated with its appropriate pullbacks fills up U from
within.

Also assume that the strip between U and V is enclosed by two circle
arcs and two edges, a fixed edge ℓu of U and a prefixed edge ℓv of V
(that is, σd(ℓv) is a fixed edge of V ). Moreover, suppose that U and V
have only two periodic edges , namely, ℓu and σd(ℓv), so that all other
edges of U and V are preimages of ℓu and σd(ℓv). All other periodic
gaps and leaves of ∼ are located in the component A of D\σd(ℓv) which
does not contain U and V . In Figure 2 an example of this construction
is shown for d = 6.

It follows from Theorem 1.2 that in this case COR1 includes a con-
tinuum K ⊂ p(A∪V ) united with a connector-continuum L connecting
K and p(ℓu). Moreover, p(Bd(V )) ⊂ K. Basically, all the points of L
except for p(ℓu) are “sucked into” K while being repelled away from
p(ℓu). Clearly, in this case even though p(ℓu) ∈ COR1, still p(ℓu) does
not belong to the set IC(CrA(COR1)) because p(Bd(W )), while be-
ing a critical atom, is not contained in COR1. This shows that some
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W

V

Figure 2. Example of a lamination and the corresponding
Julia set, for which COR1 ̸= IC(CrA(COR1)). The picture
corresponds to a degree 6 polynomial. The invariant qua-
dratic gap V corresponds to the largest dark grey region on
the right. The invariant gap W corresponds to the large light
grey “cauliflower” on the left. This is an invariant parabolic
domain that contains a critical point on its boundary.

points of COR1 may be located outside IC(CrA(COR1)) and also that
there might exist non-degenerate critical atoms intersecting COR1 over
a point (and hence not contained in COR1). This example shows that
the last claim of Lemma 3.12 cannot be established for X = COR1.
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Also, let us consider the case when COR is a Siegel atom Z. Then
by definition there are no critical points or atoms of f |COR, so in this
case CrA(COR) is empty. However this is the only exception.

Theorem 3.13. Suppose that COR is not just a Siegel atom. Then
COR = IC(CrA(COR)), CORrot = IC(CrA(CORrot)), and CORs =
IC(CrA(CORs)).

Proof. By Theorem 1.2 we have COR = IC(PC). Let us show that
in fact COR is the dynamical span of its periodic cutpoints and its
periodic Fatou atoms. It suffices to show that any periodic cutpoint
of J either belongs to a Fatou atom or is a cutpoint of COR. Indeed,
suppose that x is a periodic cutpoint of J which does not belong to a
Fatou atom. Then by Theorem 2.15 applied to different components
of J \ {x} we see that x separates two periodic elements of PC. Hence
x is a cutpoint of COR as desired. By Lemma 3.12 we have COR =
IC(CrA(COR)). The remaining claims can be proven similarly. �

There is a bit more universal way of stating a similar result. Namely,
instead of considering critical atoms of f |COR we can consider critical
atoms of f contained in COR. Then the appropriately modified claim of
Theorem 3.13 holds without exception. Indeed, it holds trivially in the
case when COR is an invariant Siegel atom. Otherwise it follows from
Theorem 3.13 and the fact that the family of critical atoms of f |COR is
a subset of the family of all critical atoms of f contained in COR. We
prefer the statement of Theorem 3.13 to a more universal one because
it allows us not to include “unnecessary” critical points of f which
happen to be endpoints of COR; clearly, the results of Theorem 3.13
hold without such critical points. Notice, that the explanations given
in this paragraph equally relate to COR1 and CORrot.

In the dendritic case the following corollary holds.

Corollary 3.14. If J is a dendrite, then the following holds:

COR = IC(PCrot) = IC(CrA(COR)).
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