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3.6. Prime Ends 28
3.7. Oriented maps 30
3.8. Induced maps of prime ends 32

Chapter 4. Partitions of domains in the sphere 35
4.1. Kulkarni-Pinkall Partitions 35
4.2. Hyperbolic foliation of simply connected domains 38
4.3. Schoenflies Theorem 40
4.4. Prime ends 41

Part 2. Applications of basic theory 47

Chapter 5. Description of main results of Part 2 49
5.1. Outchannels 49
5.2. Fixed points in invariant continua 50
5.3. Fixed points in non-invariant continua – the case of dendrites 50
5.4. Fixed points in non-invariant continua – the planar case 51
5.5. The polynomial case 52

Chapter 6. Outchannels and their properties 55
6.1. Outchannels 55

v



vi CONTENTS

6.2. Uniqueness of the Outchannel 59

Chapter 7. Fixed points 63
7.1. Fixed points in invariant continua 63
7.2. Dendrites 64
7.3. Non-invariant continua and positively oriented maps of the plane 69
7.4. Maps with isolated fixed points 74
7.5. Applications to complex dynamics 84

Bibliography 93

Index 97



Abstract

In this memoir we present proofs of basic results, including those developed
so far by Harold Bell, for the plane fixed point problem: does every map of a
non-separating plane continuum have a fixed point? Some of these results had
been announced much earlier by Bell but without accessible proofs. We define the
concept of the variation of a map on a simple closed curve and relate it to the index
of the map on that curve: Index = Variation + 1. A prime end theory is developed
through hyperbolic chords in maximal round balls contained in the complement of
a non-separating plane continuum X. We define the concept of an outchannel for
a fixed point free map which carries the boundary of X minimally into itself and
prove that such a map has a unique outchannel, and that outchannel must have
variation −1. Also Bell’s Linchpin Theorem for a foliation of a simply connected
domain, by closed convex subsets, is extended to arbitrary domains in the sphere.

We introduce the notion of an oriented map of the plane and show that the
perfect oriented maps of the plane coincide with confluent (that is composition of
monotone and open) perfect maps of the plane. A fixed point theorem for positively
oriented, perfect maps of the plane is obtained. This generalizes results announced
by Bell in 1982.

A continuous map of an interval I ⊂ R to R which sends the endpoints of
I in opposite directions has a fixed point. We generalize this to maps on non-
invariant continua in the plane under positively oriented maps of the plane (with
appropriate boundary conditions). Similar methods imply that in some cases non-
invariant continua in the plane are degenerate. This has important applications
in complex dynamics. E.g., a special case of our results shows that if X is a non-
separating invariant subcontinuum of the Julia set of a polynomial P containing
no fixed Cremer points and exhibiting no local rotation at all fixed points, then X
must be a point. It follows that impressions of some external rays to polynomial
Julia sets are degenerate.
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Preface

By a continuum we mean a compact and connected metric space and by a non-
separating continuum X in the plane C we mean a continuum X ⊂ C such that
C \X is connected. Our work is motivated by the following long-standing problem
[Ste35] in topology.

Plane Fixed Point Problem: “Does a continuous function taking a non-
separating plane continuum into itself always have a fixed point?”

To give the reader perspective we would like to make a few brief historical
remarks (see [KW91, Bin69, Bin81] for much more information).

Borsuk [Bor35] showed in 1932 that the answer to the above question is yes
if X is also locally connected. Cartwright and Littlewood [CL51] showed in 1951
that a map of a non-separating plane continuum X to itself has a fixed point if the
map can be extended to an orientation-preserving homeomorphism of the plane.
It was 27 years before Harold Bell [Bel78] extended this result to the class of
all homeomorphisms of the plane. Then Bell announced in 1982 (see also Akis
[Aki99]) that the Cartwright-Littlewood Theorem can be extended to the class of
all holomorphic maps of the plane. For other partial results in this direction see,
e.g., [Ham51, Hag71, Bel79, Min90, Hag96, Min99].

In this memoir the Plane Fixed Point Problem is addressed. We develop and
further generalize tools, first introduced by Bell, to elucidate the action of a fixed
point free map (should one exist). We are indebted to Bell for sharing his insights
with us. Some of the results in this memoir were first obtained by him. Unfortu-
nately, many of the proofs were not accessible. Since there are now multiple papers
which rely heavily upon these tools (e.g., [OT07, BO09, BCLOS08]) we believe
that they deserve to be developed in a coherent fashion. We also hope that by
making these tools available to the mathematical community, other applications of
these results will be found. In fact, we include in Part 2 of this text new applications
which illustrate their usefulness.

Part 1 contains the basic theory, the main ideas of which are due to Bell. We
introduce Bell’s notion of variation and prove his theorem that index equals varia-
tion increased by 1 (see Theorem 3.2.2). Bell’s Linchpin Theorem 4.2.5 for simply
connected domains is extended to arbitrary domains in the sphere and proved us-
ing an elegant argument due to Kulkarni and Pinkall [KP94]. Our version of this
theorem (Theorem 4.1.5) is essential for the results later in the paper.

Building upon these ideas, we will introduce in Part 1 the class of oriented
maps of the plane and show that it decomposes into two classes, one of which
preserves and the other of which reverses local orientation. The extension from
holomorphic to positively oriented maps is important since it allows for simple
local perturbations of the map (see Lemma 7.5.1) and significantly simplifies further
usage of the developed tools.

xi
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In Part 2 new applications of these results are considered. A Zorn’s Lemma
argument shows, that if one assumes a negative solution to the Plane Fixed Point
Problem, then there is a subcontinuum X which is minimal invariant. It follows
from Theorem 6.1.4 that for such a minimal continuum, f(X) = X. We recover
Bell’s result [Bel67] (see also Sieklucki [Sie68], and Iliadis [Ili70]) that the bound-
ary of X is indecomposable with a dense channel (i.e., there exists a prime end Et
such that the principal set of the external ray Rt is all of ∂X).

As the first application we show in Chapter 6 that X has a unique outchannel
(i.e., a channel in which points basically map farther and farther away from X) and
this outchannel must have variation −1 (i.e., as the above mentioned points map
farther and farther away from X, they are “flipped with respect to the center line
of the channel”).

The next application of the tools developed in Part 1 directly relates to the
Plane Fixed Point Problem. We introduce the class of oriented maps of the plane
(i.e., all perfect maps of the plane onto itself which are the compositions of monotone
and branched covering maps of the plane). The class of oriented maps consists of
two subclasses: positively oriented and negatively oriented maps. In Theorem 7.1.3
we show that the Cartwright-Littlewood Theorem can be extended to positively
oriented maps of the plane.

These results are used in [BO09]. There we consider a branched covering map
f of the plane. It follows from the above that if f has an invariant and fixed point
free continuum Z, then f must be negatively oriented. We show in [BO09] that if,
moreover, f is an oriented map of degree 2, then Z must contain a continuum X
such that X is fully invariant (so that X contains the critical point and f |X is not
one-to-one). Thus, X bears a strong resemblance to a connected filled in Julia set
of a quadratic polynomial.

The rest of Part 2 is devoted to extending the existence of a fixed point in
planar continua under positively oriented maps established in Theorem 7.1.3. We
extend this result to non-invariant planar continua. First the result is generalized
to dendrites; moreover, it is strengthened by showing that in certain cases the map
must have infinitely many periodic cutpoints.

The above results on dendrites have applications in complex dynamics. For
example, they are used in [BCO08] to give a criterion for the connected Julia set
of a complex polynomial to have a non-degenerate locally connected model. That
is, given a connected Julia set J of a complex polynomial P , it is shown in [BCO08]
that there exists a locally connected topological Julia set Jtop and a monotone map
m : J → Jtop such that for every monotone map g : J → X from J onto a locally
connected continuum X, there exists a monotone map f : Jtop → X such that
g = f ◦ m. Moreover, the map m has a dynamical meaning. It semi-conjugates
the map P |J to a topological polynomial Ptop : Jtop → Jtop. In general, Jtop can
be a single point. In [BCO08] a necessary and sufficient condition for the non-
degeneracy of Jtop is obtained. These results extend Kiwi’s fundamental result
[Kiw04] on the semi-conjugacy of polynomials without Cremer or Siegel points to
all polynomials with connected Julia set.

Finally the results on the existence of fixed points in invariant planar continua
under positively oriented maps are extended to non-invariant planar continua. We
introduce the notion of “scrambling of the boundary” of a plane continuum X un-
der a positively oriented map and extend the fixed point results to non-invariant
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continua on which the map scrambles the boundary. These conclusions are strength-
ened by showing that, under additional assumptions, a non-degenerate continuum
must either contain a fixed point in its interior, or must contain a fixed point near
which the map “locally rotates”. Hence, if neither of these is the case, then the
continuum in question must be a point. This latter result is used to show that in
certain cases impressions of external rays to connected Julia sets are degenerate.

These last named results have had other applications in complex dynamics. In
[BCLOS08] these results were used to generalize the well-known Fatou-Shishikura
inequality in the case of a polynomial P (in general, the Fatou-Shishikura inequality
holds for rational functions, see [Fat20, Shi87]). For polynomials this inequality
limits the number of attracting and irrationally neutral periodic cycles by the num-
ber of critical points of P . The improved count involves classes of (weakly recurrent)
critical points and wandering subcontinua in the Julia set.

The results in Part 1 of this memoir were mostly obtained in the late 1990’s.
Most of the applications in Part 2, including the results on non-invariant plane
continua and the applications in dynamics, have been obtained during 2006–2009.
Finally the authors are indebted to a careful reading by the referee which resulted
in numerous changes and improvements.

Alexander M. Blokh

Robbert J. Fokkink

John C. Mayer

Lex G. Oversteegen

E. D. Tymchatyn





CHAPTER 1

Introduction

1.0.1. Notation and the main problem. We denote the plane by C, the
Riemann sphere by C∞ = C ∪ {∞}, the real line by R and the unit circle by
S1 = R/Z. Let X be a plane compactum. Since C is locally connected and X is
closed, complementary domains of X are open. By T (X) we denote the topological
hull of X consisting of X union all of its bounded complementary domains. Thus,
U∞ = U∞(X) = C∞ \ T (X) is the unbounded complementary component of
X containing infinity. Observe that if X is a continuum, then U∞(X) is simply
connected. The Plane Fixed Point Problem, attributed to [Ste35], is one of the
central long-standing problems in plane topology. It serves as a motivation for our
work and can be formulated as follows.

Problem 1.0.1 (Plane Fixed Point Problem). Does a continuous function tak-
ing a non-separating plane continuum into itself always have a fixed point?

1.0.2. Historical remarks. To give the reader perspective we would like to
make a few historical remarks concerning the Plane Fixed Point Problem (here we
cover only major steps towards solving the problem).

In 1912 Brouwer [Bro12] proved that any orientation preserving homeomor-
phism of the plane, which keeps a bounded set invariant, must have a fixed point
(though not necessarily in that set). This fundamental result has found many im-
portant applications. It was recognized early on that the location of a fixed point
should be determined if the invariant set is a non-separating continuum (in that
case a fixed point should be located in the invariant continuum) and many papers
have been devoted to obtaining partial solutions to the Plane Fixed Point Problem.

Borsuk [Bor35] showed in 1932 that the answer is yes if X is also locally
connected. Cartwright and Littlewood [CL51] showed in 1951 that a continuous
map of a non-separating continuum X to itself has a fixed point in X if the map can
be extended to an orientation-preserving homeomorphism of the plane. (See Brown
[Bro77] for a very short proof of this theorem based on the above mentioned result
by Brouwer). The proof by Cartwright-Littlewood Theorem made use of the index
of a map on a simple closed curve and this idea has remained the basic approach
in many partial solutions.

The most general result was obtained by Bell [Bel67] in the early 1960’s.
He showed that any counterexample must contain an invariant indecomposable
subcontinuum. Hence the Plane Fixed Point Problem has a positive solution for
hereditarily decomposable plane continua (i.e., for continua X which do not con-
tain indecomposable subcontinua). Bell’s result was also based on the notion of the
index of a map, but he introduced new ideas to determine the index of a simple
closed curve which runs tightly around a possible counterexample. Unfortunately,
these ideas were not transparent and were never fully developed. Alternative proofs

1



2 1. INTRODUCTION

of Bell’s result appeared soon after Bell’s announcement (see [Sie68, Ili70]). Re-
grettably these results did not develop Bell’s ideas.

In 1978 Bell [Bel78] used his earlier result to extend the result by Cartwright
and Littlewood to the class of all homeomorphisms of the plane. Then Bell an-
nounced in 1982 (see also Akis [Aki99] where a wider class of differentiable func-
tions was used) that the Cartwright-Littlewood Theorem can be extended to the
class of all holomorphic maps of the plane. The existence of fixed points for orienta-
tion preserving homeomorphisms of the entire plane under various conditions was
also considered in [Bro84, Fat87, Fra92, Gui94], and the existence of a point of
period two for orientation reversing homeomorphisms in [Bon04].

As indicated above, positive results require an additional hypothesis either on
the continuum X (as in Borsuk’s result where the assumption is that X is locally
connected) or on the map (as in Bell’s case where the assumption is that f is a home-
omorphism of the plane). Other positive results of the first type include results by
Hamilton [Ham51] (X is chainable), Hagopian [Hag71] (X is arcwise connected)
Minc [Min90] (X is the continuous image of the pseudo arc) and [Hag96] (X is
simply connected). Positive results of the second type require the map to be either
a homeomorphism [CL51, Bel78], holomorphic (as announced by Bell) or smooth
with non-negative Jacobian and isolated singularities [Aki99].

David Bellamy [Bel79] produced an important related counterexample. He
showed that there exists a tree-like continuumX, whose every proper subcontinuum
is an arc and which admits a fixed point free homeomorphism. It is not known if
examples of this type can be embedded in the plane. Minc [Min99] constructed a
tree-like continuum which is the continuous image of the pseudo arc and admits a
fixed point free map.

1.0.3. Major tools. In this subsection we describe the major tools developed
in Part 1.

1.0.3.1. Finding fixed points with index and variation. It is easy to see that a
map of a plane continuum to itself can be extended to a perfect map of the plane.
We study the slightly more general question, “Is there a plane continuum Z and
a perfect continuous function f : C → C taking Z into T (Z) with no fixed points
in T (Z)?” A Zorn’s Lemma argument shows that if one assumes that the answer
is “yes,” then there is a subcontinuum X ⊂ Z, minimal with respect to these
properties. It will follow from Theorem 6.1.4 that for such a minimal continuum,
f(X) = X = ∂T (X) (though it may not be the case that f(T (X)) ⊂ T (X)). Here
∂T (X) denotes the boundary of T (X).

Many fixed point results make use of the notion of the index ind(f, S), which
counts the number of revolutions of the vector connecting z with f(z) for z ∈ S
running along a simple closed curve S in the plane. As is well-known, if f : C → C is
a map and ind(f, S) ̸= 0, then f must have a fixed point in T (S) (for completeness
we prove this in Theorem 3.1.4). In order to establish fixed points in invariant
plane continua X, one often approximates X by a simple closed curve S such that
X ⊂ T (S). If ind(f, S) ̸= 0 and S is sufficiently tight around X, one can conclude
that f must have a fixed point in T (X). Hence the main work is in showing that
ind(f, S) ̸= 0 for a suitable simple closed curve around X.

Bell’s fundamental idea was to replace the count of the number of rotations

of the vector
−−−→
zf(z) with respect to a fixed axis (say, the x-axis) by a count which

involves the moving frame of external rays. Consider, for example, the unit circle
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S1 and a fixed point free map f : S1 → C. For each z = e2πiθ ∈ S1 let Rz

be the external ray {re2πiθ | r > 1}. Now count the number of times the point
f(z), z ∈ S1, crosses the external ray Rz, taking into account the direction of the
crossing. Call this count the variation var(f,S1). It is easy to see that in this case
ind(f,S1) = var(f,S1) + 1.

Another useful idea is to consider a similar count not on the entire unit circle
(or, in general, not on the entire simple closed curve S containing X in its topologi-
cal hull T (S)), but on subarcs of S1, which map off themselves and whose endpoints
map inside T (S1). By doing so, one obtains Bell’s notion of variation var(f,A) on
arcs (see Definition 2.2.2). If one can write S1 as a finite union Ai of arcs such that
any two meet at most in a common endpoint and, for all i, f(Ai) ∩ Ai = ∅ and
both endpoints map in T (S1), one can define var(f,S1) =

∑
var(f,Ai). Then, as

above, one can use it to compute the index and prove that index equals variation
increased by 1 (see Theorem 3.2.2).

The relation between index and variation immediately implies a few classic
results, in particular that of Cartwright and Littlewood. To see this one only needs
to show that, if h is an orientation preserving homeomorphism of the plane, X
is an invariant plane continuum and Ai ⊂ S are subarcs of a tight simple closed
curve around X, with endpoints in X as above and such that f(Ai)∩Ai = ∅, then
var(f,Ai) ≥ 0 (see Corollary 7.1.2). Then ind(f, S) =

∑
var(f,Ai) + 1 ≥ 1 and

T (X) contains a fixed point as desired. Observe that the connection between index
and variation is essential for all the applications in Part 2.

1.0.3.2. Other tools, such as foliations and oriented maps. Let X be a non-
separating plane continuum and let f : C → C be a map such that f(X) ⊂
T (X) and f has no fixed points in T (X). In general we need more control of
the simple closed curve S around X (and of the action of the map on S \ X).
Bell originally accomplished this by partitioning the complement of T (X) in the
Euclidean convex hull convE(X) of X by Euclidean convex sets. Suppose that B
is a maximal round closed ball (or a half plane) such that int(B) ∩ T (X) = ∅ and
|B ∩ X| ≥ 2, and consider the set convE(B ∩ X). For any two such balls B1, B2

eitherK1,2 = convE(B1∩X)∩convE(B2∩X) is empty, orK1,2 is a single point inX,
or this intersection is a common chord contained in both of their boundaries. Bell’s
Linchpin Theorem (see Theorem 4.2.5 and the remark following it) states that the
collection convE(B ∩X) over all such maximal balls covers all of convE(X) \T (X).

Hence the collection convE(B ∩ X) over all such balls provides a partition of
convE(X) \ X into Euclidean convex sets contained in maximal round balls. The
collection of chords in the boundaries of the sets convE(B∩X) for all such balls have
the property that any two distinct chords meet in at most a common endpoint in X.
In other words, this set of chords is a lamination in the sense of Thurston [Thu09]
even though in Thurston’s paper laminations appear in a very different, namely
complex dynamical, context. This Linchpin Theorem can be used to extend the
map f |T (X) over convE(X)\T (X) (first linearly over all the chords in the lamination
and then over all remaining components of the complement). We will illustrate the
usefulness of Bell’s partition by showing that the well-known Schoenflies Theorem
follows immediately. It can also be used to obtain a particular simple closed curve
S around X so that every component of S \X is a chord in the lamination.

In our version of Bell’s Linchpin Theorem we consider arbitrary open and con-
nected subsets of the sphere U and we use round balls in the spherical metric on
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the sphere. Moreover, the Euclidean geodesics are replaced by hyperbolic geodesics
(in either the hyperbolic metric in each ball or, if U is simply connected, in the hy-
perbolic metric on U). This way we get a lamination of all of U∞(X) = C∞ \T (X)
(and not just convE(X) \ T (X)) and the resulting lamination is easier to apply in
other settings. We give a proof of this theorem using an elegant argument due
to Kulkarni and Pinkall [KP94] which also allows for the extension over arbitrary
open and connected subsets of the sphere (see Theorem 4.1.5; this later theorem is
used in Chapter 6). Bell’s Linchpin Theorem follows as a corollary.

This new partition of a complementary domain of a continuum can also be
used in other settings to extend a homeomorphism on the boundary of a planar
domain over the entire domain. In [OT07] this is used to show that an isotopy
of a planar continuum, starting at the identity, extends to an isotopy of the plane.
This extends a well-known result regarding the extension of a holomorphic motion
[ST86, Slo91]. In [OV09] this partition is used to give necessary and sufficient
conditions to extend a homeomorphism, of an arbitrary planar continuum, over the
plane.

The development of the necessary tools in Part 1 is completed by introducing
the notion of (positively or negatively) oriented maps and studying their proper-
ties. Holomorphic maps are prototypes of positively oriented maps but in general
positively oriented maps do not have to be differentiable, light, open or monotone.
Locally at non-critical points, positively oriented maps behave like orientation-
preserving homeomorphisms in the sense that they preserve local orientation. Com-
positions of open, perfect and of monotone, perfect surjections of the plane are con-
fluent (i.e., such that components of the preimage of any continuum map onto the
continuum) and naturally decompose into two classes, one of which preserves and
the other of which reverses local orientation. We show that any confluent map of
the plane is itself a composition of a monotone and a light-open map of the plane.
It is shown that an oriented map of the plane induces a map from the circle of
prime ends of a component of the pre-image of an acyclic plane continuum to the
circle of prime ends of that continuum.

1.0.4. Main applications. Part 2 contains applications of the tools devel-
oped in Part 1. Directly or indirectly, these applications deal with the Plane Fixed
Point Problem. We describe them below.

1.0.4.1. Outchannel and hypothetical minimal continua without fixed points.
The first application is in Chapter 6 where we establish the existence of a unique
outchannel. Let us consider this in more detail. If there exists a counterexample to
the Plane Fixed Point Problem, then there exists a continuum X which is minimal
with respect to f(X) ⊂ T (X) and f has no fixed point in T (X). Bell has shown
[Bel67] (see also [Sie68, Ili70]) that such a continuum has at least one dense
outchannel of negative variation. Since X is minimal with a dense outchannel, X
is an indecomposable continuum and f(X) = X.

A dense outchannel is a prime end so that its principal set is all of X and if {Ci}
is a defining sequence of crosscuts, then f maps these crosscuts essentially “out of
the channel” (i.e., closer to infinity) for i sufficiently large. The latter statement is
accurately reflected by the fact that var(f, Ci) ̸= 0. In case that the complement of
X is invariant, this can be described by saying that the crosscut f(Ci) separates Ci

from infinity in U∞(X) (and hence, in this case, crosscuts do really map out of the
channel). As a new result, the main steps of the proof of which were outlined by
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Bell, we show that there always exists exactly one outchannel and that its variation
is −1, while all other prime ends must have variation 0. Using these results it is
shown in [BO09] that if f is a negatively oriented branched covering map of degree
2 which has a non-separating invariant continuum Z without fixed points, then the
minimal subcontinuum X ⊂ Z has the following additional properties:

(1) X is indecomposable,
(2) the unique critical point c of f belongs to X, f(X) = X, and f(C \X) =

C \X (so that X is fully invariant),
(3) f induces a covering map F : S1 → S1 from the circle of prime ends of X

to itself of degree −2.
(4) F has three fixed points one of which corresponds to the unique dense

outchannel whereas the remaining two fixed points correspond to dense
inchannels (i.e., for a defining sequence of crosscuts {Ci}, Ci separates
f(Ci) from infinity in U∞)

Moreover, as part of the argument, the map f is modified in C \X so that the new
map g keeps the tail of the external ray, which runs down the outchannel, invariant
and maps the points on them closer to infinity.

1.0.4.2. Fixed points in invariant continua for positively oriented maps. Other
applications of the tools developed in Part 1 are obtained in Chapter 7. These
are also related to the Plane Fixed Point Problem. As we will see below, the
corresponding results can be in turn further applied in complex dynamics, leading
to some structural results in the field, such as constructing finest locally connected
models for connected Julia sets or studying wandering continua inside Julia sets
and an extension of the Fatou-Shishikura inequality so that it includes counting
wandering branch-continua (see Section 7.5).

The first application in Chapter 7 is the most straightforward of them all: in
Theorem 7.1.3 from Section 7.1 we prove that a positively oriented map f which
takes a continuum X into the topological hull T (X) of X must have a fixed point
in T (X). In other words, in Theorem 7.1.3 the Plane Fixed Point Problem is solved
in the affirmative for positively oriented maps. As we will see, the extension from
holomorphic maps to positively oriented maps is important since the latter class
allows for easy local perturbations. This will allow us to deal with parabolic points
in a Julia set (see Lemma 7.5.1, Theorem 7.5.2 and Corollary 7.5.4).

The idea of the proof is as follows. First we prove in Corollary 7.1.2 that if a
crosscut C of X is mapped off itself by f then the variation on C is non-negative.
This is done by completing the crosscut C to a very tight simple closed curve S
around X and observing that in fact the variation in question can be computed
by computing the winding number of f on S. Notice that versions of this idea are
used later on when we prove the existence of fixed points in non-invariant continua
satisfying certain additional conditions.

To prove Theorem 7.1.3, we first assume by way of contradiction that T (X)
contains no fixed points. In this case there are no fixed points in the closure U
of a sufficiently small neighborhood U of T (X). Using this, we construct a simple
closed curve which goes around X inside such a neighborhood U and “touches” X
at a sufficiently dense set of points so that arcs between consecutive points of S∩X
are very small. Since there are no fixed points in U , we can guarantee that the
images of these arcs are disjoint from themselves. Hence by the above described
Corollary 7.1.2 the variations of all these arcs are non-negative. By Theorem 3.2.2
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this implies that the index of f on S is not equal to zero and hence, by Theorem 3.1.4
there must exist a fixed point inside T (S), a contradiction.

1.0.4.3. Fixed points in non-invariant continua: the case of dendrites. Our gen-
eralizations of Theorem 7.1.3 are inspired by a simple observation. The most well-
known particular case for which the Plane Fixed Point Problem is solved is that of
a map of a closed interval I = [a, b], a < b into itself in which case there must exist
a fixed point in I. However, in this case a more general result can easily be proven,
of which the existence of a fixed point in an invariant interval is a consequence.

Namely, instead of considering a map f : I → I consider a map f : I → R such
that either (a) f(a) ≥ a and f(b) ≤ b, or (b) f(a) ≤ a and f(b) ≥ b. Then still there
must exist a fixed point in I which is an easy corollary of the Intermediate Value
Theorem applied to the function f(x)− x. Observe that in this case I need not be
invariant under f . Observe also that without the assumptions on the endpoints,
the conclusion on the existence of a fixed point inside I cannot be made because,
e.g., a shift map on I does not have fixed points at all. The conditions (a) and (b)
above can be thought of as boundary conditions imposing restrictions on where f
maps the boundary points of I in R.

Our main aim in the remaining part of Chapter 7 is to consider some other
cases for which the Plane Fixed Point Problem can be solved in the affirmative
(i.e., the existence of a fixed point in a continuum can be established) despite the
fact that the continuum X in question is not invariant. We proceed with our studies
in two directions. Considering X, we replace the invariantness of the continuum by
boundary conditions in the spirit of the above “interval version” of the Plane Fixed
Point Problem. We also show that there must exist a fixed point of “rotational
type” in the continuum (and hence, if it is known that such a point does not exist,
then the continuum in question is a point).

Since we now deal with continua significantly more complicated than an inter-
val, inevitably the boundary conditions become rather intricate. Thus we postpone
the precise technical statement of the results until Chapter 7 and use here a more
descriptive approach. Observe that particular cases for which the Plane Fixed
Point Problem is solved so far can be divided into two categories: either X has ad-
ditional properties, or f has additional properties. In the first category the above
considered “interval case” is the most well-known. A direct extension of it is the
following well-known theorem (which follows from Borsuk’s theorem [Bor35], see
[Nad92] for a direct proof); recall that a dendrite is a locally connected continuum
containing no simple closed curves.

Theorem 1.0.2. If f : D → D is a continuous map of a dendrite into itself
then it has a fixed point.

Here f is just a continuous map but the continuumD is very nice. In Section 7.2
Theorem 1.0.2 is generalized to the case when f : D1 → D2 maps a dendrite D1 into
a dendrite D2 ⊃ D1 and certain conditions on the behavior of the points of the set
E = D2 \D1 ∩D1 under the map f are fulfilled (observe that E may be infinite).
This presents a “non-invariant” version of Plane Fixed Point Problem for dendrites
and can be done in the spirit of the interval case described earlier. Moreover, with
some additional conditions it has consequences related to the number of periodic
points of f .

More precisely, we introduce the notion of boundary scrambling for dendrites
in the situation above. It simply means that for each non-fixed point e ∈ E, f(e)
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is contained in a component of D2 \ {e} which intersects D1 (see Definition 5.3.1).
Observe that if D1 is invariant then f automatically scrambles the boundary. We
prove the following theorem.

Theorem 7.2.2. Suppose that f : D1 → D2 is a map between dendrites, where
D1 ⊂ D2, which scrambles the boundary. Then f has a fixed point.

Next in Section 7.2 we define weakly repelling periodic points. Basically, a
point a ∈ D1 is a weakly repelling periodic point (for fn) if there exists n ≥ 1 and
a component B of D1 \ {a} such that fn(a) = a and arbitrarily close to a in B
there exist cutpoints of D1 fixed under fn or points x separating a from fn(x).
Note that a fixed point a of f can be a weakly repelling periodic point for fn while
it is not weakly repelling for f . We use this notion to prove Theorem 7.2.6 where
we show that if D is a dendrite and f : D → D is continuous and all its periodic
points are weakly repelling, then f has infinitely many periodic cutpoints. Then we
rely upon Theorem 7.2.6 in Theorem 7.2.7 where it is shown that if g : J → J is a
topological polynomial on its dendritic Julia set (e.g., if g is a complex polynomial
with a dendritic Julia set) then it has infinitely many periodic cutpoints.

1.0.4.4. Fixed points in non-invariant continua: the planar case. In Sections 7.3
and 7.4 we draw a parallel with the interval case for planar maps and extend Theo-
rem 7.1.3 to non-invariant continua under positively oriented maps such that certain
“boundary” conditions are satisfied. Namely, suppose that f : C → C is a positively
oriented map and X ⊂ C is a non-separating continuum. Since we are interested in
fixed points of f |X , it makes sense to assume that at least f(X)∩X ̸= ∅. Thus, we
can think of f(X) as a new continuum which “grows” from X at some places. We
assume that the “pieces” of f(X) which grow outside X are contained in disjoint
non-separating continua Zi so that f(X) \X ⊂ ∪iZi.

We also assume that places at which the growth takes places - i.e., sets Zi∩X =
Ki - are non-separating continua for all i. Finally, the main assumption here is the
following restriction upon where the continua Ki map under f : we assume that for
all i, f(Ki) ∩ [Zi \Ki] = ∅. If this is all that is satisfied, then the map f is said to
scramble the boundary (of X). A stronger version of that is when for all i, either
f(Ki) ⊂ Ki, or f(Ki)∩Zi = ∅; then we say that f strongly scrambles the boundary
(of X) (see Definition 5.4.1). The continua Ki are called exit continua (of X). The
main result of Section 7.3 is:

Theorem 7.3.3. Suppose that f is positively oriented and strongly scrambles
the boundary of X, then f has a fixed point in X.

As an illustration, consider the case when X ∪ (∪iZi) is a dendrite and all sets
Ki are singletons. Then it is easy to see that both scrambling and strong scrambling
of the boundary in the sense of dendrites mean the same as in the sense of the planar
definition. Of course, in the planar case we deal with a much more narrow class of
maps, namely positively oriented maps, and with a much wider variety of continua,
namely all non-separating planar continua. This fits into the “philosophy” of our
approach: whenever we obtain a result for a wider class of continua, we have to
consider a more specific class of maps.

For the family of positively oriented maps with isolated fixed points we specify
this result as follows. We introduce the notion of the map f repelling outside X at a
fixed point p (see Definition 7.4.5; basically, it means that there exists an invariant
external ray of X which lands at p and along which the points are repelled away
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from p. Then in Theorem 7.4.7 we show that if f is a positively oriented map with
isolated fixed points and X ⊂ C is a non-separating continuum or a point such that
f scrambles the boundary of X and for every fixed point a the winding number at
a equals 1 and f repels at a, then X must be a point.

1.0.4.5. Fixed points in non-invariant continua for polynomials. These theo-
rems apply to polynomials P , allowing us to obtain a few corollaries dealing with
the existence of periodic points in certain parts of the Julia set of a polynomial
and degeneracy of certain impressions. To discuss this we assume knowledge of the
standard definitions such as Julia sets JP , filled-in Julia sets KP = T (JP ), Fatou
domains, parabolic periodic points etc which are formally introduced in Section 5.5
and further discussed in Section 7.5 (see also [Mil00]). Recall that the set U∞(JP )
(called in this context the basin of attraction of infinity) is partitioned by the (con-
formal) external rays Rα with arguments α ∈ S1. If JP is connected, all rays Rα are
smooth and pairwise disjoint while if JP is not connected limits of smooth external
rays must be added. Still, given an external ray Rα of K, its principal set Rα \Rα

can be introduced as usual.
We then define a general puzzle-piece of a filled-in Julia set KP as a continuum

X which is cut from KP by means of choosing a few exit continua Ei ⊂ X each of
which contains the principal sets of more than one external ray. We then assume
that there exists a component CX of the complement in C to the union of all such
exit continua Ei and their external rays such that X ⊂ (CX ∩KP ) ∪ (

∪
Ei). The

external rays accumulating inside an exit continuum Ei cut the plane into wedges
one of which, denoted by Wi, contains points of X. The “degenerate” case when
there are no exit continua is also included and simply means that X is an invariant
subcontinuum of KP .

The main assumption on the dynamics of a general puzzle piece X which we
make is that P (X)∩CX ⊂ X and for each exit continuum Ei we have P (Ei) ⊂Wi.
It is easy to see that this essentially means that P scrambles the boundary of X
(where the role of the “boundary” is played by the union of exit continua).

The conclusion, obtained in Theorem 7.5.2, is based upon the above described
results, in particular on Theorem 7.4.7. It states that for a general puzzle-piece
either X contains an invariant parabolic Fatou domain, or X contains a fixed point
which is neither repelling nor parabolic, or X contains a repelling or parabolic
fixed point a at which the local rotation number is not 0. Let us now list the main
dynamical applications of this result.

1.0.4.6. Further dynamical applications. There are a few ways Theorem 7.5.2
applies in complex (polynomial) dynamics. First, it is instrumental in studying wan-
dering cut-continua for polynomials with connected Julia sets. A continuum/point
L ⊂ JP is a cut-continuum (of valence val(L)) if the cardinality val(L) of the set
of components of JP \ L is greater than 1. A collection of disjoint cut-continua (it
might, in particular, consist of one continuum) is said to be wandering if their for-
ward images form a family of pairwise disjoint sets. The main result of [BCLOS08]
in the case of polynomials with connected Julia sets is the following generalization
of the Fatou-Shishikura inequality.

Theorem 1.0.3. Let P be a polynomial with connected Julia set, let N be
the sum of the number of distinct cycles of its bounded Fatou domains and the
number of cycles of its Cremer points, and let Γ ̸= ∅ be a wandering collection of
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cut-continua Qi with valences greater than 2 which contain no preimages of critical
points of P . Then

∑
Γ(val(Qi)− 2) +N ≤ d− 2.

In [BCLOS08] a partition of the plane into pieces by rays with rational ar-
guments landing at periodic cutpoints of JP and their preimages is used. Theo-
rem 7.5.2 plays a significant role in the proof of the fact that wandering cut-continua
do not enter the pieces containing Cremer or Siegel periodic points which is an im-
portant ingredient of the arguments in [BCLOS08] proving Theorem 1.0.3.

Another application of Theorem 7.5.2 can be found in [BCO08] where Kiwi’s
fundamental result [Kiw04] on the semiconjugacy of polynomials on their Julia
sets without Cremer or Siegel points is extended to all polynomials with connected
Julia sets; in both cases topological polynomials on their topological Julia sets serve
as locally connected models. Denote the monotone semiconjugacy in question by φ.
In showing in [BCO08] that if x is a (pre)periodic point and φ(x) is not equal to
a φ-image of a Cremer or Siegel point or its preimage then JP is locally connected
at x, Theorem 7.5.2 plays a crucial role.

Finally, our results concerning dendrites (such as Theorem 7.2.6 and Theo-
rem 7.2.7) are used in [BCO08] where a criterion for the connected Julia set to
have a non-degenerate locally connected model is obtained. We also rely on The-
orem 7.2.6 and Theorem 7.2.7 to show in [BCO08] that if such model exists, and
is a dendrite, then the polynomial must have infinitely many bi-accessible periodic
points in its Julia set.

1.0.5. Concluding remarks and acknowledgments. All of the positive
results on the existence of fixed points in this memoir are either for simple continua
(i.e., those which do not contain indecomposable subcontinua) or for positively
oriented maps of the plane. Hence the following special case of the Plane Fixed
Point Problem is a major remaining open problem:

Problem 1.0.4. Suppose that f : C → C is a negatively oriented branched
covering map, |f−1(y)| ≤ 2 for all y ∈ C and Z is a non-separating plane continuum
such that f(Z) ⊂ Z. Must f have a fixed point in Z?

Suppose that c is the unique critical point of f and that X ⊂ Z is a minimal
continuum such that f(X) ⊂ T (X). Then, as was mentioned above, the answer is
yes if there exists y ∈ X \ {f(c)} such that |f−1(y) ∩ X| < 2. In particular the
answer to Problem 1.0.4 is yes if f |Z is one-to-one.

Finally let us express, once again, our gratitude to Harold Bell for sharing his
insights with us. His notion of variation of an arc, his index equals variation plus
one theorem and his linchpin theorem of partitioning a complementary domain of
a planar continuum into convex subsets are essential for the results we obtain here.
Theorem 6.2.1 (Unique Outchannel) is a new result the main steps of which were
outlined by Bell. Complete proofs of the following results by Bell: Theorems 3.2.2,
3.3.1, 4.2.5 and 6.2.1, appear in print for the first time. For the convenience of the
reader we have included an index at the end of the paper.
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CHAPTER 2

Preliminaries and outline of Part 1

In this chapter we give the formal definitions and describe the results of part 1
in more detail. By a map f : X → Y we will always mean a continuous function.

Let p : R → S1 denote the covering map p(x) = e2πix. Let g : S1 → S1 be
a map. By the degree of the map g, denoted by degree(g), we mean the number
ĝ(1)− ĝ(0), where ĝ : R → R is a lift of the map g to the universal covering space
R of S1 (i.e., p ◦ ĝ = g ◦ p). It is well-known that degree(g) is independent of the
choice of the lift.

2.1. Index

Let g : S1 → C be a map and f : g(S1) → C a fixed point free map. Define the
map v : S1 → S1 by

v(t) =
f(g(t))− g(t)

|f(g(t))− g(t)|
.

Then the map v : S1 → S1 lifts to a map v̂ : R → R. Define the index of f with
respect to g, denoted ind(f, g) by

ind(f, g) = v̂(1)− v̂(0) = degree(v).

Note that ind(f, g) measures the net number of revolutions of the vector
f(g(t)) − g(t) as t travels through the unit circle one revolution in the positive
direction.

Remark 2.1.1. The following basic facts hold.

(a) If g : S1 → C is a constant map with g(S1) = c and f(c) ̸= c, then
ind(f, g) = 0.

(b) If f is a constant map and f(C) = w with w ̸∈ g(S1), then ind(f, g) =
win(g, S1, w), the winding number of g about w. In particular, if f : S1 →
T (S1) \ S1 is a constant map, then ind(f, id|S1) = 1, where id|S1 is the
identity map on S1.

Note also, that for a simple closed curve S′ and a point w ̸∈ T (f(S′)) we have
win(f, S′, w) = 0. Suppose S ⊂ C is a simple closed curve and A ⊂ S is a subarc
of S with endpoints a and b. Then we write A = [a, b] if A is the arc obtained by
traveling in the counter-clockwise direction from the point a to the point b along
S. In this case we denote by < the linear order on the arc A such that a < b. We
will call the order < the counterclockwise order on A. Note that [a, b] ̸= [b, a].

More generally, for any arc A = [a, b] ⊂ S1, with a < b in the counterclockwise
order, define the fractional index [Bro90] of f on the sub-path g|[a,b] by

ind(f, g|[a,b]) = v̂(b)− v̂(a).

13
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While, necessarily, the index of f with respect to g is an integer, the fractional
index of f on g|[a,b] need not be. We shall have occasion to use fractional index in
the proof of Theorem 3.2.2.

Proposition 2.1.2. Let g : S1 → C be a map with g(S1) = S, and suppose
f : S → C has no fixed points on S. Let a ̸= b ∈ S1 with [a, b] denoting the
counterclockwise subarc on S1 from a to b (so [a, b] and (b, a) are complementary
arcs and S1 = [a, b] ∪ [b, a]). Then ind(f, g) = ind(f, g|[a,b]) + ind(f, g|[b,a]).

2.2. Variation

In this section we introduce the notion of variation of a map on an arc and
relate it to winding number.

Definition 2.2.1 (Junctions). The standard junction JO is the union of the
three rays J i

O = {z ∈ C | z = reiπ/2, r ∈ [0,∞)}, J+
O = {z ∈ C | z = r, r ∈ [0,∞)},

J−
O = {z ∈ C | z = reiπ, r ∈ [0,∞)}, having the origin O in common. A junction

(at v) Jv is the image of JO under any orientation-preserving homeomorphism
h : C → C where v = h(O). We will often suppress h and refer to h(J i

O) as J
i
v, and

similarly for the remaining rays in Jv. Moreover, we require that for each bounded
neighborhood W of v, d(J+

v \W,J i
v \W ) > 0.

Definition 2.2.2 (Variation on an arc). Let S ⊂ C be a simple closed curve,
f : S → C a map and A = [a, b] a subarc of S such that f(a), f(b) ∈ T (S) and
f(A) ∩ A = ∅. We define the variation of f on A with respect to S, denoted
var(f,A, S), by the following algorithm:

(1) Let v ∈ A and let Jv be a junction with Jv ∩ S = {v}.
(2) Counting crossings: Consider the set M = f−1(Jv) ∩ [a, b]. Each time

a point of f−1(J+
v ) ∩ [a, b] is immediately followed in M , in the counter-

clockwise order < on [a, b] ⊂ S, by a point of f−1(J i
v), count +1 and each

time a point of f−1(J i
v) ∩ [a, b] is immediately followed in M by a point

of f−1(J+
v ), count −1. Count no other crossings.

(3) The sum of the crossings found above is the variation var(f,A, S).

Note that f−1(J+
v ) ∩ [a, b] and f−1(J i

v) ∩ [a, b] are disjoint closed sets in [a, b].
Hence, in (2) in the above definition, we count only a finite number of crossings
and var(f,A, S) is an integer. Of course, if f(A) does not meet both J+

v and J i
v,

then var(f,A, S) = 0.
If α : S → C is any map such that α|A = f |A and α(S \ (a, b)) ∩ Jv = ∅, then

var(f,A, S) = win(α, S, v). In particular, this condition is satisfied if α(S \ (a, b)) ⊂
T (S) \ {v}. The invariance of winding number under suitable homotopies implies
that the variation var(f,A, S) also remains invariant under such homotopies. That
is, even though the specific crossings in (2) in the algorithm may change, the sum
remains invariant. We will state the required results about variation below without
proof. Proofs can be obtained directly by using the fact that var(f,A, S) is integer-
valued and continuous under suitable homotopies.

Proposition 2.2.3 (Junction Straightening). Let S ⊂ C be a simple closed
curve, f : S → C a map and A = [a, b] a subarc of S such that f(a), f(b) ∈ T (S)
and f(A)∩A = ∅. Any two junctions Jv and Ju with u, v ∈ A and Jw∩S = {w} for
w ∈ {u, v} give the same value for var(f,A, S). Hence var(f,A, S) is independent
of the particular junction used in Definition 2.2.2.
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The computation of var(f,A, S) depends only upon the crossings of the junction
Jv coming from a proper compact subarc of the open arc (a, b). Consequently,
var(f,A, S) remains invariant under homotopies ht of f |[a,b] in the complement of
{v} such that ht(a), ht(b) ̸∈ Jv for all t. Moreover, the computation is stable under
an isotopy ht : Jv → A∪ [C \ T (S)] that moves the entire junction Jv (even off A),
provided that during the isotopy ht(v) ̸∈ f(A) and f(a), f(b) ̸∈ ht(Jv) for all t.

In case A is an open arc (a, b) ⊂ S such that var(f,A, S) is defined, it will be
convenient to denote var(f,A, S) by var(f,A, S)

The following lemma follows immediately from the definition.

Lemma 2.2.4. Let S ⊂ C be a simple closed curve. Suppose that a < c < b
are three points in S such that {f(a), f(b), f(c)} ⊂ T (S) and f([a, b]) ∩ [a, b] = ∅.
Then var(f, [a, b], S) = var(f, [a, c], S) + var(f, [c, b], S).

Definition 2.2.5 (Variation on a finite union of arcs). Let S ⊂ C be a simple
closed curve and A = [a, b] a subcontinuum of S partitioned by a finite set F =
{a = a0 < a1 < · · · < an = b} into subarcs. For each i let Ai = [ai, ai+1]. Suppose
that f satisfies f(ai) ∈ T (S) and f(Ai)∩Ai = ∅ for each i. We define the variation
of f on A with respect to S, denoted var(f,A, S), by

var(f,A, S) =
n−1∑
i=0

var(f, [ai, ai+1], S).

In particular, we include the possibility that an = a0 in which case A = S.

By considering a common refinement of two partitions F1 and F2 of an arc A ⊂
S such that f(F1)∪ f(F2) ⊂ T (S) and satisfying the conditions in Definition 2.2.5,
it follows from Lemma 2.2.4 that we get the same value for var(f,A, S) whether
we use the partition F1 or the partition F2. Hence, var(f,A, S) is well-defined. If
A = S we denote var(f, S, S) simply by var(f, S).

The first main result in Part 1, Theorem 3.2.2 is that given a map f : C → C,
a simple closed curve S ⊂ C and a partition of S into subarcs Ai such that any two
meet at most in a common endpoint, for each i f(Ai)∩Ai = ∅ and both endpoints
map into T (S),

ind(f, S) =
∑

var(f,Ai) + 1.

In the first version of this theorem we partition S into finitely many subarcs
Ai. We extend this in Section 3.5 by allowing partitions of S which consist of,
possibly countably infinitely many subarcs. Since in our applications we often
assume that we have an invariant continuum X such that f has no fixed point in
T (X) it follows from Theorem 3.1.4 that, for a sufficiently tight simple closed curve
S around X with X ⊂ T (S), we must have ind(f, S) = 0. It follows from the above
theorem relating index and variation that for some subarc A (which is the closure
of a component of S \ X and, hence a crosscut of X), var(f,A) < 0. In order to
locate this crosscut of negative variation we establish Bell’s Lollipop Theorem in
Section 3.3.

2.3. Classes of maps

Cartwright and Littlewood solved the Plane Fixed Point Problem for orien-
tation preserving homeomorphism of the plane. In Section 3.7 we introduce and
study (positively) oriented maps of the plane. We will show in Part 2 that the
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Plane Fixed Point Problem has a positive solution for the class of positively ori-
ented maps. We show in Section 3.7 that the class of oriented maps consists of all
compositions of monotone and open perfect maps of the plane and that all such
maps are confluent. In particular, analytic maps are confluent.

Let us begin by listing a few well-known definitions.

Definition 2.3.1. A perfect map is a closed continuous function each of whose
point inverses is compact. We will assume in the remaining sections that all maps
of the plane considered in this memoir are perfect. Let X and Y be topological
spaces. A map f : X → Y is monotone provided for each continuum K ⊂ Y ,
f−1(K) is connected and f is light provided for each point y ∈ Y , f−1(y) is totally
disconnected. A map f : X → Y is confluent provided for each continuum K ⊂ Y
and each component C of f−1(K), f(C) = K . Every map f : X → Y between
compacta is the composition f = l ◦ m of a a monotone map m : X → Z and
a light map l : Z → Y for some compactum Z [Nad92, Theorem 13.3]. This
representation is called the monotone-light decomposition of f .

Observe that any confluent map f is onto. It is well-known that each homeo-
morphism of the plane is either orientation-preserving or orientation-reversing. We
will establish an appropriate extension of this result for confluent perfect mappings
of the plane (Theorem 3.7.4) by showing that such maps either preserve or re-
verse local orientation. As a consequence it follows that all perfect and confluent
maps of the plane satisfy the Maximum Modulus Theorem. We will call such maps
positively- or negatively oriented maps, respectively.

Complex polynomials P : C → C are prototypes of positively oriented maps,
but positively oriented maps, unlike polynomials, do not have to be light or open.
Observe that even though in some applications our maps are holomorphic (see
Section 7.5), the notion of a positively oriented map is essential in Section 7.5 since
it allows for easy local perturbations (see Lemma 7.5.1).

Definition 2.3.2 (Degree of fp). Let f : U → C be a map from a simply
connected domain U ⊂ C into the plane. Let S ⊂ C be a positively oriented simple
closed curve in U , and p ∈ U \ f−1(f(S)) a point. Define fp : S → S1 by

fp(x) =
f(x)− f(p)

|f(x)− f(p)|
.

Then fp has a well-defined degree, denoted degree(fp). Note that degree(fp) is the
winding number win(f, S, f(p)) of f |S about f(p).

Definition 2.3.3. A map f : U → C from a simply connected domain U is
positively oriented (respectively, negatively oriented) provided for each simple closed
curve S in U and each point p ∈ T (S) \ f−1(f(S)), we have that degree(fp) > 0
(degree(fp) < 0, respectively).

Definition 2.3.4. A perfect surjection f : C → C is oriented provided for each
simple closed curve S and each x ∈ T (S), f(x) ∈ T (f(S)).

Clearly every positively oriented and each negatively oriented map is oriented.
It will follow that all oriented maps satisfy the Maximum Modulus Theorem 3.7.4
(i.e., for every non-separating continuum X, ∂f(X) ⊂ f(∂X)). In particular, every
positively or negatively oriented map is oriented.
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It is well-known that both open maps and monotone maps (and hence compo-
sitions of such maps) of continua are confluent. It will follow (Lemma 3.7.3) from a
result of Lelek and Read [LR74] that each perfect, oriented surjection of the plane
is the composition of a monotone map and a light open map.

2.4. Partitioning domains

In Chapter 4 we consider partitions of an open and connected subset U of
the sphere into convex subsets which are contained in round balls. Bell originally
did this, using the Euclidean metric on the plane, for the complement of X in its
convex hull in the plane. Following Kulkarni and Pinkall [KP94], we will consider
U as a subset of the sphere and we will work with maximal round balls B ⊂ U
in the spherical metric (such balls correspond to either round balls in the plane
or to half planes). We first specify Kulkarni and Pinkall’s result for our situation
(see Theorem 4.1.5). It leads to a partition of U into pairwise disjoint closed
subsets Fα such for each α there exists a unique maximal closed round ball Bα

with int(Bα)∩ ∂U = ∅, |Bα ∩ ∂U | ≥ 2 and Fα ⊂ Bα. In fact, Fα is the intersection
of U with the hyperbolic convex hull of Bα ∩ ∂U in the hyperbolic metric on the
ball Bα. Note that every chord in the boundary of any partition element Fα is part
of a round circle. This is the partition of U which is used in Part 2, Chapter 6.
We show in Section 4.4 that the collection of all chords in the boundaries of all the
sets Fα, called KP-chords, is sufficiently rich for a satisfactory prime end theory.
(Basically most prime ends can be defined through equivalence classes of crosscuts
which are all KP-chords.)

However, even though in the above version of the Linchpin Theorem elements of
the partition are closed in U and pairwise disjoint and U is an arbitrary connected
open subset of the sphere, it has the disadvantage that chords in the boundary of
the sets Fα are not naturally depending on U (they depend only on Bα, Bα ∩ ∂U
and the hyperbolic metric in Bα). Moreover there may well be uncountably many
distinct elements Fα which join the same two accessible points in ∂U . In order
to avoid this problem we replace, when U is simply connected, any chord in the
boundary of any set Fα by the hyperbolic geodesic (in the hyperbolic metric on
U) joining the same pair of points (see Theorem 4.2.5). We will show that the
resulting set of hyperbolic geodesics is a closed lamination of U in the sense of
Thurston [Thu09]. This version of the Linchpin Theorem, which states that every
point in U is either contained in a unique hyperbolic geodesic g in U , or in the
interior of an unique hyperbolically convex gap G, both of which are contained in a
maximal round ball, is used in [OT07, OV09] to extend a homeomorphism on the
boundary of a simply connected domain over the entire domain. To illustrate the
usefulness of these partitions we include a simple proof of the Schoenflies Theorem
in Section 4.3. However, we will assume the Schoenflies Theorem throughout this
paper.





CHAPTER 3

Tools

3.1. Stability of Index

Let f : C → C be a map. All basic definitions of index of f on a simple
closed curve and variation of f on an arc are contained in Chapter 2. The following
standard theorems and observations about the stability of index under a fixed point
free homotopy are consequences of the fact that index is continuous and integer-
valued.

Theorem 3.1.1. Let ht : S1 → C be a homotopy. If f : ∪t∈[0,1]ht(S1) → C is
fixed point free, then ind(f, h0) = ind(f, h1).

An embedding g : S1 → S ⊂ C is orientation preserving if g is isotopic to
the identity map id|S1 . It follows from Theorem 3.1.1 that if g1, g2 : S1 → S are
orientation preserving homeomorphisms and f : S → C is a fixed point free map,
then ind(f, g1) = ind(f, g2). Hence we can denote ind(f, g1) by ind(f, S) and if [a, b]
is a positively oriented subarc of S1 we denote the fractional index ind(f, g1|[a,b])
by ind(f, g1([a, b])), by some abuse of notation when the extension of g1 over S1 is
understood.

Theorem 3.1.2. Suppose g : S1 → C is a map with g(S1) = S, and f1, f2 :
S → C are homotopic maps such that each level of the homotopy is fixed point free
on S. Then ind(f1, g) = ind(f2, g).

In particular, if S is a simple closed curve and f1, f2 : S → C are maps such
that there is a homotopy ht : S → C from f1 to f2 with ht fixed point free on S for
each t ∈ [0, 1], then ind(f1, S) = ind(f2, S).

Corollary 3.1.3. Suppose g : S1 → C is an orientation preserving embedding
with g(S1) = S, and f : S → T (S) is a fixed point free map. Then ind(f, g) =
ind(f, S) = 1.

Proof. Since f(S) ⊂ T (S) which is a disk with boundary S and f has no fixed
point on S, there is a fixed point free homotopy of f |S to a constant map c : S → C
taking S to a point in T (S) \S. By Theorem 3.1.2, ind(f, g) = ind(c, g). Since g is
orientation preserving it follows from Remark 2.1.1 (b) that ind(c, g) = 1. �

Theorem 3.1.4. Suppose g : S1 → C is a map with g(S1) = S, and f : T (S) →
C is a map such that ind(f, g) ̸= 0, then f has a fixed point in T (S).

Proof. Notice that T (S) is a locally connected, non-separating, plane con-
tinuum and, hence, contractible. Suppose f has no fixed point in T (S). Choose
point q ∈ T (S). Let c : S1 → C be the constant map c(S1) = {q}. Let H be a
homotopy from g to c with image in T (S). Since H misses the fixed point set of f ,
Theorem 3.1.1 and Remark 2.1.1 (a) imply ind(f, g) = ind(f, c) = 0. �

19
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3.2. Index and variation for finite partitions

What links Theorem 3.1.4 with variation is Theorem 3.2.2 below, first an-
nounced by Bell in the mid 1980’s (see also Akis [Aki99]). Our proof is a modifica-
tion of Bell’s unpublished proof. We first need a variant of Proposition 2.2.3. Let
r : C → T (S1) be radial retraction: r(z) = z

|z| when |z| ≥ 1 and r|T (S1) = id|T (S1).

Lemma 3.2.1 (Curve Straightening). Suppose f : S1 → C is a map with no
fixed points on S1. If [a, b] ⊂ S1 is a proper subarc with f([a, b]) ∩ [a, b] = ∅,
f((a, b)) ⊂ C \ T (S1) and f({a, b}) ⊂ S1, then there exists a map f̃ : S1 → C such

that f̃ |S1\(a,b) = f |S1\(a,b), f̃ |[a,b] : [a, b] → (C \ T (S1)) ∪ {f(a), f(b)} and f̃ |[a,b] is
homotopic to f |[a,b] in {a, b} ∪C \ T (S) relative to {a, b}, so that either r|f̃([a,b]) is
locally one-to-one or a constant map. Moreover, var(f, [a, b],S1) = var(f̃ , [a, b],S1).

Note that if var(f, [a, b],S1) = 0, then r carries f̃([a, b]) one-to-one onto the arc

(or point) in S1 \ (a, b) from f(a) to f(b). If the var(f, [a, b],S1) = m > 0, then r ◦ f̃
wraps the arc [a, b] counterclockwise about S1 so that f̃([a, b]) meets each ray in
Jv m times. A similar statement holds for negative variation. Note also that it is
possible for index to be defined yet variation not to be defined on a simple closed
curve S. For example, consider the map z → 2z with S the unit circle since there
is no partition of S satisfying the conditions in Definition 2.2.2.

Theorem 3.2.2 (Index = Variation + 1, Bell). Suppose g : S1 → C is an
orientation preserving embedding onto a simple closed curve S and f : S → C
is a fixed point free map. If F = {a0 < a1 < · · · < an} is a partition of S and
Ai = [ai, ai+1] for i = 0, 1, . . . , n with an+1 = a0 such that f(F ) ⊂ T (S) and
f(Ai) ∩Ai = ∅ for each i, then

ind(f, S) = ind(f, g) =

n∑
i=0

var(f,Ai, S) + 1 = var(f, S) + 1.

Proof. By an appropriate conjugation of f and g, we may assume without
loss of generality that S = S1 and g = id. Let F and Ai = [ai, ai+1] be as in the
hypothesis. Consider the collection of arcs

K = {K ⊂ S | K is the closure of a component of f−1(f(S) \ T (S))}.

For eachK ∈ K, there is an i such thatK ⊂ Ai. Since f(Ai)∩Ai = ∅, it follows from
the remark after Definition 2.2.2 that var(f,Ai, S) =

∑
K⊂Ai,K∈K var(f,K, S). By

the remark following Proposition 2.2.3, we can compute var(f,K, S) using one fixed
junction for Ai. It is now clear that there are at most finitely many K ∈ K with
var(f,K, S) ̸= 0. Moreover, the images of the endpoints of each K lie on S.

Let m be the cardinality of the set Kf = {K ∈ K | var(f,K, S) ̸= 0}. By the
above remarks, m < ∞ and Kf is independent of the partition F . We prove the
theorem by induction on m.

Suppose for a given f we have m = 0. Observe that from the definition of
variation and the fact that the computation of variation is independent of the
choice of an appropriate partition, it follows that,

var(f, S) =
∑
K∈K

var(f,K, S) = 0.
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We claim that there is a map f1 : S → C with f1(S) ⊂ T (S) and a homotopy
H from f |S to f1 such that each level Ht of the homotopy is fixed point free and
ind(f1, id|S) = 1.

To see the claim, first apply the Curve Straightening Lemma 3.2.1 to each
K ∈ K (if there are infinitely many, they form a null sequence) to obtain a fixed

point free homotopy of f |S to a map f̃ : S → C such that r|f̃(K) is locally one-to-

one (or the constant map) on each K ∈ K, where r is radial retraction of C to T (S),

and var(f̃ , K, S) = 0 for each K ∈ K. Let K be in K with endpoints x, y. Since

f̃(K) ∩K = ∅ and var(f̃ , K, S) = 0, r|f̃(K) is one-to-one, and r ◦ f̃(K) ∩K = ∅.
Define f1|K = r ◦ f̃ |K . Then f1|K is fixed point free homotopic to f |K (with

endpoints of K fixed). Hence, if K ∈ K has endpoints x and y, then f1 maps K to
the subarc of S with endpoints f(x) and f(y) such that K ∩ f1(K) = ∅. Since K is
a null family, we can do this for each K ∈ K and set f1|S1\∪K = f |S1\∪K so that we
obtain the desired f1 : S → C as the end map of a fixed point free homotopy from
f to f1. Since f1 carries S into T (S), Corollary 3.1.3 implies ind(f1, id|S) = 1.

Since the homotopy f ≃ f1 is fixed point free, it follows from Theorem 3.1.2
that ind(f, id|S) = 1. Hence, the theorem holds if m = 0 for any f and any
appropriate partition F .

By way of contradiction suppose the collection F of all maps f on S1 which
satisfy the hypotheses of the theorem, but not the conclusion is non-empty. By the
above 0 < |Kf | <∞ for each. Let f ∈ F be a counterexample for which m = |Kf |
is minimal. By modifying f , we will show there exists f1 ∈ F with |Kf1 | < m, a
contradiction.

Choose K ∈ K such that var(f,K, S) ̸= 0. Then K = [x, y] ⊂ Ai = [ai, ai+1]
for some i. By the Curve Straightening Lemma 3.2.1 and Theorem 3.1.2, we may
suppose r|f(K) is locally one-to-one on K. Define a new map f1 : S → C by
setting f1|S\K = f |

S\K and setting f1|K equal to the linear map taking [x, y] to

the subarc f(x) to f(y) on S missing [x, y]. Figure 3.1 (left) shows an example
of a (straightened) f restricted to K and the corresponding f1 restricted to K
for a case where var(f,K, S) = 1, while Figure 3.1 (right) shows a case where
var(f,K, S) = −2.

Since on S \K, f and f1 are the same map, we have

var(f, S \K,S) = var(f1, S \K,S).

Likewise for the fractional index,

ind(f, S \K) = ind(f1, S \K).

By definition (refer to the observation we made in the case m = 0),

var(f, S) = var(f, S \K,S) + var(f,K, S)

var(f1, S) = var(f1, S \K,S) + var(f1,K, S)

and by Proposition 2.1.2,

ind(f, S) = ind(f, S \K) + ind(f,K)

ind(f1, S) = ind(f1, S \K) + ind(f1,K).

Consequently,

var(f, S)− var(f1, S) = var(f,K, S)− var(f1,K, S)
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Figure 3.1. Replacing f : S → C by f1 : S → C with one less
subarc of nonzero variation.

and

ind(f, S)− ind(f1, S) = ind(f,K)− ind(f1,K).

We will now show that the changes in index and variation, going from f to
f1 are the same (i.e., we will show that var(f,K, S) − var(f1,K, S) = ind(f,K) −
ind(f1,K)). We suppose first that ind(f,K) = n + α for some nonnegative n ∈ N
and 0 ≤ α < 1. That is, the vector f(z) − z turns through n full revolutions
counterclockwise and α part of a revolution counterclockwise as z goes from x to
y counterclockwise along S. (See Figure 3.1 (left) for the case n = 0 and α about
0.8.)

Assume first that f(x) < x < y < f(y) in the circular order as illustrated in
Figure 3.1 on the left. Then as z goes from x to y counterclockwise along S, f1(z)
goes along S from f(x) to f(y) in the clockwise direction, so f1(z)−z turns through
−(1− α) = α− 1 part of a revolution. Hence, ind(f1,K) = α− 1. It is easy to see
that var(f,K, S) = n+ 1 and var(f1,K, S) = 0. Consequently,

var(f,K, S)− var(f1,K, S) = n+ 1− 0 = n+ 1

and

ind(f,K)− ind(f1,K) = n+ α− (α− 1) = n+ 1.

We assumed that f(x) < x < y < f(y). The cases where f(y) < x < y < f(x)
and f(x) = f(y) (and, hence, α = 0) are treated similarly. In this case f1 still
wraps around in the positive direction, but the computations are slightly different:
var(f,K) = n, ind(f,K) = n+ α, var(f1,K) = 0 and ind(f1,K) = α.

Thus when n ≥ 0, in going from f to f1, the change in variation and the change
in index are the same. However, in obtaining f1 we have removed one K ∈ Kf ,
reducing the minimal m = |Kf | for f by one, producing a counterexample f1 with
|Kf1 | = m− 1, a contradiction.
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The cases where ind(f,K) = n + α for negative n and 0 < α < 1 are handled
similarly, and illustrated for n = −2, α about 0.4 and f(y) < x < y < f(x) in
Figure 3.1 (right). �

3.3. Locating arcs of negative variation

The principal tool in proving Theorem 6.2.1 (unique outchannel) is the following
theorem first obtained by Bell (unpublished). It provides a method for locating arcs
of negative variation on a curve of index zero.

Theorem 3.3.1 (Lollipop Lemma, Bell). Let S ⊂ C be a simple closed curve
and f : T (S) → C a fixed point free map. Suppose F = {a0 < · · · < an < an+1 <
· · · < am} is a partition of S, am+1 = a0 and Ai = [ai, ai+1] such that f(F ) ⊂ T (S)
and f(Ai)∩Ai = ∅ for i = 0, . . . ,m. Suppose I is an arc in T (S) meeting S only at
its endpoints a0 and an+1. Let Ja0 be a junction in (C \ T (S))∪ {a0} and suppose
that f(I) ∩ (I ∪ Ja0) = ∅. Let R = T ([a0, an+1] ∪ I) and L = T ([an+1, am+1] ∪ I).
Then one of the following holds:

(1) If f(an+1) ∈ R, then∑
i≤n

var(f,Ai, S) + 1 = ind(f, I ∪ [a0, an+1]).

(2) If f(an+1) ∈ L, then∑
i>n

var(f,Ai, S) + 1 = ind(f, I ∪ [an+1, am+1]).

(Note that in (1) in effect we compute var(f, ∂R) but technically, we have not
defined var(f,Ai, ∂R) since the endpoints of Ai do not have to map inside R but
they do map into T (S). Similarly in Case (2).)

Proof. Suppose f(an+1) ∈ L (the case when f(an+1) ∈ R can be treated
similarly). Consider the set C = [an+1, am+1] ∪ I (so T (C) = L). We want to
construct a map f ′ : C → C, fixed point free homotopic to f |C , that does not
change variation on any arc Ai in C and has the properties listed below.

(1) f ′(ai) ∈ L, f ′(Ai) ∩ Ai = ∅ for all n + 1 ≤ i ≤ m and f ′(a0) ∈ L. Hence
var(f ′, Ai, C) is defined for each i > n.

(2) var(f ′, Ai, C) = var(f,Ai, S) for all n+ 1 ≤ i ≤ m.
(3) f ′(I) ∩ I = ∅ and var(f ′, I, C) = 0.

Having such a map, it then follows from Theorem 3.2.2, that

ind(f ′, C) =
m∑

i=n+1

var(f ′, Ai, C) + var(f ′, I, C) + 1.

By Theorem 3.1.2 ind(f ′, C) = ind(f, C). By (2) and (3),
∑

i>n var(f
′, Ai, C)+

var(f ′, I, C) =
∑

i>n var(f,Ai, S) and the Theorem would follow.
It remains to define the map f ′ : C → C with the above properties. For each i

such that n+ 1 ≤ i ≤ m+ 1, chose an arc Ii joining f(ai) to L as follows:

(a) If f(ai) ∈ L, let Ii be the degenerate arc {f(ai)}.
(b) If f(ai) ∈ R and n + 1 < i < m + 1, let Ii be an arc in R \ {a0, an+1}

joining f(ai) to I.
(c) If f(a0) ∈ R, let I0 be an arc joining f(a0) to L such that I0∩ (L∪Ja0) ⊂

An+1 \ {an+1}.
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Figure 3.2. Bell’s Lollipop.

Let xn+1 = yn+1 = an+1, y0 = ym+1 ∈ I \ {a0, an+1} and x0 = xm+1 ∈ Am \
{am, am+1}. For n+1 < i < m+1, let xi ∈ Ai−1 and yi ∈ Ai such that yi−1 < xi <
ai < yi < xi+1. For n+1 < i < m+1 let f ′(ai) be the endpoint of Ii in L, f

′(xi) =
f ′(yi) = f(ai) and extend f ′ continuously from [xi, ai] ∪ [ai, yi] onto Ii and define
f ′ from [yi, xi+1] ⊂ Ai onto f(Ai) by f

′|[yi,xi+1] = f ◦ hi, where hi : [yi, xi+1] → Ai

is a homeomorphism such that hi(yi) = ai and hi(xi+1) = ai+1. Similarly, define f ′

on [y0, an+1] ⊂ I to f(I) by f ′|[y0,an+1] = f ◦h0, where h0 : [y0, an+1] → I is an onto
homeomorphism such that h(an+1) = an+1 and extend f ′ from [xm+1, a0] ⊂ Am and
[a0, y0] ⊂ I onto I0 such that f ′(xm+1) = f ′(y0) = f(a0) and f

′(a0) is the endpoint
of I0 in L. To define f ′|[an+1,xn+2] let hn+1 : [yn+1, xn+2] → [an+1, an+2] be a
homeomorphism such that hn+1(yn+1) = an+1. Then define f ′(x) as f ◦ hn+1(x)
for x ∈ [yn+1, xn+2] and f

′(x) = f(an+1) if x ∈ [an+1, yn+1].
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Note that f ′(Ai) ∩ Ai = ∅ for i = n + 1, . . . ,m and f ′(I) ∩ [I ∪ Ja0 ] = ∅. To
compute the variation of f ′ on each of Am and I we can use the junction Ja0 . Hence
var(f ′, I, C) = 0 and, by the definition of f ′ on Am, var(f ′, Am, C) = var(f,Am, S).
For i = n+1, . . . ,m−1 we can use the same junction Jvi to compute var(f ′, Ai, C)
as we did to compute var(f,Ai, S). Since Ii ∪ Ii+1 ⊂ T (S) \ Ai we have that
f ′([ai, yi]) ∪ f ′([xi+1, ai+1]) ⊂ Ii ∪ Ii+1 misses that junction and, hence, make no
contribution to variation var(f ′, Ai, C). Since f

′−1(Jvi)∩ [yi, xi+1] is isomorphic to
f−1(Jvi) ∩Ai, var(f

′, Ai, C) = var(f,Ai, S) for i = n+ 1, . . . ,m.
To see that f ′ is fixed point free homotopic to f |C , note that we can pull the

image of Ai back along the arcs Ii and Ii+1 in R without fixing a point of Ai at
any level of the homotopy. �

Note that if f is fixed point free on T (S), then ind(f, C) = 0 and the next
Corollary follows.

Corollary 3.3.2. Assume the hypotheses of Theorem 3.3.1. Then if f(an+1) ∈
R there exists i ≤ n such that var(f,Ai, S) < 0. If f(an+1) ∈ L there exists i > n
such that var(f,Ai, S) < 0.

3.4. Crosscuts and bumping arcs

For the remainder of Chapter 3, we assume that f : C → C takes the continuum
X into T (X) with no fixed points in T (X), and X is minimal with respect to these
properties.

Definition 3.4.1 (Bumping Simple Closed Curve). A simple closed curve S
in C which has the property that S ∩X is nondegenerate and T (X) ⊂ T (S) is said
to be a bumping simple closed curve for X. A subarc A of a bumping simple closed
curve, whose endpoints lie in X, is said to be a bumping (sub)arc for X or a link
of S. Moreover, if S′ is any bumping simple closed curve for X which contains A,
then S′ is said to complete A. In fact, an arc A with endpoints in X which can be
completed will be called a bumping arc of X.

Given a positively oriented simple closed curve S, we can consider its positively
oriented subarcs denoted by [a, b]S , where a, b are the endpoints of the arc; if the
curve is fixed, we simply write [a, b]. Similar notation is used for half-open or open
subarcs of bumping simple closed curves. Often we will fix the choice of links into
which we divide S. In general a bumping arc of X may have points other than its
endpoints which belong to X (e.g., if X is the closed unit disk and the unit circle
is divided into several subarcs then each of them can be considered as a bumping
arc of X). By definition, any bumping arc A of X can be extended to a bumping
simple closed curve S of X. Hence, every bumping arc has a well defined natural
order < inherited from the positive circular order of a bumping simple closed curve
S containing A. If a < b are the endpoints of A, then we will often write A = [a, b].

A crosscut of U∞ = C∞ \ T (X) is an open arc Q lying in U∞ \ {∞} such
that Q is an arc with endpoints a ̸= b ∈ T (X). In this case we will often write
Q = (a, b). (As seems to be traditional, we use “crosscut of T (X)” interchangeably
with “crosscut of U∞.”) Evidently, a crosscut of U∞ separates U∞ into two disjoint
domains, exactly one of which is unbounded. If S is a bumping simple closed curve
so that X ∩ S is nondegenerate, then each component of S \ X is a crosscut of
T (X). A similar statement holds for a bumping arc A. Given a non-separating
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continuum T (X), let A ⊂ C be a crosscut of U∞(X) = C∞ \ T (X). Given a
crosscut A of U∞(X) denote by Sh(A), the shadow of A, the bounded component
of C \ [T (X) ∪ A]. Moreover, suppose that A is a bumping arc of X. Then by the
shadow Sh(A) of A, we mean the union of all bounded components of C \ (X ∪A)
(since there may be more than endpoints of A in X ∩A, we should talk about the
union of all bounded components of C \ (X ∪A) here).

A variety of tools (such as index, variation, junction) have been described in
previous sections. So far they have been applied to the properties of maps of
the plane restricted to simple closed curves. Another application can be found in
Theorem 3.1.4 where the existence of a fixed point in the topological hull of a simple
closed curve is established. However we are mostly interested in studying continua
X as described in our Standing Hypotheses. The following construction shows how
the above described tools apply in this situation.

Since f has no fixed points in T (X) andX is compact, we can choose a bumping
simple closed curve S in a small neighborhood of T (X) such that all crosscuts in
S \ X are small, have positive distance to their image and so that f has no fixed
points in T (S). Thus, we obtain the following corollary to Theorem 3.1.4.

Corollary 3.4.2. Let f : C → C be a map and X ⊂ C a subcontinuum with
f(X) ⊂ T (X) and so that f |T (X) is fixed point free. Then there is a bumping
simple closed curve S for X such that f |T (S) is fixed point free; hence, by 3.1.4,
ind(f, S) = 0. Moreover, any bumping simple closed curve S′ for X such that
S′ ⊂ T (S) has ind(f, S′) = 0. Furthermore, any bumping arc A of T (X) for which
f has no fixed points in T (X ∪ A) can be completed to a bumping simple closed
curve S for X for which ind(f, S) = 0.

The idea of the proofs of a few forthcoming results is that in some cases we
can use the developed tools (e.g., variation) in order to compute out index and
show, relying upon the properties of our maps, that index is not equal to zero thus
contradicting Corollary 3.4.2. To implement such a plan we need to further study
properties of variation in the setting described before Corollary 3.4.2.

Proposition 3.4.3. Let f : C → C be a map and X ⊂ C a subcontinuum
with f(X) ⊂ T (X) and so that f |T (X) is fixed point free. In the situation of
Corollary 3.4.2, suppose A is a bumping subarc for X. If var(f,A, S) is defined for
some bumping simple closed curve S completing A, then for any bumping simple
closed curve S′ completing A, var(f,A, S) = var(f,A, S′).

Proof. Since var(f,A, S) is defined, A = ∪n
i=1Ai, where each Ai is a bumping

arc with Ai ∩ f(Ai) = ∅ and |Ai ∩ Aj | ≤ 1 if i ̸= j. By the remark following
Definition 2.2.5, it suffices to establish the desired result for each Ai = A. Let
S and S′ be two bumping simple closed curves completing A for which variation
is defined. Let Ja and Ja′ be junctions whereby var(f,A, S) and var(f,A, S′) are
respectively computed. Suppose first that both junctions lie (except for {a, a′}) in
C\(T (S)∪T (S′)). By the Junction Straightening Proposition 2.2.3, either junction
can be used to compute either variation on A, so the result follows. Otherwise, at
least one junction is not in C\(T (S)∪T (S′)). But both junctions are in C\T (X∪A).
Hence, we can find another bumping simple closed curve S′′ such that S′′ completes
A, and both junctions lie in (C \ T (S′′)) ∪ {a, a′}. Then by the Propositions 2.2.3
and the definition of variation, var(f,A, S) = var(f,A, S′′) = var(f,A, S′). �
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Figure 3.3. var(f,A) = −1 + 1− 1 = −1.

It follows from Proposition 3.4.3 that variation on a crosscutQ, withQ∩f(Q) =
∅, of T (X) is independent of the bumping simple closed curve S for T (X) of which
Q is a subarc and is such that var(f,Q, S) is defined. Hence, given a bumping arc
A of X, we can denote var(f,A, S) by var(f,A,X) or simply by var(f,A) when X
is understood. The figure illustrates how variation is computed.

The following proposition follows from Corollary 3.4.2, Proposition 3.4.3 and
Theorem 3.2.2.

Proposition 3.4.4. Let f : C → C be a map and X a subcontinuum of C so
that f(X) ⊂ T (X) and f has no fixed points in T (X). Suppose Q is a crosscut of
T (X) such that f is fixed point free on T (X ∪ Q) and f(Q) ∩ Q = ∅. Suppose Q
is replaced by a bumping subarc A with the same endpoints such that Q ∪ T (X)
separates A \X from ∞ and each component Qi of A \X is a crosscut such that
f(Qi) ∩Qi = ∅. Then

var(f,Q,X) =
∑
i

var(f,Qi, X) = var(f,A,X).

3.5. Index and Variation for Carathéodory Loops

We extend the definitions of index and variation to Carathéodory loops. In
particular, if g : S1 → g(S1) = S is a continuous extension of a Riemann map
ψ : D∞ → C∞ \ T (g(S1)), then g is a Carathéodory loop, where D∞ = {z ∈ C∞ |
|z| > 1} is the “unit disk” about ∞.

Definition 3.5.1 (Carathéodory Loop). Let g : S1 → C such that g is con-

tinuous and has a continuous extension ψ : C∞ \ T (S1) → C∞ \ T (g(S1)) such
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that ψ|C\T (S1) is an orientation preserving homeomorphism from C \ T (S1) onto

C \ T (g(S1)). We call g (and loosely, S = g(S1)), a Carathéodory loop.

Let g : S1 → C be a Carathéodory loop and let f : g(S1) → C be a fixed point
free map. In order to define variation of f on g(S1), we do the partitioning in S1
and transport it to the Carathéodory loop S = g(S1). An allowable partition of S1
is a set {a0 < a1 < · · · < an} in S1 ordered counterclockwise, where a0 = an and
Ai denotes the counterclockwise interval [ai, ai+1], such that for each i, f(g(ai)) ∈
T (g(S1)) and f(g(Ai))∩g(Ai) = ∅. Variation var(f,Ai, g(S1)) = var(f,Ai) on each
path g(Ai) is then defined exactly as in Definition 2.2.2, except that the junction
(see Definition 2.2.1) is chosen so that the vertex v ∈ g(Ai) and Jv∩T (g(S1)) ⊂ {v},
and the crossings of the junction Jv by f(g(Ai)) are counted (see Definition 2.2.2).
Variation on the whole loop, or an allowable subarc thereof, is defined just as in
Definition 2.2.5, by adding the variations on the partition elements. At this point in
the development, variation is defined only relative to the given allowable partition
F of S1 and the parameterization g of S: var(f, F, g(S1)).

Index on a Carathéodory loop S is defined exactly as in Section 2.1 with S =
g(S1) providing the parameterization of S. Likewise, the definition of fractional
index and Proposition 2.1.2 apply to Carathéodory loops.

Theorems 3.1.1, 3.1.2, Corollary 3.1.3, and Theorem 3.1.4 (if f is also defined
on T (S)) apply to Carathéodory loops. It follows that index on a Carathéodory
loop S is independent of the choice of parameterization g. The Carathéodory loop
S is approximated, under small homotopies, by simple closed curves Si. Allowable
partitions of S can be made to correspond to allowable partitions of Si under small
homotopies. Since variation and index are invariant under suitable homotopies (see
the comments after Proposition 2.2.3) we have the following theorem.

Theorem 3.5.2. Suppose S = g(S1) is a parameterized Carathéodory loop in C
and f : S → C is a fixed point free map. Suppose variation of f on S1 = A0∪· · ·∪An

with respect to g is defined for some partition A0 ∪ · · · ∪An of S1. Then

ind(f, g) =
n∑

i=0

var(f,Ai, g(S1)) + 1.

3.6. Prime Ends

Prime ends provide a way of studying the approaches to the boundary of a
simply-connected plane domain with non-degenerate boundary. See [CL66] or
[Mil00] for an analytic summary of the topic and [UY51] for a more topological
approach. We will be interested in the prime ends of U∞ = C∞ \ T (X). Recall
that D∞ = {z ∈ C∞ | |z| > 1} is the “unit disk about ∞.” The Riemann Mapping
Theorem guarantees the existence of a conformal map ϕ : D∞ → U∞ taking ∞ →
∞, unique up to the argument of the derivative at ∞. Fix such a map ϕ. We
identify S1 = ∂D∞ with R/Z and identify points e2πit in ∂D∞ by their argument t
(mod 1). Crosscut and shadow were defined in Section 3.4.

Definition 3.6.1 (Prime End). A chain of crosscuts is a sequence {Qi}∞i=1 of
crosscuts of U∞ such that for i ̸= j, Qi ∩Qj = ∅, diam(Qi) → 0, and for all j > i,
Qi separates Qj from ∞ in U∞. Hence, for all j > i, Qj ⊂ Sh(Qi). Two chains of
crosscuts are said to be equivalent if and only if it is possible to form a sequence of
crosscuts by selecting alternately a crosscut from each chain so that the resulting
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sequence of crosscuts is again a chain. A prime end E is an equivalence class of
chains of crosscuts.

If {Qi} and {Q′
i} are equivalent chains of crosscuts of U∞, it can be shown that

{ϕ−1(Qi)} and {ϕ−1(Q′
i)} are equivalent chains of crosscuts of D∞ each of which

converges to the same unique point e2πit ∈ S1 = ∂D∞, t ∈ [0, 1), independent of
the representative chain. Hence, we denote by Et the prime end of U∞ defined by
{Qi}.

Definition 3.6.2 (Impression and Principal Continuum). Let Et be a prime
end of U∞ with defining chain of crosscuts {Qi}. The set

Im(Et) =
∞∩
i=1

Sh(Qi)

is a subcontinuum of ∂U∞ called the impression of Et. The set

Pr(Et) = {z ∈ ∂U∞ | for some chain {Q′
i} defining Et, Q′

i → z}
is a continuum called the principal continuum of Et.

For a prime end Et, Pr(Et) ⊂ Im(Et), possibly properly. We will be interested
in the existence of prime ends Et for which Pr(Et) = Im(Et) = ∂U∞.

Definition 3.6.3 (External Rays). Let t ∈ [0, 1) and define

Rt = {z ∈ C | z = ϕ(re2πit), 1 < r <∞}.
We call Rt the external ray (with argument t). If x ∈ Rt then the (X,x)-end of Rt

is the bounded component Kx of Rt \ {x}.

In this case X is a continuum, U∞(X) is simply connected, the external rays
Rt are all smooth and pairwise disjoint. Moreover, for each x ∈ U∞(X) there exists
a unique t such that x ∈ Rt.

Definition 3.6.4 (Essential crossing). An external ray Rt is said to cross a
crosscut Q essentially if and only if there exists x ∈ Rt such that the (T (X), x)-end
of Rt is contained in the bounded complementary domain of T (X)∪Q. In this case
we will also say that Q crosses Rt essentially.

The results listed below are known.

Proposition 3.6.5 ([CL66]). Let Et be a prime end of U∞. Then Pr(Et) = Rt\
Rt. Moreover, for each 1 < r <∞ there is a crosscut Qr of U∞ with {ϕ(re2πit)} =
Rt ∩Qr and diam(Qr) → 0 as r → 1 and such that Rt crosses Qr essentially.

Definition 3.6.6 (Landing Points and Accessible Points). If Pr(Et) = {x},
then we say Rt lands on x ∈ T (X) and x is the landing point of Rt. A point
x ∈ ∂T (X) is said to be accessible (from U∞) if and only if there is an arc in
U∞ ∪ {x} with x as one of its endpoints.

Proposition 3.6.7. A point x ∈ ∂T (X) is accessible if and only if x is the
landing point of some external ray Rt.

Definition 3.6.8 (Channels). A prime end Et of U∞ for which Pr(Et) is non-
degenerate is said to be a channel in ∂U∞ (or in T (X)). If moreover Pr(Et) =
∂U∞ = ∂T (X), we say Et is a dense channel. A crosscut Q of U∞ is said to cross
the channel Et if and only if Rt crosses Q essentially.
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When X is locally connected, there are no channels, as the following classical
theorem proves. In this case, every prime end has degenerate principal set and
degenerate impression.

Theorem 3.6.9 (Carathéodory). X is locally connected if and only if the Rie-
mann map ϕ : D∞ → U∞ = C∞ \ T (X) taking ∞ → ∞ extends continuously to
S1 = ∂D∞.

3.7. Oriented maps

Basic notions of (positively) oriented and confluent maps are defined in Chap-
ter 2. In this section we study (positively) oriented maps and we will establish
that it is a natural class of plane maps which are the proper generalization of an
orientation preserving homeomorphism of the plane. The following lemmas are in
preparation for the proof of Theorem 3.7.4.

Lemma 3.7.1. Suppose f : C → C is a perfect surjection. Then f is confluent
if and only if f is oriented.

Proof. Suppose that f is oriented. Let A be an arc in C and let C be a
component of f−1(A). Suppose that f(C) ̸= A. Let a ∈ A \ f(C). Since f(C) does
not separate a from infinity, we can choose a simple closed curve S with C ⊂ T (S),
S ∩ f−1(A) = ∅ and f(S) so close to f(C) that f(S) does not separate a from
∞. Then a ̸∈ T (f(S)). Since f is oriented, f(C) ⊂ T (f(S)). Hence there exists a
y ∈ A ∩ f(S). This contradicts the fact that A ∩ f(S) = ∅. Thus f(C) = A.

Now suppose that K is an arbitrary continuum in C and let L be a component
of f−1(K). Let x ∈ L and let Ai be a sequence of arcs in C such that limAi = K
and f(x) ∈ Ai for each i. LetMi be the component of f−1(Ai) containing the point
x. By the previous paragraph f(Mi) = Ai. Since f is perfect, M = lim supMi ⊂ L
is a continuum and f(M) = K. Hence f is confluent.

Suppose next that f : C → C is not oriented. Then there exists a simple closed
curve S in C and p ∈ T (S) such that f(p) ̸∈ T (f(S)). Let L be a half-line with
endpoint f(p) running to infinity in C \ f(S). Let L∗ be an arc in L with endpoint
f(p) and diameter greater than the diameter of the continuum f(T (S)). Let K be
the component of f−1(L∗) which contains p. Then K ⊂ T (S), since p ∈ T (S) and
L ∩ f(S) = ∅. Hence, f(K) ̸= L∗, and so f is not confluent. �

Lemma 3.7.2. Let f : C → C be a light, open, perfect surjection. Then there
exists an integer k and a finite subset B ⊂ C such that f is a local homeomorphism
at each point of C \B, and for each point y ∈ C \ f(B), |f−1(y)| = k.

Proof. Let C∞ be the one point compactification of C. Since f is perfect,
we can extend f to a map of C∞ onto C∞ so that f−1(∞) = ∞. By abuse of
notation we also denote the extended map by f . Then f is a light open mapping of
the compact 2-manifold C∞. The result now follows from a theorem of Whyburn
[Why42, X.6.3]. �

The following is a special case, for oriented perfect maps, of the monotone-light
factorization theorem. A non-separating plane continuum is said to be acyclic.

Lemma 3.7.3. Suppose that f : C → C is an oriented, perfect map. It follows
that f = g ◦h, where h : C → C is a monotone perfect surjection with acyclic fibers
and g : C → C is a light, open perfect surjection.
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Proof. As above, f extends to a map of the sphere such that f(∞) = f−1(∞) =
∞. By the monotone-light factorization theorem [Nad92, Theorem 13.3], f = g◦h,
where h : C → X is monotone, g : X → C is light, and X is the quotient space ob-
tained from C by identifying each component of f−1(y) to a point for each y ∈ C.
Let y ∈ C and let C be a component of f−1(y). If C were to separate C, then
f(C) = y would be a point while f(T (C)) would be a non-degenerate continuum.
Choose an arc A ⊂ C \ {y} which meets both f(T (C)) and its complement and let
x ∈ T (C) \C such that f(x) ∈ A. If K is the component of f−1(A) which contains
x, then K ⊂ T (C). Hence f(K) cannot map onto A contradicting the fact that f
is confluent. Thus, for each y ∈ C, each component of f−1(y) is acyclic.

By Moore’s Plane Decomposition Theorem [Dav86], X is homeomorphic to C.
Since f is confluent, it is easy to see that g is confluent. By a theorem of Lelek and
Read [LR74] g is open since it is confluent and light (also see [Nad92, Theorem
13.26]). Since h and g factor the perfect map f through a Hausdorff space C, both
h and g are perfect [Eng89, 3.7.5]. �

Below ∂Z means the boundary of the set Z.

Theorem 3.7.4 (Maximum Modulus Theorem). Suppose that f : C → C is a
perfect surjection. Then the following are equivalent:

(1) f is either positively or negatively oriented.
(2) f is oriented.
(3) f is confluent.

Moreover, if f is oriented, then for any non-separating continuum X, ∂f(X) ⊂
f(∂X).

Proof. It is clear that (1) implies (2). By Lemma 3.7.1 every oriented map
is confluent. Hence suppose that f : C → C is a perfect confluent map. By
Lemma 3.7.3, f = g ◦ h, where h : C → C is a monotone perfect surjection with
acyclic fibers and g : C → C is a light, open perfect surjection. By Stoilow’s
Theorem [Why64] there exists a homeomorphism j : C → C such that g ◦ j is an
analytic surjection. Then f = g ◦ h = (g ◦ j) ◦ (j−1 ◦ h). Since k = j−1 ◦ h is a
monotone surjection of C with acyclic fibers, it is a near homeomorphism [Dav86,
Theorem 25.1]. That is, there exists a sequence ki of homeomorphisms of C such
that lim ki = k. We may assume that all of the ki have the same orientation.

Let fi = (g ◦ j) ◦ ki, S a simple closed curve in the domain of f and p ∈ T (S) \
f−1(f(S)). Note that lim f−1

i (fi(S)) ⊂ f−1(f(S)). Hence p ∈ T (S) \ f−1
i (fi(S))

for i sufficiently large. Moreover, since fi converges to f , fi|S is homotopic to f |S
in the complement of f(p) for i large. Thus for large i, degree((fi)p) = degree(fp),
where

(fi)p(x) =
fi(x)− fi(p)

|fi(x)− fi(p)|
and fp(x) =

f(x)− f(p)

|f(x)− f(p)|
.

Since g ◦ j is an analytic map, it is positively oriented and we conclude that
degree((fi)p) = degree(fp) > 0 if ki is orientation preserving and degree((fi)p) =
degree(fp) < 0 if ki is orientation reversing. Thus, f is positively oriented if each
ki is orientation-preserving and f is negatively oriented if each ki is orientation-
reversing.

Suppose that X is a non-separating continuum and f is oriented. Let y ∈
∂f(X). Choose yi ∈ ∂f(X) and rays Ri, joining yi to ∞ such that Ri∩f(X) = {yi}
and lim yi = y. Choose xi ∈ X such that f(xi) = yi. Since f is confluent, there
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exist closed and connected sets Ci, joining xi to ∞ such that Ci ∩ X ⊂ f−1(yi).
Hence there exist x′i ∈ f−1(yi) ∩ ∂X. We may assume that limx′i = x∞ ∈ ∂X and
f(x∞) = y as desired. �

We shall need the following three results in the next section.

Lemma 3.7.5. Let X be a plane continuum and f : C → C a perfect, surjective
map such that f−1(T (X)) = T (X) (i.e., T (X) is fully invariant) and f |C\T (X) is

confluent. Then for each y ∈ C \ T (X), each component of f−1(y) is acyclic.

Proof. Suppose there exists y ∈ C \ T (X) such that some component C of
f−1(y) is not acyclic. Then there exists z ∈ T (C)\[f−1(y)∪T (X)]. Then T (X)∪{y}
does not separate f(z) from infinity in C. Let L be a ray in C \ [T (X) ∪ {y}] from
f(z) to infinity. Then L = ∪Li, where each Li ⊂ L is an arc with endpoint f(z). For
each i the component Mi of f

−1(Li) containing z maps onto Li. Then M = ∪Mi

is a connected closed subset in C\f−1(y) from z to infinity. This is a contradiction
since z is contained in a bounded complementary component of f−1(y). �

Theorem 3.7.6. Let X be a plane continuum and f : C → C a perfect,
surjective map such that f−1(T (X)) = T (X) and f |C\T (X) is confluent. If A and B
are crosscuts of T (X) such that B∪X separates A from ∞ in C, then f(B)∪T (X)
separates f(A) \ f(B) from ∞.

Proof. Suppose not. Then there exists a half-line L joining f(A) to infinity
in C \ (f(B) ∪ T (X)). As in the proof of Lemma 3.7.5, there exists a closed and
connected set M ⊂ C \ (B ∪X) joining A to infinity, a contradiction. �

Proposition 3.7.7. Under the conditions of Theorem 3.7.6, if L is a ray irre-
ducible from T (X) to infinity, then each component of f−1(L) is closed in C \ X
and is a connected set from X to infinity.

3.8. Induced maps of prime ends

Suppose that f : C → C is an oriented perfect surjection and f−1(Y ) = X,
where X and Y are acyclic continua and Y has no cutpoints. We will show that
in this case the map f induces a confluent map F of the circle of prime ends of
X to the circle of prime ends of Y . This result was announced by Mayer in the
early 1980’s but never appeared in print. It was also used (for homeomorphisms)
by Cartwright and Littlewood in [CL51]. There are easy counterexamples that
show if f is not confluent then it may not induce a continuous function between
the circles of prime ends. For example, if Y = D, X is the union of the unit disk
and a copy of a half ray R which spirals to the unit circle and f is radial projection
of R onto the unit circle, then f can be extended to a perfect map F of the plane
so that F−1(Y ) = X but F does not induce a continuous function from the circle
of prime ends of X to the circle of prime ends of Y .

Theorem 3.8.1. Let X and Y be non-degenerate acyclic plane continua and
f : C → C a perfect map such that:

(1) Y has no cutpoint,
(2) f−1(Y ) = X and
(3) f |C\X is confluent.
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Let φ : D∞ → C∞ \X and ψ : D∞ → C∞ \ Y be conformal mappings. Define

f̂ : D∞ → D∞ by f̂ = ψ−1 ◦ f ◦ φ.
Then f̂ extends to a map f̄ : D∞ → D∞. Moreover, f̄−1(S1) = S1 and F = f̄ |S1

is a confluent map.

Proof. Note that f takes accessible points of X to accessible points of Y . For
if P is a path in [C \X] ∪ {p} with endpoint p ∈ X, then by (2), f(P ) is a path in
[C \ Y ] ∪ {f(p)} with endpoint f(p) ∈ Y .

Let A be a crosscut of X such that the diameter of f(A) is less than half of
the diameter of Y and let U be the bounded component of C \ (X ∪ A). Let the
endpoints of A be x, y ∈ X and suppose that f(x) = f(y). If x and y lie in the same
component of f−1(f(x)) then each crosscut B ⊂ U of X is mapped to a generalized
return cut of Y based at f(x) (i.e., by (1) and (3) f(U)∩Y = f(x) and the endpoints
of B map to f(x)). Note that in this case by (1), ∂f(U) ⊂ f(A) ∪ {f(x)}.

Now suppose that f(x) = f(y) and x and y lie in distinct components of
f−1(f(x)). Then by unicoherence of C, ∂U ⊂ A ∪ X is a connected set and
∂U ̸⊂ Ā ∪ f−1(f(x)). Now ∂U \ (Ā ∪ f−1(f(x))) = ∂U \ f−1(f(Ā)) is an open
non-empty set in ∂U by(2). Thus there is a crosscut B ⊂ U \ f−1(f(Ā)) of X
with B̄ \B ⊂ ∂U \ f−1(f(Ā)). Now f(B) is contained in a bounded component of
C \ (Y ∪ f(A)) = C \ (Y ∪ f(Ā)) by Theorem 3.7.6. Since Y ∩ f(Ā) = {f(x)} is
connected and Y does not separate C, it follows by unicoherence that f(B) lies in a
bounded component of C\f(Ā). Since Y \{f(x)} meets f(B̄) and misses f(Ā) and
Y \ {f(x)} is connected, Y \ {f(x)} lies in a bounded complementary component
of f(Ā). This is impossible as the diameter of f(A) is smaller than the diameter of
Y . It follows that there exists a δ > 0 such that if the diameter of A is less than δ
and f(x) = f(y), then x and y must lie in the same component of f−1(f(x)).

In order to define the extension f̄ of f over the boundary S1 of D∞, let Ci be
a chain of crosscuts of D∞ which converge to a point p ∈ S1 such that Ai = φ(Ci)
is a null sequence of crosscuts or return cuts of X with endpoints ai and bi which
converge to a point x ∈ X. There are three cases to consider:

Case 1. f identifies the endpoints of Ai for some Ai with diameter less than
δ. In this case the chain of crosscuts is mapped by f to a sequence of generalized
return cuts based at f(ai) = f(bi) = f(x). Hence f(ai) is an accessible point of Y
which corresponds (under ψ−1) to a unique point q ∈ S1 (since Y has no cutpoints).
Define f̄(p) = q.

Case 2. Case 1 does not apply and there exists an infinite subsequence Aij of

crosscuts such that f(Āij ) ∩ f(Āik) = ∅ for j ̸= k. In this case f(Aij ) is a chain of

generalized crosscuts which converges to the point f(x) ∈ Y . The chain ψ−1◦f(Ai)
corresponds to a unique point q ∈ S1. Define f̄(p) = q.

Case 3. Cases 1 and 2 do not apply. Without loss of generality suppose there
exists an i such that for j > i f(Āi) ∩ f(Āj) contains f(ai) = f(x). In this case
f(Aj) is a sequence of generalized crosscuts based at the accessible point f(x) which
corresponds to a unique point q on S1 as above. Define f̄(p) = q.

It remains to be shown that f̄ is a continuous extension of f̂ and F is confluent.
For continuity it suffices to show continuity at S1. Let p ∈ S1 and let C be a
small crosscut of D∞ whose endpoints are on opposite sides of p in S1 such that
A = φ(C) has diameter less than δ [Mil00] and such that the endpoints of A are
two accessible points of X. Since f is uniformly continuous near X, the diameter
of f(A) is small and since ψ−1 is uniformly continuous with respect to connected
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sets in the complement of Y ([UY51]), the diameter of B = ψ−1 ◦f ◦φ(C) is small.

Also B is either a generalized crosscut or generalized return cut. Since f̂ preserves
separation of crosscuts, it follows that the image of the domain U bounded by C
which does not contain ∞ is small. This implies continuity of f̄ at p.

To see that F is confluent let K ⊂ S1 be a subcontinuum and let H be a
component of f̄−1(K). Choose a chain of crosscuts Ci such that φ(Ci) = Ai is a
crosscut of X meeting X in two accessible points ai and bi, Ci ∩ f̄−1(K) = ∅ and
limCi = H. It follows from the preservation of crosscuts (see Theorem 3.7.6) that

f̂(Ci) separates K from ∞. Hence f̂(Ci) must meet S1 on both sides of K and
lim f̄(Ci) = K. Hence F (H) = lim f̄(Ci) = K as required. �

Corollary 3.8.2. Suppose that f : C → C is a perfect, oriented map of
the plane, X ⊂ C is a subcontinuum without cut points and f(X) = X. Let

X̂ be the component of f−1(f(X)) containing X. Let φ : D∞ → C∞ \ T (X̂) and

ψ : D∞ → C∞\T (X) be conformal mappings. Define f̂ : D∞\φ−1(f−1(X)) → D∞

by f̂ = ψ−1 ◦ f ◦ φ. Put S1 = ∂D∞.

Then f̂ extends over S1 to a map f̄ : D∞ → D∞. Moreover f̄−1(S1) = S1 and
F = f̄ |S1 is a confluent map.

Proof. By Lemma 3.7.3 f = g ◦m where m is a monotone perfect and onto
mapping of the plane with acyclic point inverses, and g is an open and perfect
surjection of the plane to itself. By Lemma 3.7.2, f−1(X) has finitely many com-
ponents. It follows that there exist a simply connected open set V , containing
T (X), such that if U is the component of f−1(V ) containing X̂, then U contains
no other components of f−1(X). It is easy to see that f(U) = V and that U is
simply connected. Hence U and V are homeomorphic to C. Then f |U : U → V is a
confluent map. The result now follows from Theorem 3.8.1 applied to f restricted
to U . �



CHAPTER 4

Partitions of domains in the sphere

4.1. Kulkarni-Pinkall Partitions

Throughout this section let K be a compact subset of the plane whose com-
plement U = C \ K is connected. In the interest of completeness we define the
Kulkarni-Pinkall partition of U and prove the basic properties of this partition that
are essential for our work in Section 4.2. Kulkarni-Pinkall [KP94] worked in closed
n-manifolds. We will follow their approach and adapt it to our situation in the
plane.

We think of K as a closed subset of the Riemann sphere C∞, with the spherical
metric and set U∞ = C∞ \K = U ∪ {∞}. Let B∞ be the family of closed, round
balls B in C∞ such that Int(B) ⊂ U∞ and |∂B∩K| ≥ 2. Then B∞ is in one-to-one
correspondence with the family B of closed subsets B of C which are the closure
of a complementary component of a straight line or a round circle in C such that
Int(B) ⊂ U and |∂B ∩K| ≥ 2.

Proposition 4.1.1. If B1 and B2 are two closed round balls in C such that
B1 ∩ B2 ̸= ∅ but does not contain a diameter of either B1 or B2, then B1 ∩ B2 is
contained in a ball of diameter strictly less than the diameters of both B1 and B2.

Proof. Let ∂B1∩∂B2 = {s1, s2}. Then the closed ball with center (s1+s2)/2
and radius |s1 − s2|/2 contains B1 ∩B2. �

If B is the closed ball of minimum diameter that contains K, then we say that
B is the smallest ball containing K. It is unique by Proposition 4.1.1. It exists,
since any sequence of balls of decreasing diameters that contain K has a convergent
subsequence.

We denote the Euclidean convex hull of K by convE(K) . It is the intersection
of all closed half-planes (a closed half-plane is the closure of a component of the
complement of a straight line) which contain K. Hence p ∈ convE(K) if p cannot
be separated from K by a straight line.

Given a closed ball B ∈ B∞, int(B) is conformally equivalent to the unit disk
in C. Hence its interior can be naturally equipped with the hyperbolic metric.
Geodesics g in this metric are intersections of int(B) with round circles C ⊂ C∞

which perpendicularly cross the boundary ∂B. For every hyperbolic geodesic g,
B\g has exactly two components. We call the closure of such components hyperbolic
half-planes of B. Given B ∈ B∞, the hyperbolic convex hull of K in B is the
intersection of all (closed) hyperbolic half-planes of B which contain K ∩B and we
denote it by convH(B ∩K).

Lemma 4.1.2. Suppose that B is the smallest ball containing K ⊂ C and let
c ∈ B be its center. Then c ∈ convH(K ∩ ∂B).

35
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B2

B1

hyperbolic convex hulls

Figure 4.1. Maximal balls have disjoint hulls.

Proof. By contradiction. Suppose that there exists a circle that separates
the center c from K ∩ ∂B and crosses ∂B perpendicularly. Then there exists a line
ℓ through c such that a half-plane bounded by ℓ contains K ∩ ∂B in its interior.
Let B′ = B + v be a translation of B by a vector v that is orthogonal to ℓ and
directed into this halfplane. If v is sufficiently small, then B′ contains K in its
interior. Hence, it can be shrunk to a strictly smaller ball that also contains K,
contradicting that B has smallest diameter. �

Lemma 4.1.3. Suppose that B1, B2 ∈ B∞ with B1 ̸= B2. Then

convH(B1 ∩ ∂U) ∩ convH(B2 ∩ ∂U) ⊂ ∂U.

In particular, convH(B1 ∩ ∂U) ∩ convH(B2 ∩ ∂U) contains at most two points.

Proof. A picture easily explains this, see Figure 4.1. Note that ∂U ∩ [B1 ∪
B2] ⊂ ∂(B1 ∪B1). Therefore B1 ∩ ∂U and B2 ∩ ∂U share at most two points. The
open hyperbolic chords between these points in the respective balls are disjoint. �

It follows that any point in U∞(X) can be contained in at most one hyperbolic
convex hull. In the next lemma we see that each point of U∞ is indeed contained
in convH(B ∩ K) for some B ∈ B∞. So {U∞ ∩ convH(B ∩ K) | B ∈ B∞} is a
partition of U∞.

Since hyperbolic convex hulls are preserved by Möbius transformations, they
are more easy to manipulate than the Euclidean convex hulls used by Bell (which
are preserved only by Möbius transformations that fix ∞). This is illustrated by
the proof of the following lemma.

Lemma 4.1.4 (Kulkarni-Pinkall inversion lemma). For any p ∈ C∞ \K there
exists B ∈ B∞ such that p ∈ convH(B ∩K).

Proof. We prove first that there exists B∗ ∈ B∞ such that no circle which
crosses ∂B∗ perpendicularly separates K ∩ ∂B∗ from ∞.



4.1. KULKARNI-PINKALL PARTITIONS 37

Let B′ be the smallest round ball which contains K and let B = C \B′. Then
B∗ = B∪{∞} ∈ B∞. If L is a circle which crosses ∂B∗ = ∂B′ perpendicularly and
separates K ∩ ∂B′ from ∞, then it also separates K ∩ ∂B′ from the center c′ of B′,
contrary to Lemma 4.1.2. [To see this note that if F is the Möbius transformation
which fixes points in the boundary of B′ and interchanges the points ∞ and c′, then
F (L) = L. Hence it would follow that L separates c′ from K ∩∂B′, a contradiction
with Lemma 4.1.2.] Hence, ∞ ∈ convH(B∗ ∩K).

Now let p ∈ C∞ \ K. Let M : C∞ → C∞ be a Möbius transformation such
that M(p) = ∞. By the above argument there exists a ball B∗ ∈ B∞ such that
∞ ∈ convH(B∗ ∩ M(K)). Then B = M−1(B∗) ∈ B∞ and, since M preserves
perpendicular circles, p ∈ convH(B ∩K) as desired. �

From Lemmas 4.1.3 and 4.1.4, we obtain the following Theorem which is a
special case of a Theorem of Kulkarni and Pinkall [KP94].

Theorem 4.1.5. Suppose thatK ⊂ C is a nondegenerate compact set such that
its complement U∞ in the Riemann sphere is connected. Then U∞ is partitioned
by the family

KPP = {U∞ ∩ convH(B ∩K) : B ∈ B∞} .

Theorem 4.1.5 is the linchpin of the theory of geometric crosscuts. An analogue
of it was known to Harold Bell and used by him implicitly since the early 1970’s.
Bell considered non-separating plane continua K and he used the equivalent notion
of Euclidean convex hull of the sets B ∩ ∂U for all maximal balls B ∈ B (see the
comment following Theorem 4.2.5).

Let B ∈ B∞. If B ∩ ∂U∞(X) consists of two points a and b, then its (hyper-
bolic) hull is an open circular segment g with endpoints a and b and perpendicular
to ∂B. We will call the crosscut g a KP crosscut or simply a KP-chord . If B ∩∂U
contains three or more points, then we say that the hull convH(B ∩ ∂U) is a gap.
A gap has nonempty interior. Its boundary in int(B) is a union of open circular
segments (with endpoints in K), which we also call KP crosscuts or KP-chords.
We denote by KP the collection of all open chords obtained as above using all
B ∈ B∞.

The following example may serve to illustrate Theorem 4.1.5.
Example. Let K be the unit square {x + yi : − 1 ≤ x, y ≤ 1}. There are five
obvious members of B. These are the sets

Imz ≥ 1, Imz ≤ −1, Rez ≥ 1, Rez ≤ −1, |z| ≥
√
2,

four of which are half-planes. These are the only members of B whose hyperbolic
convex hulls have non-empty interiors. However, for this example the family B
defined in the introduction of Section 4.1 is infinite. The hyperbolic hull of the
half-plane Imz ≥ 1 is the semi-disk {z | |z− i| ≤ 1, Imz > 1}. The hyperbolic hulls
of the other three half-planes given above are also semi-disks. The hyperbolic hull
of |z| ≥

√
2 is the unbounded region whose boundary consists of parts of four circles

lying (except for their endpoints) outside K and contained in the circles of radius√
2 and having centers at −2, 2,−2i and 2i, respectively. These hulls do not cover

U as there are spaces between the hulls of the half-planes and the hull of |z| ≥
√
2.

If C is a circle that circumscribes K and contains exactly two of its vertices,
such as 1±i, then the exterior ball B bounded by C is maximal. Now convH(B∩K)
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is a single chord and the union of all such chords foliates the remaining spaces in
C \K.

Lemma 4.1.6. If gi is a sequence of KP-chords with endpoints ai and bi, and
lim ai = a ̸= b = lim bi, then {gi} has a convergent subsequence and limgij = C,
where g = C \ {a, b} ∈ KP is also a KP-chord.

Proof. For each i let Bi ∈ B∞ such that gi ⊂ convH(Bi ∩ K). Then a
subsequence Bij converges to some B ∈ B∞ and gij converges to a closed circular
arc C in B with endpoints a and b, and C is perpendicular to ∂B. Hence g =
C \ {a, b} ⊂ convH(B ∩K). So g ∈ KP. �

By Lemma 4.1.6, the family KP of chords has continuity properties similar to
a foliation.

Lemma 4.1.7. For a, b ∈ ∂U∞, define C(a, b) as the union of all KP-chords
with endpoints a and b. Then if C(a, b) ̸= ∅, C(a, b) is either a single chord, or
C(a, b)∪{a, b} is a closed disk whose boundary consists of two KP-chords contained
in C(a, b) together with {a, b}.

Proof. Suppose g and h are two distinct KP-chords between a and b. Then
S = g∪h∪{a, b} is a simple closed curve. Choose a point z in the complementary
domain V of S contained in U∞. Since the hyperbolic hulls partition U∞, there
exists B ∈ B∞ such that z ∈ convH(B ∩K). By Lemma 4.1.3, convH(B ∩K) can
only intersect S ∩K in {a, b}. So convH(B ∩K) ∩K = {a, b} and it follows that
V is contained in C(a, b).

The rest of the Lemma follows from 4.1.6. �

4.2. Hyperbolic foliation of simply connected domains

In this section we will apply the results from Section 4.1 to the case that K is
a non-separating plane continuum (or, equivalently, that U∞ = C∞ \K is simply
connected). The results in this section are essential to [OT07, OV09] but are not
used in this paper. The reader who is only interested in the fixed point question
can skip this section.

Let D be the open unit disk in the plane. In this section we let ϕ : D →
C∞ \ K = U∞ be a Riemann map onto U∞. We endow D with the hyperbolic
metric, which is carried to U∞ by the Riemann map. We use ϕ and the Kulkarni-
Pinkall hulls to induce a closed collection Γ of chords in D that is a hyperbolic
geodesic lamination in D (see [Thu09]).

Let g ∈ KP be a chord with endpoints a and b. Then a and b are accessible
points in K and ϕ−1(g) is an arc in D with endpoints z, w ∈ ∂D. Let G be the
hyperbolic geodesic in D joining z and w. Then G is an open circular arc which
meets ∂D perpendicularly. Let Γ be the collection of all G such that g ∈ KP.
We will prove that Γ inherits the properties of the family KP as described in
Theorem 4.1.5 and Lemma 4.1.6 (see Lemma 4.2.3, Theorem 4.2.5 and the remark
following 4.2.5).

Since members of KP do not intersect (though their closures are arcs which
may have common endpoints) the same is true for distinct members of Γ. We
will refer to the members of Γ (and their images under ϕ) as hyperbolic chords or
hyperbolic geodesics . Given g ∈ KP we denote the corresponding element of Γ by
G and its image ϕ(G) in U∞ by g. Note that Γ is a lamination of D in the sense of
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Thurston[Thu09]. By a gap of Γ (or of ϕ(Γ)), we mean the closure of a component
of D \

∪
Γ in D (or its image under ϕ in U∞, respectively).

Lemma 4.2.1 (Jørgensen [Pom92, p.91 and 93r]). Let B be a closed round
ball such that its interior is in U∞. Let γ ⊂ D be a hyperbolic geodesic. Then
ϕ(γ) ∩B is connected. In particular, if Rt is an external ray in U∞ and B ∈ B∞,
then Rt ∩B is connected.

If a, b ∈ ∂U∞, recall that C(a, b) is the union of all KP-chords with endpoints
a and b. From the viewpoint of prime ends, all chords in C(a, b) are the same. That
is why all the chords in C(a, b) are replaced by a single hyperbolic chord g ∈ ϕ(Γ).
The following lemma follows.

Lemma 4.2.2. Suppose g ∈ KP and g ⊂ convH(B ∩ ∂U∞) joins the points
a, b ∈ ∂U∞ for some B ∈ B∞. If G ∈ Γ is the corresponding hyperbolic geodesic,
then g = ϕ(G) ⊂ B.

Proof. We may assume that the Riemann map ϕ : D → U∞ is extended
over all points x ∈ S1 so that ϕ(x) is an accessible point of U∞. Let ϕ−1(a) = â,

ϕ−1(b) = b̃ and ϕ−1(B) = B̃, and let G be the hyperbolic geodesic joining the points

â and b̃ in D. (Note that this extended map is not necessarily continuous at points
of D corresponding to accessible points of K.) Suppose, by way of contradiction,

that x ∈ G \ B̃. Let C be the component of D \ ϕ−1(g) which does not contain

x. Choose ai → â and bi → b̃ in S1 ∩ C and let Hi be the hyperbolic geodesic
in D joining the points ai and bi. Then limHi = G and Hi ∩ B̃ is not connected
for i large. Hence ϕ(Hi) ∩ B is not connected for i large. This contradiction with
Lemma 4.2.1 completes the proof. �

Lemma 4.2.3. Suppose that {Gi} is a sequence of hyperbolic chords in Γ and
suppose that xi ∈ Gi such that {xi} converges to x ∈ D. Then there is a unique
hyperbolic chord G ∈ Γ that contains x. Furthermore, limGi = G.

Proof. We may suppose that a subsequence sequence {Gij} converges to a

hyperbolic chord G which contains x. Let gi ∈ KP so that ϕ−1(gi) is an open
arc which joins the endpoints of Gi. By Lemma 4.1.6,there ia another subsequence
so that limgij(t) = g ∈ KP. It follows that G is the hyperbolic chord joining

the endpoints of ϕ−1(g). Hence G ∈ Γ. Since the above argument applies to all
subsequences, the sequence Gi must converge to G. �

So we have used the family of KP-chords in U∞ to stratify D to the family Γ of
hyperbolic chords. In particular gaps of Γ are no longer necessarily disjoint but they
can meet at most in a common boundary chord. By Lemma 4.2.2 for each KP-chord
g ⊂ convH(B ∩ ∂U∞) its associated hyperbolic chord g = ϕ(G) ⊂ B. Hence, there
is a continuous deformation of U∞ that maps

∪
KP onto

∪
ϕ(Γ), which suggests

that components of U∞ \
∪
ϕ(Γ) naturally correspond to the interiors of the gaps

of the Kulkarni-Pinkall partition. That this is indeed the case is the substance of
the next lemma.

Lemma 4.2.4. There is a 1−1 correspondence between complementary domains
Z ⊂ D \

∪
Γ and the interiors of Kulkarni-Pinkall gaps convH(B ∩K). Moreover,

for each gap Z of Γ there exists a unique B ∈ B∞ such that Z corresponds to the
interior of the KP gap convH(B ∩ K) ∩ U∞ in that ∂Z ∩ D =

∪
{G ∈ Γ | g ∈

KP and g ⊂ ∂convH(B ∩K)} and ϕ(Z) ⊂ B.
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Proof. Let g and h be two distinct KP-chords in the boundary of the gap
convH(B ∩K) for some B ∈ B∞. Let {a, b} and {c, d} be the endpoints of ϕ−1(g)
and ϕ−1(h), respectively. Since g and h are contained in the same gap, no hy-
perbolic chord of Γ separates G and H. Hence there exists a gap Z of Γ whose
boundary includes the hyperbolic chords G and H. It now follows easily that for
any g′ ∈ KP which is contained in the boundary of the same gap convH(B∩K), G′

is contained in the boundary of Z. Hence the KP gap convH(B ∩K) corresponds
to the gap Z of Γ. Conversely, if Z is a gap of Γ in D then a similar argument,
together with Lemmas 4.1.6 and 4.1.7, implies that Z corresponds to a unique
gap convH(B ∩ K) for some B ∈ B∞. The rest of the Lemma now follows from
Lemma 4.2.2. �

So if U∞ = C∞ \K is endowed with the hyperbolic metric induced by ϕ, then
there exists a family of geodesic chords that share the same endpoints as elements
of KP. The complementary domains of U∞ \

∪
{g | g ∈ KP} corresponds to the

Kulkarni-Pinkall gaps. We summarize the results:

Theorem 4.2.5. Suppose that K ⊂ C is a non-separating continuum and let
U∞ be its complementary domain in the Riemann sphere. There exists a family
ϕ(Γ) of hyperbolic chords in the hyperbolic metric on U∞ such that for each g ∈
ϕ(Γ) there exists B ∈ B∞ and g ⊂ convH(B ∩ ∂U∞) so that g and g have the
same endpoints and g ⊂ B. Each domain Z of U∞ \ ϕ(Γ) naturally corresponds to
a Kulkarni-Pinkall gap convH(B ∩ ∂U∞) The bounding hyperbolic chords of Z in
U∞ correspond to the KP-chords (i.e., chords in KP) of convH(B ∩ ∂U∞).

In order to obtain Bell’s Euclidean foliation [Bel76] we could have modified
the KP family as follows. Suppose that B ∈ B. Instead of replacing a KP-chord
g ∈ convH(B ∩K) by a geodesic in the hyperbolic metric on U∞, we could have
replaced it by a straight line segment; i.e, the geodesic in the Euclidean metric.
Then we would have obtained a family of open straight line segments. In so doing
we would have replaced the gaps convH(B ∩ ∂U∞) by convE(B ∩ ∂U∞), which is
the way in which Bell originally foliated convE(K) \ K. We hope that the above
argument provides a more transparent proof of Bell’s result. Note that both in
the hyperbolic and Euclidean case the elements of the foliation are not necessarily
disjoint (hence we use the word “foliate” rather then “partition”). However, in both
cases every point of U∞ is contained in either a unique chord or in the interior of
a unique gap.

4.3. Schoenflies Theorem

In this short section we will show that the Schoenflies Theorem follows imme-
diately from Theorem 4.2.5 (see [Sie05] for some recent history of this old problem
and [OT07, OV09] for more details and extensions of these ideas). We want to
emphasize here that no results of Chapter 3 are relied upon in Section 4.3.

Theorem 4.3.1 (Schoenflies Theorem). Suppose that h : S1 → C is an embed-
ding of the unit circle in the plane and U is a bounded complementary domain of
h(S1) = S. Then there exists an embedding H : D → C which extends h.

Proof. Let B = {Bα} be the collection of maximal open balls in U such that
|∂Bα ∩ ∂U | ≥ 2. For each α let Fα = convE(∂Bα ∩ ∂U). Let L be the collection
of all chords in the boundaries of all the sets Fα and let L∗ be the union of all
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the chords in L. Let G = {Gβ} be the collection of all components of U \ L∗.
By Theorem 4.2.5 there exists for each z ∈ U either a unique chord ℓ ∈ L such
that z ∈ ℓ or a unique Gβ ∈ G such that z ∈ Gβ . Moreover, in the latter case,

there exists a unique α such that Gβ = Fα ⊂ Bα. Note that all chords in L are
straight line segments and all the sets Fα are Euclidean convex sets. Suppose that
xi ∈ L∗ such that limxi = x∞ and xi ∈ ℓi ∈ L. Then either lim ℓi = ℓ∞ and
x∞ ∈ ℓ∞ ∈ L, or lim ℓi = x∞ ∈ ∂U ⊂ h(S1). Now we can pull back the lamination
L to a lamination E of the unit disk D by h: if ℓ ∈ L is a chord joining the points
y1, y2 ∈ S, then connect the points h−1(y1), h

−1(y2) by the straight line segment,
denoted by h−1(ℓ) in the unit disk. Let E∗ be the union of all such line segments.
Note that each gap Gβ of U uniquely corresponds to a (Euclidean convex) gap Hβ

of E (i.e., Hβ is a component of D \ E∗.
Now extend h first over E∗ by mapping each chord in E linearly onto the

corresponding chord in L. For each gap Hβ (Gβ) of E (L) let hβ (gβ , respectively)
be its barycenter. Then it follows easily that we can extend the map h continuously
by defining H(hβ) = gβ for each β. Finally extend H over all of Hβ by mapping, for
each w ∈ ∂Hβ the straight line segment whβ linearly onto the straight line segment
joining the points H(w) and H(hβ) = gβ . Then H is the required extension of
h. �

4.4. Prime ends

We will follow the notation from Section 4.1 in the case that K = T (X) where
X is a plane continuum. Here we assume, as in the introduction to this paper, that
f : C → C takes the continuum X into T (X) with no fixed points in T (X), and X is
minimal with respect to these properties. We apply the Kulkarni-Pinkall partition
to U∞ = C∞ \ T (X). Recall that KPP = {convH(B ∩K) ∩ U∞ | B ∈ B∞} is the
Kulkarni Pinkall partition of U∞ as given by Theorem 4.1.5.

Let B∞ ∈ B∞ be the maximal ball such that ∞ ∈ convH(B∞ ∩K). As before
we use balls on the sphere. In particular, straight lines in the plane correspond to
circles on the sphere containing the point at infinity. The subfamily of KPP whose
elements are of diameter ≤ δ in the spherical metric is denoted by KPPδ. The
subfamily of chords in KP of diameter ≤ δ is denoted by KPδ.

By Lemma 4.1.6 we know that the families KP and KPP have nice continuity
properties. However, KP and KPP are not closed in the hyperspace of compact
subsets of C∞: a sequence of chords or hulls may converge to a point in the bound-
ary of U∞ (in which case it must be a null sequence).

Proposition 4.4.1 (Closedness). Let {gi} be a convergent sequence of distinct
elements in KPδ, then either gi converges to a chord g in KPδ or gi converges to a
point of X. In the first case, for large i and δ sufficiently small, var(f,g, T (X)) =
var(f,gi, T (X)).

Proof. By Lemma 4.1.6, we know that the first conclusion holds if g = limgi

contains a point of U∞. Hence we only need to consider the case when limgi =
g ⊂ ∂U∞ ⊂ T (X). If the diameter of gi converged to zero, then g is a point
as desired. Assume that this is not the case and let Bi be the maximal ball that
contains gi. Under our assumption, the diameters of {Bi} do not decay to zero. Let
B ∈ B∞ be the limit of a subsequence Bij . Then limgi is a piece of a round circle
which crosses ∂B perpendicularly. Hence limgi∩ int(B) ̸= ∅, contradicting the fact
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that g ⊂ ∂U∞ ⊂ T (X). Note that for δ sufficiently small, g ∩ f(g) = ∅. Hence,
var(f,g, T (X)) and var(f,gi, T (X)) are defined for all i sufficiently large. Then last
statement in the Lemma follows from stability of variation (see Section 2.2). �

Corollary 4.4.2. For each ε > 0, there exist δ > 0 such that for all g ∈ KP
with g ⊂ B(T (X), δ), diam(g) < ε.

Proof. Suppose not, then there exist ε > 0 and a sequence gi in KP such
that limgi ⊂ X and diam(gi) ≥ ε a contradiction to Proposition 4.4.1. �

The proof of the following well-known proposition is omitted.

Proposition 4.4.3. For each ε > 0 there exists δ > 0 such that for each open
arc A with distinct endpoints a, b such that A ∩ T (X) = {a, b} and diam(A) < δ,
T (T (X) ∪A) ⊂ B(T (X), ε).

Proposition 4.4.4. Let ε, δ be as in Proposition 4.4.3 above with δ < ε/2
and let B ∈ B∞. Let A be a crosscut of T (X) such that diam(A) < δ. If x ∈
T (A ∪ T (X)) ∩ convH(B ∩ T (X)) \ T (X) and d(x,A) ≥ ε, then the radius of B is
less than ε. Hence, diam(convH(B ∩ T (X))) < 2ε.

Proof. Let z be the center of B. If d(z, T (X)) < ε then diam(B) < 2ε and we
are done. Hence, we may assume that d(z, T (X)) ≥ ε. We will show that this leads
to a contradiction. By Proposition 4.4.3 and our choice of δ, z ∈ C∞ \ T (A ∪X).
The straight line segment ℓ from x to z must cross T (X)∪A at some point w. Since
the segment ℓ is in the interior of the maximal ball B, it is disjoint from T (X), so
w ∈ A. Hence d(x,w) ≥ ε and, since x ∈ B, B(w, ε) ⊂ B. This is a contradiction
since A ⊂ B(w, δ) and δ < ε/2 so A would be contained in the interior of B which
is impossible since A is a crosscut of T (X). �

Proposition 4.4.5. Let C be a crosscut of T (X) and let A and B be disjoint
closed sets in T (X) such that C ∩ A ̸= ∅ ̸= C ∩B. For each x ∈ C, let Fx ∈ KPP
so that x ∈ Fx. If each Fx intersects A ∪B, then there exists an F∞ ∈ KPP such
that F∞ intersects A, B and C.

Proof. Let a ∈ A, b ∈ B be the endpoints of C. Let Ca, Cb ⊂ C be the
set of points x ∈ C such that Fx intersects A or B, respectively. Then Ca and
Cb are closed subsets by Proposition 4.4.1. Note that d(A,B) > 0. If Ca = ∅,
choose xi ∈ C converging to a ∈ A ∩ C. Let Fxi = convH(Bi ∩ T (X)), where
Bi ∈ B and assume that B∞ = limBi. Then by Lemma 4.1.6, F∞ ∩ B ̸= ∅
and limFxi ⊂ F∞ ⊂ convH(B∞ ∩ K). Then F∞ ∩ B ̸= ∅ and a ∈ A ∩ C ∩ F∞.
Suppose now Ca ̸= ∅ ≠ Cb. Then Ca and Cb are closed and, since C is connected,
Ca ∩ Cb ̸= ∅. Let y ∈ Ca ∩ Cb. Then Fy ∩A ̸= ∅ ≠ Fy ∩B and y ∈ Fy ∩ C. �

Proposition 4.4.5 allows us to replace small crosscuts which essentially cross the
external ray Rt with non-trivial principal continuum by small nearby KP-chords
which also essentially crosses Rt. For if C is a small crosscut of T (X) with endpoints
a and b which crosses the external ray Rt essentially, let A and B be the closures
of the sets in T (X) accessible from a and b, respectively by small arcs missing Rt.
If the F∞ of proposition 4.4.5 is a gap convH(B ∩ T (X)), then a KP-chord in its
boundary crosses Rt essentially.

Fix a Riemann map φ : D∞ → U∞ = C∞ \ T (X) with φ(∞) = ∞. Recall
that an external ray Rt is the image of the radial line segment with argument 2πti
under the map φ.
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Proposition 4.4.6. Suppose the external ray Rt lands on x ∈ T (X), and
{gi}∞i=1 is a sequence of crosscuts of T (X) converging to x such that there exists a
null sequence of arcs Ai ⊂ C \ T (X) joining gi to Rt. Then for sufficiently large i,
var(f,gi, T (X)) = 0.

Proof. Since f is fixed point free on T (X) and f(x) ∈ T (X), we may choose
a small ball W with center x in C such that f(W )∩ (W ∪Rt) = ∅. For sufficiently
large i, Ai ∪ gi ⊂W . Then for each such i there exists a junction Ji starting from
a point in gi, with all of its legs staying in W close to Ai until it reaches Rt, and
then staying close to Rt to ∞. By our choice of W , var(f,gi, T (X)) = 0. �

Proposition 4.4.7. Suppose that for an external ray Rt we have Rt ∩
int(convE(T (X))) ̸= ∅. Then there exists x ∈ Rt such that the (T (X), x)-end
of Rt is contained in convE(T (X)). In particular there exists a chord g ∈ KP such
that Rt crosses g essentially.

Proof. External rays in U∞ correspond to geodesic half-lines starting at infin-
ity in the hyperbolic metric on C∞ \ T (X). Half-planes are conformally equivalent
to disks. Therefore, Jørgensen’s lemma applies: the intersection of Rt with a half-
plane is connected, so it is a half-line. Since the Euclidean convex hull of T (X) is the
intersection of all half-planes containing T (X), Rt∩ convE(T (X)) is connected. �

Lemma 4.4.8. Let Et be a channel (that is, a prime end such that Pr(Et) is
non-degenerate) in T (X). Then for each x ∈ Pr(Et), for every δ > 0, there is a
chain {gi}∞i=1 of chords defining Et selected from KPδ with gi → x ∈ ∂T (X).

Proof. Let x ∈ Pr(Et) and let {Ci} be a defining chain of crosscuts for Pr(Et)
with {x} = limCi. By Proposition 4.4.5, in particular by the remark following
the proof of that proposition, there is a sequence {gi} of KP-chords such that
d(gi, Ci) → 0 and Rt crosses each gi essentially. By Proposition 4.4.4, the sequence
gi converges to {x}. �

Lemma 4.4.9. Suppose an external ray Rt lands on a ∈ T (X) with {a} =
Pr(Et) ̸= Im(Et). Suppose {xi}∞i=1 is a collection of points in U∞ with xi → x ∈
Im(Et) \ {a} and ϕ−1(xi) → t. Then there is a sequence of KP-chords {gi}∞i=1 such
that for sufficiently large i, gi separates xi from ∞, gi → a and ϕ−1(gi) → t.

Proof. The existence of the chords gi again follows from the remark following
Proposition 4.4.5. It is easy to see that limφ−1(gi) → t. �

4.4.1. Auxiliary Continua. We use KP-chords to form Carathéodory loops
around the continuum T (X).

Definition 4.4.10. Fix δ > 0. Define the following collections of chords:

KP+
δ = {g ∈ KPδ | var(f,g, T (X)) ≥ 0}

KP−
δ = {g ∈ KPδ | var(f,g, T (X)) ≤ 0}

KPδ = KP+
δ ∪ KP−

δ

To each collection of chords above, there corresponds an auxiliary continuum de-
fined as follows:

T (X)δ = T (X ∪ (∪KPδ))

T (X)+δ = T (X ∪ (∪KP+
δ ))
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T (X)−δ = T (X ∪ (∪KP−
δ ))

Proposition 4.4.11. Let Z ∈ {T (X)δ, T (X)+δ , T (X)−δ }, and correspondingly

W ∈ {KPδ,KP+
δ ,KP−

δ }. Then the following hold:

(1) Z is a non-separating plane continuum.
(2) ∂Z ⊂ T (X) ∪ (∪W).
(3) Every accessible point y in ∂Z is either a point of T (X) or a point interior

to a chord g ∈ W.
(4) If y ∈ ∂Z ∩ g with g ∈ W, then y is accessible, g ⊂ ∂Z and ∂Z is locally

connected at each point of g. Hence, if φ : D∞ → C∞ \Z is the Riemann
map and Rt is an external ray landing at y, then φ extends continuously
to an open interval in S1 containing t. Moreover, if y ∈ ∂Z ∩ [g \ g], then
φ extends continuously over a half open J ⊂ S1 with endpoint t so that
φ(J) ⊂ g.

Proof. By Proposition 4.4.1, T (X) ∪ (∪W) is compact. Moreover, T (X) ∪
(∪W) is connected since each crosscut A ∈ W has endpoints in T (X). Hence, the
topological hull T (T (X)∪ (∪W)) is a non-separating plane continuum, establishing
(1).

Since Z is the topological hull of T (X) ∪ (∪W), no boundary points can be in
complementary domains of T (X)∪ (∪W). Hence, ∂Z ⊂ T (X)∪ (∪W), establishing
(2). Conclusion (3) follows immediately.

Suppose y ∈ ∂Z ∩ g with g ∈ W. Then Sh(g) ⊂ Z and there exists yi ∈ C \ Z
such that lim yi = y. We may assume that all the points yi are on the “same side”
of the arc g (i.e., yi ∈ C \ Sh(g)). This side of g is either (1) a limit of KP-chords
gj , or (2) there exists a gap convH(B ∩X) on this side with g in its boundary. In
case (1), g ⊂ Sh(gj) and, since yi ∈ C \Z for all i, gj ̸∈ W. Hence each gj ⊂ C \Z
for all j. It follows that every point of g is accessible, g ⊂ ∂Z and ∂Z is locally
connected at each point of g. In case (2) there exists a chord g′ ̸= g in the boundary
of convH(B ∩X) which separates g from infinity. Then g′ ̸∈ W and the interior of
convH(B ∩X) ⊂ C \ Z. Hence the same conclusion follows.

The last part of (4) follows from the proof of Carathéodory’s theorem (see
[Pom92]). �

Proposition 4.4.12. T (X)δ is locally connected; hence, ∂T (X)δ is a Carathé-
odory loop.

Proof. Suppose that T (X)δ is not locally connected. Then T (X)δ has a non-
trivial impression and there exist 0 < ε < δ/2 and a chain Ai of crosscuts of T (X)δ
such that diam(Sh(Ai)) > ε for all i. We may assume that limAi = y ∈ T (X)δ.

By Proposition 4.4.11 (4) we may assume y ∈ X. Choose zi ∈ Sh(Ai) such that
d(zi, y) > ε. We can enlarge the crosscut Ai of T (X)δ to a crosscut Ci of T (X)
as follows. Suppose that Ai joins the points a+i and a−i in T (X)δ. If a+i ∈ T (X),
put y+i = a+i . Otherwise a+i is contained in a chord g+

i ∈ KPδ, with endpoints in
T (X), which is contained in T (X)δ. Since limAi = y, we can select one of these
endpoints and call it y+i such that d(y+i , a

+
i ) → 0. Define g−

i and y−i similarly. Then
g+
i ∪Ai∪g−

i contains a crosscut Ci of T (X) joining the points y+i and y−i such that
limCi = y. We claim that zi ∈ Sh(Ci). To see this note that, since zi ∈ Sh(Ai),
there exists a half-ray Ri ⊂ C\T (X)δ joining zi to infinity such that |Ri∩Ai| is an
odd number and each intersection is transverse. Since Ri ∩Ci = Ri ∩Ai it follows
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that zi ∈ Sh(Ci). Let convH(Bi ∩ X) be the unique hull of the Kulkarni-Pinkall
partition KPP which contains zi. Since diam(Ci) → 0 and d(zi, y) > ε, it follows
from Proposition 4.4.4 that diam(convH(Bi ∩X)) < 2ε < δ. This contradicts the
fact that zi ∈ C \ T (X)δ and completes the proof. �





Part 2

Applications of basic theory





CHAPTER 5

Description of main results of Part 2

We begin by describing the results obtained in Part 2. These results are ap-
plications of the tools developed in Part 1. We will say that a continuum X is
decomposable if there exist two proper subcontinua A,B of X such that X = A∪B.
A continuum which is not decomposable, is called indecomposable.

5.1. Outchannels

In Chapter 6 we will study outchannels. Outchannels were introduced by Bell
to establish that a minimal counterexample to the Plane Fixed Point Problem
must be an indecomposable continuum. In Chapter 6 we will recover this result
and strengthen it by showing that the outchannel in a minimal counterexample to
the Plane Fixed Point Problem is unique: there exists exactly one prime end Et
which corresponds to a dense channel with non zero variation. It will follow that
the variation of this channel must be −1 while all other small crosscuts, which
do not cross this channel essentially, must have variation zero. Let us assume
that f : C → C with a forward invariant non-separating continuum X presents a
(possibly existing) minimal counterexample to the Plane Fixed Point Problem.

We construct a specific locally connected (but not invariant) continuumX ′ ⊃ X
by adding small crosscuts to X. This will be done in a careful way; we will only
add Kulkarni-Pinkall crosscuts from KP. This construction is used to show that if
there is a minimal counterexample (X, f) to the Plane Fixed Point Problem, then
there exists a continuum Z such that the following facts hold.

(1) Z ⊃ X;
(2) there exists a one-to-one map φ : R → Z,
(3) φ(R) is the set of accessible points of Z,
(4) as t→ ∞, φ(t) and φ(−t) run along opposite sides of the outchannel.

Moreover, the same construction is important in the proof of the uniqueness of
the outchannel.

These ideas are also applied in [BO09]. There it was shown that in certain
cases a minimal subcontinuum X without a fixed point must be fully invariant. As
an important tool it was shown in that paper that the map f can be modified on
C \ X to a map g such that g(Rt) = Rt, g maps points on Rt closer to infinity
and g locally interchanges the two sides of Rt. Here Rt is the conformal external
ray which represents the prime end corresponding to the outchannel. Note that
if X is fully invariant then a prime end which corresponds to the outchannel has
the property that, in a defining sequence {Ci} of crosscuts of the prime end f(Ci)
separates Ci from infinity in U∞(X) (thus justifying the name “outchannel”).

Suppose that f : C → C is a perfect map, X is a continuum, f has no fixed
point in T (X) and X is minimal with respect to f(X) ⊂ T (X). Fix η > 0 such that

49
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for each KP-chord g ⊂ T (X)η, g∩ f(g) = ∅ and f is fixed point free on T (X)η. In
this case we will say that η defines variation near X and that the triple (f,X, η)
satisfies the standing hypothesis. As usual, for a continuum X let U∞ = C∞\T (X).

Definition 5.1.1 (Outchannel). Suppose that the triple (X, f, η) satisfies the
standing hypothesis. An outchannel of the non-separating plane continuum T (X)
is a prime end Et of U∞ such that for some chain {gi} of crosscuts defining Et,
var(f,gi, T (X)) ̸= 0 for every i. We call an outchannel Et of T (X) a geomet-
ric outchannel if and only if for sufficiently small δ, every chord in KPδ, which
crosses Et essentially, has nonzero variation. We call a geometric outchannel neg-
ative (respectively, positive) (starting at g ∈ KP) if and only if every KP-chord

h ⊂ T (X)η ∩ Sh(g), which crosses Et essentially, has negative (respectively, posi-
tive) variation.

5.2. Fixed points in invariant continua

In this Section we describe the results obtained in Section 7.1 of Chapter 7. The
main result of Section 7.1 solves the Plane Fixed Point Problem in the affirmative
for positively oriented maps of the plane. Namely, the following theorem is proven.

Theorem 7.1.3. Suppose f : C → C is a positively oriented map and X is a
continuum such that f(X) ⊂ T (X). Then there exists a point x0 ∈ T (X) such that
f(x0) = x0.

5.3. Fixed points in non-invariant continua – the case of dendrites

As described in Chapter 1, in the rest of Chapter 7 we want to extend Theo-
rem 7.1.3 to at least some non-invariant continua. We are motivated by the interval
case in which to conclude that there exists a fixed point in an interval it is enough
to know that the endpoints of the interval map in opposite directions, and the
invariantness of the interval itself is not crucial.

In Section 7.2 we extend, in the spirit of the interval case, a well-known result
according to which a map of a dendrite into itself has a fixed point (Theorem 1.0.2,
see [Nad92]). We show the existence of fixed points in non-invariant dendrites
and, with some additional conditions, obtain also results related to the number of
periodic points of f . To state the precise results we need some definitions.

Definition 5.3.1 (Boundary scrambling for dendrites). Suppose that f maps

a dendrite D1 to a dendrite D2 ⊃ D1. Put E = D2 \D1 ∩D1 (observe that E may
be infinite). If for each non-fixed point e ∈ E, f(e) is contained in a component
of D2 \ {e} which intersects D1, then we say that f has the boundary scrambling
property or that it scrambles the boundary. Observe that if D1 is invariant then f
automatically scrambles the boundary.

The following theorem is the first result obtained in Section 7.2.

Theorem 7.2.2. Let f : D1 → D2 be a map, where D1 and D2 are dendrites
and D1 ⊂ D2. The following claims hold.

(1) If a, b ∈ D1 are such that a separates f(a) from b and b separates f(b)
from a, then there exists a fixed point c ∈ (a, b). Thus, if e1 ̸= e2 ∈ E are
such that each f(ei) belongs to a component of D2 \{ei} disjoint from D1

then there is a fixed point c ∈ (e1, e2).
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(2) If f scrambles the boundary, then f has a fixed point.

To give the next definition we recall that if x ∈ Y then the valence of Y at x,
valY (x), is defined as the number of connected components of Y \{x}, and x is said
to be a cutpoint (of Y ) if valY (x) > 1.

Definition 5.3.2 (Weakly repelling periodic points). In the situation of Defi-
nition 5.3.1, let a ∈ D1 be a fixed point and suppose that there exists a component
B of D1 \ {a} such that arbitrarily close to a in B there exist fixed cutpoints of D1

or points x separating a from f(x). Then we say that a is a weakly repelling fixed
point (of f in B). A periodic point a ∈ D1 is said to be simply weakly repelling
if there exists n and a component B of D1 \ {a} such that a is a weakly repelling
fixed point of fn in B.

We use the notions introduced in Definition 5.3.2 to prove Theorem 7.2.6.

Theorem 7.2.6. Suppose that f : D → D is continuous where D is a dendrite
and all its periodic points are weakly repelling. Then f has infinitely many periodic
cutpoints.

This theorem is applied in Theorem 7.2.7 where it is shown that if g : J → J is
a topological polynomial on its dendritic Julia set (e.g., if f is a complex polynomial
with a dendritic Julia set) then it has infinitely many periodic cutpoints.

5.4. Fixed points in non-invariant continua – the planar case

In parallel with the dendrite case, we want to extend Theorem 7.1.3 to a larger
class of maps of the plane and non-invariant continua such that certain “boundary”
conditions are satisfied. This is accomplished in Section 7.3.

Definition 5.4.1. Suppose that f : C → C is a positively oriented map and
X ⊂ C is a non-separating continuum. Suppose that there exist n ≥ 0 disjoint
non-separating continua Zi such that the following properties hold:

(1) f(X) \X ⊂ ∪iZi;
(2) for all i, Zi ∩X = Ki is a non-separating continuum;
(3) for all i, f(Ki) ∩ [Zi \Ki] = ∅.

Then the map f is said to scramble the boundary (of X). If instead of (3) we have

(3a) for all i, either f(Ki) ⊂ Ki, or f(Ki) ∩ Zi = ∅
then we say that f strongly scrambles the boundary (of X); clearly, if f strongly
scrambles the boundary of X, then it scrambles the boundary of X. In either case,
the continua Ki are called exit continua (of X).

Observe that if in Definition 5.4.1 n = 0, then X must be invariant (i.e.,
f(X) ⊂ X).

Remark 5.4.2. Since Zi and Zi ∩ X = Ki ̸= ∅ are non-separating continua
and sets Zi are pairwise disjoint, then X ∪ (

∪
Zi) is a non-separating continuum.

Loosely, scrambling the boundary means that f(X) can only “grow” off X within
the sets Zi and through the sets Ki ⊂ X while any set Ki itself cannot be mapped
outside X within Zi, with more specific restrictions upon the dynamics of Ki’s in
the case of strong scrambling.

The following theorem extends Theorem 7.1.3 onto some non-invariant con-
tinua.
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Theorem 7.3.3. In the situation of 5.4.1, if f is a positively oriented map
which strongly scrambles the boundary of X, then f has a fixed point in X.

We specify the above theorem for positively oriented maps with isolated fixed
points as follows. Given a non-separating continuum X ⊂ C, a positively oriented
map f and a fixed point p ∈ X, we define what it means that f repels outside X
at p (see Definition 7.4.5; basically, it means that there exists an invariant external
ray to X which lands at p and along which the points are repelled away from p by
f). We also need the next definition which is closely related to that of the index of
the map on a simple closed curve.

Definition 5.4.3. Suppose that f : C → C is a positively oriented map with
isolated fixed points and x is a fixed point of f . Then the local index of f at x,
denoted by ind(f, x), is defined as ind(f, S) where S is a small simple closed curve
around x.

Then we prove the following theorem.

Theorem 7.4.8. Suppose that f : C → C is a positively oriented map with
isolated fixed points, and X ⊂ C is a non-separating continuum or a point. Sup-
pose that the conditions (1)-(3) in 5.4.1 are satisfied. Moreover, suppose that the
following conditions hold.

(1) For each fixed point p ∈ X we have that ind(f, p) = 1 and f repels outside
X at p.

(2) The map f scrambles the boundary of X. Moreover, for each i either
f(Ki)∩Zi = ∅, or there exists a neighborhood Ui of Ki with f(Ui ∩X) ⊂
X.

Then X is a point.

5.5. The polynomial case

Theorems 7.2.7 and 7.4.7 apply to polynomials acting on the complex plane.
These theorems allow us to obtain corollaries dealing with the existence of periodic
points in certain parts of the Julia set of a polynomial and with the degeneracy of
certain continua (e.g., impressions). To discuss this we need the following standard
notation.

Suppose that P : C → C is a complex polynomial of degree d. A P -periodic
point a of period n is called repelling if |(Pn)′(a)| > 1, parabolic if (Pn)′(a) is a
root of unity (i.e., for an appropriate k we will have [(Pn)′(a)]k = 1) and irrational
neutral if (pn)′(a) = e2παi with α irrational. The closure of the union of all repelling
periodic points of P is called the Julia set of P and is denoted by JP . Then the
set U∞(JP ) = U∞ (i.e., the unbounded component of C \ JP ) is called the basin
of attraction of infinity and the set KP = C \ U∞ = T (JP ) is called the “filled-in”
Julia set.

Components of C \ JP are called Fatou domains. A Fatou domain is said to
be attracting (Siegel, respectively) if it contains a periodic point which is attracting
(irrational neutral, respectively); an irrational neutral periodic point like that is
said to be a Siegel (periodic) point . A bounded periodic Fatou domain is said to be
parabolic if it contains no periodic points (in this case all its points converge to the
same parabolic periodic orbit which meets the boundary of the domain). Finally,
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an irrational neutral periodic point which belongs to JP is said to be a Cremer
(periodic) point .

The set U∞ is foliated by so-called (conformal) external rays Rα of arguments
α ∈ S1. By [DH85a], if the degree of P is d and σd : C → C is defined by
σd(z) = zd, then P (Rα) = Rσd(α). Denote by C∗ the set of all preimages of critical

points in U∞(JP ) (C∗ = ∅ if JP is connected). If JP is connected, each α ∈ S1
corresponds to a unique external ray and all external rays are smooth and pairwise
disjoint. In general Rα is smooth and unique if and only if Rα ∩ C∗ = ∅. Other
external rays are one-sided limits of smooth rays; it follows that they are non-
smooth and there are at most countably many of them (in fact, for each α ∈ S1
there exist at most two external rays R±

α with argument α and each is a one sided
limit of smooth external rays, see [LP96] for further details).

It is known that two distinct external rays are not homotopic in the complement
of KP (with the landing point fixed under the homotopies). Given an external ray
Rα of KP , we denote by Π(Rα) = Rα \Rα the principal continuum of Rα. Given a
setR of external rays, we extend the above notation by setting Π(R) =

∪
R∈R Π(R).

Now we are ready to give the following technical definition (see Figure 7.4 for an
illustration).

Definition 5.5.1 (General puzzle-piece). Let P : C → C be a polynomial.
Let X ⊂ KP be a non-separating subcontinuum or a point such that the following
holds.

(1) There existsm ≥ 0 andm pairwise disjoint non-separating continua/points
E1 ⊂ X, . . . , Em ⊂ X.

(2) There exist m finite sets of external rays A1 = {Ra1
1
, . . . , Ra1

i1
}, . . . , Am =

{Ram
1
, . . . , Ram

im
} with ik ≥ 2, 1 ≤ k ≤ m.

(3) We have Π(Aj) ⊂ Ej (so the set Ej ∪ (∪ij
k=1Raj

k
) = E′

j is closed and

connected).
(4) X intersects a unique component CX of C \ ∪E′

j .
(5) For each Fatou domain U either U ∩X = ∅ or U ⊂ X.

We call such X a general puzzle-piece and call the continua Ei the exit continua
of X. For each k, the set E′

k divides the plane into ik open sets which we will call
wedges (at Ek); denote by Wk the wedge which contains X \ Ek (it is well-defined
by (4) above).

Note that if m = 0,
∪
E′

j = ∅ and CX = C; so, any non-separating continuum
in KP with the empty set of exit continua satisfying (5) is a general puzzle-piece.
Observe also, that there is a natural situation in which general puzzle-pieces can
occur. Suppose that JP is connected, conditions (1) - (3) are satisfied, and all
continua Ej are contained in JP while the continuum X is not yet defined. Suppose
that there exists a component C of C \

∪
E′

j such that the boundary of C meets
every Ej , 1 ≤ j ≤ m. Let X = (C ∩KP ) ∪ (

∪
Ej). Then it is easy to see that X is

a general puzzle-piece. However, our definition allows for a wider variety of general
puzzle-pieces (like, e.g., non-separating invariant subcontinua of JP ).

For convenience call a fixed point x of a polynomial P non-rotational if there is
a fixed external ray landing at x (it follows that each such point is either repelling
or parabolic). We are ready to state the main result of Section 7.5.
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Theorem 7.5.2. Let P be a polynomial with filled-in Julia set KP and let Y
be a non-degenerate periodic component of KP such that P p(Y ) = Y . Suppose
that X ⊂ Y is a non-degenerate general puzzle-piece with m ≥ 0 exit continua
E1, . . . , Em such that P p(X) ∩ CX ⊂ X and either P p(Ei) ⊂ Wi, or Ei is a P p-
fixed point. Then at least one of the following claims holds:

(1) X contains a P p-invariant parabolic domain,
(2) X contains a P p-fixed point which is neither repelling nor parabolic, or
(3) X has an external ray R landing at a repelling or parabolic P p-fixed

point such that P p(R) ∩R = ∅ (i.e., P p locally rotates at some parabolic
or repelling P p-fixed point).

Equivalently, suppose that Y is a non-degenerate periodic component of KP

such that P p(Y ) = Y , X ⊂ Y is a general puzzle-piece with m ≥ 0 exit continua
E1, . . . , Em such that P p(X)∩CX ⊂ X and either P p(Ei) ⊂Wi, or Ei is a P

p-fixed
point; if, moreover, X contains only non-rotational P p-fixed points and does not
contain P p-invariant parabolic domains, then it is degenerate.

We also prove in Corollary 7.5.4 that an impression of an invariant external
ray, to the filled in Julia set, which contains only repelling or parabolic periodic
points is degenerate.
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Outchannels and their properties

6.1. Outchannels

In this section we will always let f : C → C be a continuous function. Suppose
that X is a minimal continuum such that f(X) ⊂ T (X) and f has no fixed point
in T (X). We show that X has at least one negative outchannel. We will always
assume that (f,X, η) satisfies the standing hypothesis (see Definition 5.1.1 and
the paragraph preceding 5.1.1) and see Section 4.4.1 for the notation T (X)±δ ). In
particular, f is fixed point free on T (X)η. Note that for each KP-chord g in T (X)η,
var(f,g, T (X)) = var(f,g) is defined.

Lemma 6.1.1. Suppose that (f,X, η) satisfy the standing hypothesis and δ ≤ η.
Let Z ∈ {T (X)+δ , T (X)−δ }. Fix a Riemann map φ : D∞ → C∞ \ Z such that
φ(∞) = ∞. Suppose Rt lands at x ∈ ∂Z. Then there is an open intervalM ⊂ ∂D∞

containing t such that φ can be extended continuously over M .

Proof. Suppose that Z = T (X)−δ and Rt lands on x ∈ ∂Z. By proposi-
tion 4.4.11 we may assume that x ∈ X. Note first that the family of chords in
KP−

δ form a closed subset of the hyperspace of C \ X, by Proposition 4.4.1. By
symmetry, it suffices to show that we can extend ψ over an interval [t′, t] ⊂ S1 for
t′ < t.

Let ϕ : D∞ → C \ T (X) be the Riemann map for T (X). Then there exists
s ∈ S1 so that the external ray Rs of C \ T (X) lands at x. Suppose first that there
exists a chord g ∈ KP−

δ such that G = φ−1(g) has endpoints s′ and s with s′ < s.

Since KP−
δ is closed, there exists a minimal s” ≤ s′ < s such that there exists a

chord h ∈ KP−
δ so that H = φ−1(h) has endpoints s” and s. Then h ⊂ ∂Z and ϕ

can be extended over an interval [t′, t] for some t′ < t, by Proposition 4.4.11 (4).
Suppose next that no such chord g exists. Choose a junction Jx for T (X)−δ

and a neighborhood W of x such that f(W )∩ [W ∪Jx] = ∅. We will first show that
there exists ν ≤ δ such that x ∈ ∂T (X)ν . For suppose that this is not the case.
Then there exists a sequence gi ∈ KP of chords such that x ∈ Sh(gi+1) ⊂ Sh(gi),
limgi = x and var(f,gi) > 0 for all i. This contradicts Proposition 4.4.6. Hence
x ∈ ∂T (X)ν for some ν > 0. We may assume that ν is so small that any chord of
KPν with endpoint x is contained in W .

By Proposition 4.4.12, the boundary of T (X)ν is a simple closed curve S which
must contain x. If there exists a chord h ∈ KPν with endpoint x such that H has
endpoints s′ and s with s′ < s then, since h ⊂ W , f(h) ∩ Jx = ∅, var(f,h) = 0
and h ∈ KP−

δ , a contradiction. Similarly, all chords h close to x in S so that H
has endpoints less than s and which are contained in W have var(f,h) = 0 by
Proposition 4.4.6. Hence a small interval [x′, x] ⊂ S, in the counterclockwise order
on S is contained in T (X)−ν . It now follows easily that a similar arc exists in the
boundary of T (X)−δ and the desired result follows. �

55
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Figure 6.1. The strip S from Lemma 6.1.2

By a narrow strip we mean the image of an embedding h : {(x, y) ∈ C | x ≥
0 and − 1 < y < 1} → C such that h has a continuous extension over the closure
of its domain and limx→∞ diam(h({x} × [−1, 1])) = 0.

Lemma 6.1.2. Suppose that (f,X, η) satisfy the standing hypothesis. If there
is a chord g ⊂ T (X)η of T (X) of negative (respectively, positive) variation, such
that there is no fixed point in T (T (X) ∪ g), then there is a negative (respectively,
positive) geometric outchannel Et of T (X) starting at g.

Moreover, if Et is a positive (negative) geometric outchannel starting at the
KP-chord g, and S =

∪
{convH(B ∩ T (X)) | convH(B ∩ T (X)) ⊂ T (X)η ∩

Sh(g) and a chord in convH(B ∩ T (X)) crosses Rt essentially}. Then S is an in-
finite narrow strip in the plane whose remainder is contained in T (X) and which is
bordered by a KP-chord and two halflines H1 and H2 (see figure 6.1).

Proof. Without loss of generality, assume var(f,g, T (X)) = var(f,g) < 0.
If g is such that for any chord h ⊂ T (X ∪ g), h ⊂ T (X)η, put g′ = g. Oth-
erwise consider the boundary of T (X)δ (δ < η) which is locally connected by
Proposition 4.4.12 and, hence, a Carathéodory loop. Then a continuous extension
g : S1 → ∂T (X)δ of the Riemann map ϕ : D∞ → C∞ \ T (X)δ exists. Whence the

boundary of T (X)δ contains a sub-path A = g([a, b]), which is contained in Sh(g),
whose endpoints coincide with the endpoints of g. Note that for each component C
of A \X, var(f, C) is defined. Then it follows from Proposition 3.4.4, applied to a
Carathéodory path, that there exists a component C = g′ such that var(f,g′) < 0.
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Note that g′ is a KP-chord contained in the boundary of T (X)δ. By taking δ

sufficiently small we can assume that for any chord h ⊂ Sh(g′), h ⊂ T (X)η.
To see that a geometric outchannel, starting with g′ exists, note that for any

chord g′′ ⊂ Sh(g′) with var(f,g′′, X) < 0, if g′′ = limgi, then there exists i
such that for any chord h which separates gi and g′′ in U∞(X), var(f,h, X) =
var(f,g′′, X) < 0. This follows since f(g) is close to f(h) and, hence, crosses a
junction Jv in the same way (we can slightly change the junction Jv with v ∈ g′′

to a junction with vertex in h without changing the crossings of the images of
the crosscuts with the junction). If g′′ is isolated on the side closest to X, then
g′′ ⊂ convH(B ∩ T (X)), where convH(B ∩ T (X)) is a gap, such that g′′ separates
convH(B ∩ T (X)) \ g′′ from infinity in U∞(X). Again by Proposition 3.4.4, there
exists h ̸= g′′ in convH(B∩T (X)) such that g′′ separates h from infinity in U∞(X)
and var(f,h, X) < 0. It follows from these two facts that there exists a maximal
family of KP crosscuts, all of which have negative variation and are such that
that for any three members of the family, one separates the other two in U∞(X).
Hence this maximal family determines a geometric outchannel. Each chord h in
this family corresponds to a unique maximal ball Bh. It is now not difficult to see
that the union of all the sets convH(Bh ∩ T (X)) is a narrow strip. �

6.1.1. Invariant Channel in X. We are now in a position to prove Bell’s
principal result on any possible counter-example to the fixed point property, under
our standing hypothesis.

Lemma 6.1.3. Suppose Et is a geometric outchannel of T (X) under f . Then
the principal continuum Pr(Et) of Et is invariant under f . So Pr(Et) = X.

Proof. Let x ∈ Pr(Et). Then for some chain {gi}∞i=1 of crosscuts defining
Et selected from KPδ, we may suppose gi → x ∈ ∂T (X) (by Lemma 4.4.8) and
var(f,gi, X) ̸= 0 for each i. The external ray Rt meets all gi and there is, for
each i, a junction from gi which “parallels” Rt. Since var(f,gi, X) ̸= 0, each f(gi)
intersects Rt. Since diam(f(gi)) → 0, we have f(gi) → f(x) and f(x) ∈ Pr(Et).
We conclude that Pr(Et) is invariant. �

Theorem 6.1.4 (Dense channel, Bell). If (X, f, η) satisfy our standing hypoth-
esis then T (X) contains a negative geometric outchannel; hence, ∂U∞ = ∂T (X) =
X = f(X) is an indecomposable continuum.

Proof. By Lemma 4.4.12 ∂T (X)η is a Carathéodory loop. Since f is fixed
point free on T (X)η, ind(f, ∂T (X)η) = 0. Consequently, by Theorem 3.2.2 for
Carathéodory loops, var(f, ∂T (X)η) = −1. By the summability of variation on
∂T (X)η, it follows that on some chord g ⊂ ∂T (X)η, var(f,g, T (X)) < 0. By
Lemma 6.1.2, there is a negative geometric outchannel Et starting at g.

Since Pr(Et) is invariant under f by Lemma 6.1.3, it follows that Pr(Et) is an
invariant subcontinuum of ∂U∞ ⊂ ∂T (X) ⊂ X. So by the minimality condition in
our Standing Hypothesis, Pr(Et) is dense in X. It then follows from a theorem of
Rutt [Rut35] that X is an indecomposable continuum. �

Theorem 6.1.5. Assume that (X, f, η) satisfy our standing hypothesis and
δ ≤ η. Then the boundary of T (X)δ is a simple closed curve. The set of accessible
points in the boundary of each of T (X)+δ and T (X)−δ is an at most countable union
of pairwise disjoint continuous one-to-one images of R.



58 6. OUTCHANNELS AND THEIR PROPERTIES

Proof. By Theorem 6.1.4, X is indecomposable, so it has no cut points. By
Proposition 4.4.12, ∂T (X)δ is a Carathéodory loop. Since X has no cut points,
neither does T (X)δ. A Carathéodory loop without cut points is a simple closed
curve.

Let Z ∈ {T (X)+δ , T (X)−δ } with δ ≤ η. Fix a Riemann map ϕ : D∞ → C∞ \ Z
such that ϕ(∞) = ∞. Corresponding to the choice of Z, let W ∈ {KP+

δ ,KP−
δ }.

Apply Lemma 6.1.1 and find the maximal collection J of disjoint open subarcs of
∂D∞ over which ϕ can be extended continuously. The collection J is countable.
Since X has no cutpoints the extension is one-to-one over ∪J . Since angles that
correspond to accessible points are dense in ∂D∞, so is ∪J . If Z = T (X)+δ , then
it is possible that ∪J is all of ∂D∞ except one point, but it cannot be all of ∂D∞

since there is at least one negative geometric outchannel by Theorem 6.1.4. �

Theorem 6.1.5 still leaves open the possibility that Z ∈ {T (X)+δ , T (X)−δ } has
a very complicated boundary. The set C = ∂D∞ \ ∪J is compact and zero-
dimensional. Note that ϕ is discontinuous at points in C. We may call C the
set of outchannels of Z. In principle, there could be an uncountable set of outchan-
nels, each dense in X. The one-to-one continuous images of half lines in R lying in
∂Z are the “sides” of the outchannels. If two elements J1 and J2 of the collection
J happen to share a common endpoint t, then the prime end Et is an outchannel
in Z, dense in X, with images of half lines ϕ(J1) and ϕ(J2) as its sides. It seems
possible that an endpoint t of J ∈ J might have a sequence of elements Ji from J
converging to it. Then the outchannel Et would have only one (continuous) “side.”
Such exotic possibilities are eliminated in the next section.

In the proposition below we summarize several of the results in this section
and show that an arc component K of the set of accessible points of the boundary
of T (X)−δ is efficient in connecting close points in K. Note that it will follow
later from Theorem 6.2.1 that there are no chords of positive variation. Hence
T (X)−δ = T (X)δ which is always a simple closed curve.

Proposition 6.1.6. Suppose that (X, f, η) satisfy our standing hypothesis,
that the boundary of T (X)−δ is not a simple closed curve, δ ≤ η and that K is an

arc component of the boundary of T (X)−δ so that K contains an accessible point.

Let φ : D∞ → C∞ \ T (X)−δ be a conformal map such that φ(∞) = ∞. Then:

(1) φ extends continuously and injectively to a map φ̃ : D̃∞ → Ũ∞, where

D̃∞ \D∞ is a dense and open subset of S1 which contains K in its image.
Let φ̃−1(K) = (t′, t) ⊂ S1 with t′ < t in the counterclockwise order on S1.
Hence φ̃ induces an order < on K. If x < y ∈ K, we denote by ⟨x, y⟩ the
subarc of K from x to y and by ⟨x,∞⟩ = ∪y>x⟨x, y⟩.

(2) Et and Et′ are positive geometric outchannels of T (X).
(3) Let Rt be the external ray of T (X)−δ with argument t. There exists s ∈ Rt,

B ∈ B∞ and g ∈ KP such that s ∈ g ⊂ convH(B ∩X) and s is the last
point of Rt in convH(B ∩X) (from ∞), g crosses Rt essentially and for
each B′ ∈ B∞ with convH(B′ ∩X) \X ⊂ Sh(g), diam(B′) < δ.

(4) There exists x̂ ∈ K such that if B′ ∈ B∞ with int(B′) ⊂ Sh(g), then
convH(B′ ∩X) ∩ ⟨x̂,∞⟩ is a compact ordered subset of K so that if C is
KP-crosscut in the boundary of convH(B′ ∩X) with both endpoint in K,
then C ⊂ K.
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(5) Let B∞
t ⊂ B∞ be the collection of all B ∈ B∞ such that Rt crosses a

chord in the boundary of convH(B ∩X) essentially and int(B) ⊂ Sh(g).
Then S =

∪
B∈B∞

t
convH(B ∩X) is a narrow strip in the plane, bordered

by two halflines H1 and H2, which compactifies on X and one of H1 or
H2 contains the set ⟨x̂′,∞⟩ for some x̂′ ∈ K.
In particular, if max(x̂, x̂′) < p < q and diam(⟨p, q⟩) > 2δ, then there
exists a chord g ∈ KP such that one endpoint of g is in ⟨p, q⟩ and g
crosses Rt essentially.

An analogous conclusion holds for T (X)+δ since its boundary cannot be a simple
closed curve (clearly T (X)δ must contain a crosscut of negative variation).

Proof. By Proposition 4.4.11 and Theorem 6.1.5, and its proof, φ extends
continuously and injectively to a map φ̃ : D̃∞ → Ũ∞ and (1) holds.

By Lemma 6.1.1, the external ray Rt does not land. Hence there exist a chain
gi of KPδ chords which define the prime end Et. If for any i var(f,gi) ≤ 0, then
gi ⊂ T (X)−δ a contradiction with the definition of t. Hence var(f,gi) > 0 for
all i sufficiently small and Et is a positive geometric outchannel by the proof of
Lemma 6.1.2. Hence (2) holds.

The proof of (3) is straightforward and is left to the reader.
Suppose that the endpoints of g are e and f with f ∈ K. Choose x̂ > f in K

so that x̂ is the endpoint of a KP crosscut which is contained in convH(B∩X) with
B ⊂ Sh(g). Let B′ ∈ B∞ with int(B′) ⊂ Sh(g), x̂ ̸∈ B′ and ⟨x̂,∞⟩\convH(B′∩X)
not connected. Suppose ⟨a, b⟩ is a bounded component of ⟨x̂,∞⟩ \ convH(B′ ∩X)
with endpoints in B′. Note that there must exist a chord h ∈ KP with endpoints
a and b. If var(f,h) ≤ 0 we are done. Hence var(f,h) > 0. By Lemma 6.1.2, there
is a geometric outchannel Et” starting at h. This outchannel disconnects the arc
⟨a, b⟩ between a and b, a contradiction. Hence (4) holds.

Next choose x̂′ ∈ K such that each point of ⟨x̂′,∞⟩ is accessible from Sh(g).
Then each subarc ⟨p, q⟩ of ⟨x̂,∞⟩ of diameter bigger than 2δ cannot be contained
in a single element of the KPP partition. Hence there exists a KP-chord g which
crosses Rt essentially and has one endpoint in ⟨p, q⟩.

Note that for each chord h ⊂ Sh(g) which crosses Rt essentially, var(f,h) > 0.
By Lemma 6.1.2,

∪
B∈B∞

t
convH(B ∩ X) is a strip in the plane, bordered by two

halflines H1, H2, which compactify on X. These two halflines, consist of chords in
KPδ and points inX, one of which, sayH1 meets ⟨x̂′,∞⟩. If ⟨x̂′,∞⟩ is not contained
in H1 then, as in the proof of (4), there exists a chord h ⊂ H1 with var(f,h) > 0
joining two points of x, y ∈ ⟨x̂,∞⟩. As above this leads to a contradiction and the
proof is complete. �

6.2. Uniqueness of the Outchannel

Theorem 6.1.4 asserts the existence of at least one negative geometric outchan-
nel which is dense inX. We show below that there is exactly one geometric outchan-
nel, and that its variation is −1. Of course, X could have other dense channels,
but they are “neutral” as far as variation is concerned.

Theorem 6.2.1 (Unique Outchannel). If (X, f, η) satisfy the standing hypoth-
esis then there exists a unique geometric outchannel Et for X, which is dense in
X = ∂T (X). Moreover, for any sufficiently small chord g in any chain defining Et,
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Figure 6.2. Uniqueness of the negative outchannel.

var(f,g, X) = −1, and for any sufficiently small chord g′ not crossing Rt essentially,
var(f,g′, X) = 0.

Proof. Suppose by way of contradiction that X has a positive outchannel.
Let 0 < δ ≤ η such that if M ⊂ T (B(T (X), 2δ)) with diam(M) < 2δ, then
f(M) ∩M = ∅. Since X has a positive outchannel, ∂T (X)−δ is not a simple closed

curve. By Theorem 6.1.5 ∂T (X)−δ contains an arc component K which is the one-
to-one continuous image of R. Note that each point of K is accessible.

Let φ : D∞ → V∞ = C \ T (X)−δ a conformal map. By Proposition 6.1.6, φ

extends continuously and injectively to a map φ̃ : D̃∞ → Ṽ∞, where D̃∞ \ D∞ is
a dense and open subset of S1 which contains K in its image. Then φ̃−1(K) =
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(t′, t) ⊂ S1 is an open arc with t′ < t in the counterclockwise order on S1 (it could
be that (t′, t) = S1 \ {t} and t = t′). By abuse of notation, let < denote the order
in K induced by φ̃ and for x < y in K, denote the arc in K with endpoints x and
y by ⟨x, y⟩. For x ∈ K, let ⟨x,∞⟩ = ∪y>x⟨x, y⟩

Let Et be the prime-end corresponding to t. By Proposition 6.1.6, Pr(Et) is a
positive geometric outchannel and, hence, by Lemma 6.1.3, Pr(Et) = X. Let Rt =
φ(reit), r > 1, be the external conformal ray corresponding to the prime-end Et of
T (X)−δ . Since Rt\Rt = X and the small chords gx which define Pr(Et) have at least
one endpoint in K, cross Rt essentially at x and have diameter going to zero if the
endpoint inK moves in the positive direction alongK, it follows thatX = Rt\Rt =

⟨x,∞⟩ \ ⟨x,∞⟩.
By Proposition 6.1.6, there is s ∈ Rt such that if B ∈ B∞ such that convH(B∩

X)∩ [(X, s)-end of Rt] ̸= ∅, then diam(B) < δ/2. Let B∞
t = {B ∈ B∞ | convH(B∩

X) contains a chord g such that g crosses the (X, s)-end of Rt essentially}.
By Proposition 6.1.6 there exists x̂ ∈ K ∩X such that for each arc A ⊂ ⟨x̂,∞⟩

with diameter > 2δ, there is a KP-chord g which contains a point of A as an
endpoint and crosses Rt essentially.

Let a0 ∈ K ∩X so that a0 > x̂ and Ja0 is a junction of T (X)−δ . Let W be an
open disk, with simple closed curve boundary, about a0 such that diam(W ) < δ/4
and f(W ) ∩ [W ∪ Ja0 ] = ∅. Let a < a0 < b in K ∩ ∂W such that ⟨a, b⟩ is the
component of K ∩ W which contains a0. We may suppose that ⟨b,∞⟩ ∩ W is
contained in one component of W \ ⟨a, b⟩ since one side of K is accessible from
C \ T (X)−δ and a0 ∈ X. If a ∈ X, let p = a. If not, then there exists a KP-chord
h ⊂ K such that a ∈ h. Let p be the endpoint of h such that p < a. See Figure 6.2.

Since X ⊂ ⟨x,∞⟩ there are components of ⟨b,∞⟩ ∩W which are arbitrarily
close to a0. Choose b < c < d in K so that the ⟨c, d⟩ is the closure of a component
of W ∩ ⟨b,∞⟩ such that:

(1) a and d lie in the same component of ∂W \ {b, c}.
(2) There exists z ∈ ⟨c, d⟩∩X∩W and an arc I ⊂ {a0, z}∪ [W \⟨p, d⟩] joining

a0 to z.
(3) There is a KP-chord g ⊂ W with z and y as endpoints which crosses Rt

essentially. Hence, var(f,g) > 0.
(4) diam(f(g)) < d(J+

a0
\W,J i

a0
\W ).

Conditions (1) and (2) follow because Ja0 is a connected and closed set from a0
to ∞ in {a0}∪[C\T (X)−δ ] and the ray ⟨b,∞⟩ approaches both a0 and p. Conditions
(3) and (4) follow from Proposition 6.1.6. If d ∈ X, put q = d. Otherwise, let
q ∈ ⟨d,∞⟩ such that there is a KP-chord h ⊂ K containing d with endpoint q.

By Corollary 3.4.2, there exists a bumping arc A′ of T (X) from p to q such that
variation is defined on each component of A′ \X, S′ = A′ ∪ ⟨p, q⟩ is a simple closed
curve with T (X) ⊂ T (S′) and f is fixed point free on T (S′). Since g ∩X = {z, y},
we may assume that A′ ∩ g = {y}. Let C be the arc in ∂W from a to d disjoint
from b. The arc A′ may enter W and intersect I several times. However, in this
case A′ must enter W through C. Since we want to apply the Lollipop lemma, we
will modify the arc A′ to a new arc A which is disjoint from I.

Let A be the set of points in A′ ∪ C accessible from ∞ in C \ [S′ ∪ C]. Then
A is a bumping arc from p to q, A ∩ I = ∅, var(f,A) is defined, S = A ∪ ⟨p, q⟩ is
a simple closed curve with T (X) ⊂ T (S) and f is fixed point free on T (S). Note
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that y ∈ A. Then the Lollipop lemma applies to S with R = T (⟨a0, z⟩ ∪ I) and
L = T (I ∪ ⟨z, q⟩ ∪A ∪ ⟨p, a0⟩).

Claim: f(z) ∈ R. Hence by Corollary 3.3.2, ⟨a0, z⟩ contains a chord g1 with
var(f,g1) < 0.

Proof of Claim. Note that the positive direction along g is from z to y. Since
z, y ∈ X, {f(z), f(y)} ⊂ X ⊂ T (S) = R ∪ L. Choose a junction Jz such that
Ja0 \W ⊂ Jz and Jz runs close to ⟨a0, z⟩ on its way to g. In particular we may
assume that Jz ∩ R = {z}. Since g crosses Rt essentially, var(f,g) > 0. For
∗ ∈ {−, i,+}, let C∗

z be the union of components of J∗
z \W which are disjoint from

J∗
a0
. Then Ci

z separates R ∪ C+
z from L ∪ C−

z in C \ W (see figure 6.2). Since
f(g) ∩ Ja0 = ∅, if f(z) ̸∈ R, var(f,g) ≤ 0, a contradiction. Hence f(z) ∈ R (and,
in fact, f(y) ∈ L) as desired.

Since f(z) ∈ R, ⟨a0, z⟩ contains a chord g1 with var(f,g1) < 0. Repeating the
same argument, replacing a0 by z we obtain a second chord g2 contained in ⟨z,∞⟩
such that var(f,g2) < 0.

We will now show that the existence of two distinct chords g1 and g2 in K with
variation < 0 on each leads to a contradiction. Recall that a0 ∈ ⟨b,∞⟩. Hence we
can find y′ ∈ ⟨b,∞⟩ with y′ ∈ X such that g1∪g2 ⊂ ⟨a0, y′⟩ and there exists a small
arc I ′ ⊂W such that I ′∩⟨a0, y′⟩ = {a0, y′}. Since f(I ′)∩Ja0 = ∅, var(f, I ′) = 0. We
may also assume that f is fixed point free on T (S′′), where S′′ = I ′∪⟨a0, y′⟩. Since
⟨a0, y′⟩ contains both g1, g2 and no chords of positive variation, var(f, ⟨a0, y′⟩) ≤ −2
and var(f, S′′) ≤ −2. Then ind(f, S′′) = var(f, S′′) + 1 ≤ −1 a contradiction with
Theorem 3.1.4. Hence X has no positive geometric outchannel.

By Theorems 6.1.4 and 3.2.2, X has exactly one negative outchannel and its
variation is −1. �

Note that the following Theorem follows from Lemma 6.1.6 and Theorem 6.2.1.

Theorem 6.2.2. Suppose that X is a minimal counterexample to the Plane
Fixed Point Problem. Then there exists δ > 0 such that the continuum Y = T (X)+δ
is a non-separating continuum, f is fixed point free on Y and all accessible points of
Y are contained in one arc component K of the boundary of Y . In other words, Y
is homeomorphic to a disk with exactly one channel removed which corresponds to
the unique geometric outchannel of variation −1 of X. This channel compactifies
on X. The sides of this channel are halflines consisting entirely of chords of zero
variation and points in X. There exist arbitrarily small homeomorphisms of tails
of these halflines to a tail of Rt which is the external ray corresponding to this
channel.



CHAPTER 7

Fixed points

In this chapter we study fixed points in invariant and non-invariant continua
under positively oriented maps. We also obtain corollaries dealing with complex
polynomials (the applications of these corollaries to complex dynamics are described
in Chapter 1.)

7.1. Fixed points in invariant continua

In this section we will consider a positively oriented map of the plane. As we
shall see below, a straight forward application of the tools developed above will give
us the desired fixed point result. We will often assume, by way of contradiction,
that f : C → C is a positively oriented map, X is a plane continuum such that
f(X) ⊂ T (X) and T (X) contains no fixed points of f .

Lemma 7.1.1. Let f : C → C be a map and X ⊂ C a continuum such that
f(X) ⊂ T (X). Suppose C = (a, b) is a crosscut of the continuum T (X). Let
v ∈ (a, b) be a point and Jv be a junction such that Jv ∩ (X ∪ C) = {v}. Then
there exists an arc I such that S = I ∪ C is a simple closed curve, T (X) ⊂ T (S)
and f(I) ∩ Jv = ∅.

Proof. Since f(X) ⊂ T (X) and Jv ∩ X = 0, it is clear that there exists an
arc I with endpoints a and b sufficiently close to T (X) such that I ∪C is a simple
closed curve, T (X) ⊂ T (I ∪ C) and f(I) ∩ Jv = ∅. This completes the proof. �

Corollary 7.1.2. Suppose X ⊂ C is a continuum, f : C → C a positively
oriented map such that f(X) ⊂ T (X). Then for each crosscut C of T (X) such that
f(C) ∩ C = ∅, var(f, C) ≥ 0

Proof. Suppose that C = (a, b) is a crosscut of T (X) such that f(C)∩C = ∅
and var(f, C) ̸= 0. Choose a junction Jv such that Jv∩(X∪C) = {v} and v ∈ C\X.
By Lemma 7.1.1, there exists an arc I such that S = I ∪C is a simple closed curve
and f(I)∩ Jv = ∅. Moreover, by choosing I sufficiently close to X, we may assume
that v ∈ C \ f(S). Hence var(f, C) = Win(f, S, v) ≥ 0 by the remark following
Definition 2.2.2. �

Theorem 7.1.3. Suppose f : C → C is a positively oriented map and X is a
continuum such that f(X) ⊂ T (X). Then there exists a point x0 ∈ T (X) such that
f(x0) = x0.

Proof. Suppose we are given a continuum X and f : C → C a positively
oriented map such that f(X) ⊂ T (X). Assume that f |T (X) is fixed point free.
Choose a simple closed curve S such that X ⊂ T (S) and points a0 < a1 < . . . < an
in S ∩X such that for each i Ci = (ai, ai+1) is a sufficiently small crosscut of X,
f(Ci) ∩ Ci = ∅ and f |T (S) is fixed point free. By Corollary 7.1.2, var(f, Ci) ≥ 0

63
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for each i. Hence by Theorem 3.2.2, ind(f, S) =
∑

var(f, Ci) + 1 ≥ 1. This
contradiction with Theorem 3.1.4 completes the proof. �

Corollary 7.1.4. Suppose f : C → C is a perfect, oriented map and X is a
continuum such that f(X) ⊂ T (X). Then there exists a point x0 ∈ T (X) of period
at most 2.

Proof. By Theorem 3.7.4, f is either positively or negatively oriented. In
either case, the second iterate f2 is positively oriented and must have a fixed point
in T (X) by Theorem 7.1.3. �

7.2. Dendrites

Here we generalize Theorem 1.0.2 on the existence of fixed points in invariant
dendrites to non-invariant dendrites. We also show that in certain cases the den-
drite must contain infinitely many periodic cutpoints. Given two points a, b of a
dendrite we denote by [a, b], (a, b], [a, b), (a, b) the unique closed, semi-open and open
arcs connecting a and b in the dendrite. Unless specified otherwise, the situation
considered in this subsection is as follows: D1 ⊂ D2 are dendrites and f : D1 → D2

is a continuous map. Set E = D2 \D1 ∩D1. In other words, E consists of points
at which D2 “grows” out of D1. Observe that more than one component of D2 \D1

may “grow” out of a point e ∈ E. We assume that D1 is non-degenerate.
As an important tool we will need the following retraction closely related to

the described above situation.

Definition 7.2.1. For each x ∈ D2 there exists a unique arc (possibly a point)
[x, dx] such that [x, dx]∩D1 = {dx}. Hence there exists a natural monotone retrac-
tion r : D2 → D1 defined by r(x) = dx, and the map g = gf = r ◦ f : D1 → D1 is a
continuous map of D1 into itself. We call the map r the natural retraction (of D2

onto D1) and the map g the retracted (version of) f .

The map g is designed to make D1 invariant so that Theorem 1.0.2 applies to g
and allows us to conclude that there are g-fixed points. Theorem 7.2.2 extends the
result for R claiming that if there are points a < b in R mapped by f in different
directions, then there exists a fixed point c ∈ (a, b) (see Introduction, Subsection
1.1). Let us recall the notion of the boundary scrambling property which is first
introduced in Definition 5.3.1.

Definition 5.3.1 (Boundary scrambling for dendrites). Suppose that f maps

a dendrite D1 to a dendrite D2 ⊃ D1. Put E = D2 \D1 ∩D1 (observe that E may
be infinite). If for each non-fixed point e ∈ E, f(e) is contained in a component
of D2 \ {e} which intersects D1, then we say that f has the boundary scrambling
property or that it scrambles the boundary. Observe that if D1 is invariant then f
automatically scrambles the boundary.

We are ready to prove the following theorem.

Theorem 7.2.2. The following claims hold.

(1) If a, b ∈ D1 are such that a separates f(a) from b and b separates f(b)
from a, then there exists a fixed point c ∈ (a, b). Thus, if e1 ̸= e2 ∈ E
are such that f(ei) belongs to a component of D2 \ {ei} disjoint from D1

then there is a fixed point c ∈ (e1, e2).
(2) If f scrambles the boundary, then f has a fixed point in D1.
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Observe, that the fixed points found in (1) are cutpoints of D1 (and hence of
D2).

Proof. (1) Set a0 = a. Then we find a sequence of points a−1, a−2, . . . in (a, b)
such that f(a−n−1) = a−n and a−n−1 separates a−n from b. Clearly, limn→∞ a−n =
c ∈ (a, b) is a fixed point as desired (by the assumptions c cannot be equal to b).
If there are two points e1 ̸= e2 ∈ E such that f(ei) belongs to a component of
D2 \ {ei} disjoint from D1 then the above applies to them.

(2) Assume that there are no f -fixed points e ∈ E. By Theorem 1.0.2 gf = g
has a fixed point p ∈ D1. It follows from the fact that f scrambles the boundary
that points of E are not g-fixed. Hence p /∈ E.

In general, a g-fixed point is not necessarily an f -fixed point. In fact, it follows
from the construction that if f(x) ̸= g(x), then f maps x to a point belonging to
a component of D2 \ D1 which “grows” out of D1 at r ◦ f(x) = g(x) ∈ E. Thus,
since g(p) = p but p ̸∈ E, then g(p) = f(p) = p. �

Remark 7.2.3. It follows from Theorem 7.2.2 that the only behavior of points
in E which does not force the existence of a fixed point in D1 is when one point
e ∈ E maps into a component of D2 \{e} disjoint from D1 whereas any other point
e′ ∈ E maps into the component of D2 \ {e′} which is not disjoint from D1.

Now we suggest conditions under which a map of a dendrite has infinitely many
periodic cutpoints; the result will then apply in cases related to complex dynamics.
Let us recall the notion of a weakly repelling periodic point which is first introduced
in Definition 5.3.2.

Definition 5.3.2 (Weakly repelling periodic points). In the situation of Defi-
nition 5.3.1, let a ∈ D1 be a fixed point and suppose that there exists a component
B of D1 \ {a} such that arbitrarily close to a in B there exist fixed cutpoints of D1

or points x separating a from f(x). Then we say that a is a weakly repelling fixed
point (of f in B). A periodic point a ∈ D1 is said to be simply weakly repelling
if there exists n and a component B of D1 \ {a} such that a is a weakly repelling
fixed point of fn in B.

Now we can prove Lemma 7.2.4.

Lemma 7.2.4. Let a be a fixed point of f and B be a component of D1 \ {a}.
Then the following two claims are equivalent:

(1) a is a weakly repelling fixed point for f in B;
(2) either there exists a sequence of fixed cutpoints of f |B , converging to a,

or, otherwise, there exists a point y ∈ B which separates a from f(y) such
that there are no fixed cutpoints in the component of B \ {y} containing
a in its closure (in the latter case for any z ∈ (a, y] the point z separates
f(z) from a and each backward orbit of y in (a, y] converges to a).

In particular, if a is a weakly repelling fixed point for f in B then a is a weakly
repelling fixed point for fn in B for any n ≥ 1.

Proof. Let us show that (2) implies (1). We may assume that there exists a
point y ∈ B which separates a from f(y) such that there are no fixed cutpoints in
the component W of B \ {y} containing a in its closure. Choose a point z ∈ (a, y).
Since there are no fixed cutpoints of f in W , Theorem 7.2.2(1) implies that f(z)
cannot be separated from y by z. Hence f(z) is separated from a by z, and a is
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weakly repelling for f in B. Moreover, we can take preimages of y in (a, y], then
take their preimages even closer to a, inductively. Any so constructed backward
orbit of y in (a, y] converges to a because it converges to a fixed point of f in [a, y]
and a is the only such fixed point.

Now, suppose that (1) holds. We may assume that there exists a neighborhood
U of a in B such that there are no fixed cutpoints of f in U . If a is weakly repelling
in B for f , we can choose a point y ∈ U so that y separates a from f(y) as desired.

It remains to prove the last claim of the lemma. Indeed, we may assume
that there is no sequence of fn-fixed cutpoints in B converging to a. Choose a
neighborhood U of a which contains no fn-fixed cutpoints in U ∩ B. By (2) we
can choose a point y ∈ U ∩ B such that y separates a from f(y) so that there is a
sequence of preimages of y under f which converges to a monotonically. Choosing
the n-th preimage z we will see that z separates a from fn(z) with other parts of
the second set of conditions of (2) also fulfilled. By the above a is weakly repelling
for fn in B as desired. �

Let B be a component of D1 \ {a} where a is fixed. Suppose that a is a weakly
repelling fixed point for f in B which is not a limit of fixed cutpoints of f in B.
Since the set of all vertices of D2 together with their images under f and powers of
f is countable (see Theorem 10.23 [Nad92]), we can choose y from Lemma 7.2.4 so
that y and all cutpoints x in its backward orbit have valD2(x) = 2. From now on to
each fixed point a which is weakly repelling for f in a component B of D1 \{a}, but
is not a limit point of fixed cutpoints in B, we associate a point xa ∈ B of valence
2 in D2 separating a from f(xa) and such that all cutpoints in the backward orbit
of xa are of valence 2 in D2. We also associate to a a semi-neighborhood Ua of a
in B which is the component of B \ {xa} containing a. We choose xa so close to a
that the diameter of Ua is less than one third of the diameter of B.

The next lemma shows that in some cases a fixed point p from Theorem 7.2.2(2)
can be chosen to be a cutpoint of D1. Recall that an endpoint of a continuum X
is a point a such that the number valX(a) of components of X \ {a} equals 1.

Lemma 7.2.5. Suppose that f scrambles the boundary. Then either there is
a fixed point of f which is a cutpoint of D1, or, otherwise, there exists a fixed
endpoint a of D1 such that if Ca is the component of D2 \ {a} containing D1 \ {a},
then a is not weakly repelling for f in Ca.

Proof. Suppose that f has no fixed cutpoints. By Theorem 7.2.2(2), the set
of fixed points of f is not empty. Hence we may assume that all fixed points of f
are endpoints of D1 and, by way of contradiction, f is weakly repelling at any such
fixed point a in the component of D2 \ {a} containing D1 \ {a}. Suppose a and
b are distinct fixed points of f . Let us show that either Ua ⊂ Ub, or Ub ⊂ Ua, or
Ua ∩ Ub = ∅. Set diam(D1) = ε.

Recall that xa, xb are cutpoints of D2 of valence 2. Now, first we assume that
b ∈ Ua. If xb ̸∈ Ua, then Ua ⊂ Ub as desired. Suppose that xb ∈ Ua. We will
show that xb ∈ (b, xa]. Indeed, otherwise Ub would contain the component Q of
D1 \ {xa}, not containing a. However, by the choice of the size of Ua we see that
diam(Q) ≥ 2ε/3 and therefore diam(Ub) ≥ 2ε/3, a contradiction with the choice of
the size of Ub. Hence xb ∈ (b, xa] which implies that Ub ⊂ Ua. Now assume that
b ̸∈ Ua and a ̸∈ Ub. Then it follows that xa, xb ∈ [a, b] and that the order of points
in [b, a] is b, xb, xa, a which implies that Ub ∩ Ua = ∅.
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Consider an open covering of the set of all fixed points a ∈ D1 by their neigh-
borhoods Ua and choose a finite subcover. By the above we may assume that
it consists of pairwise disjoint sets Ua1 , . . . , Uak

. Consider the component Q of
D1 \ {xa1 , . . . , xak

} whose endpoints are the points xa1 , . . . , xak
and perhaps some

endpoints of D1. Then f |Q is fixed point free. On the other hand, f |D1 scrambles
the boundary, and hence it is easy to see that f |Q, with Q considered as a subden-
drite of D2, scrambles the boundary too, a contradiction with Theorem 7.2.2. �

Lemma 7.2.5 is helpful in the next theorem.

Theorem 7.2.6. Let D be a dendrite. Suppose that f : D → D is continuous
and all its periodic points are weakly repelling. Then f has infinitely many periodic
cutpoints.

Proof. By way of contradiction we assume that there are finitely many peri-
odic cutpoints of f . Let us show that each endpoint b of D with f(b) = b is a weakly
repelling fixed point for f . Since the only component of D \ {b} is D \ {b}, we will
not be mentioning this component anymore. By the assumptions of the Theorem
b is weakly repelling for some power fm with m ≥ 1. Then by Lemma 7.2.4 and
by the assumption we can choose a point x ̸= b such that (1) x is not a vertex or
endpoint of D, (2) for each point z ∈ (b, x] we have that z separates b from fm(z),
and (3) the component U of D \ {x} containing b, contains no periodic cutpoints.

On the other hand, by way of contradiction we assume that b is not weakly
repelling for f . Then, again by Lemma 7.2.4, no point z ∈ (b, x] is such that z
separates b from f(z). The idea is to use this in order to find a point y ∈ (b, x]
which does not separate b from fm(y), a contradiction. To find y we apply the
following construction. First, observe that there exists a point d1 ∈ (b, x) such that
f([b, x]) ⊃ [b, f(x)] ⊃ [b, d1]. Let X1 = {z ∈ [b, x] | f(z) ∈ [b, x]} be the set of
points mapped into [b, x] by f . Then f(X1) ⊃ [b, d1] and all points of X1 map
towards b on [b, x]. We can apply the same observation to (b, d1] instead of (b, x].
In this way we obtain a point d2 ∈ [b, d1) and a set X2 = {z ∈ [b, d1] | f(z) ∈ X1}
such that [b, d2] ⊂ f2(X2) ⊂ [b, d1] and all points of f(X2) are mapped towards b
by f . Repeating this argument, we will find points of (b, x] mapped towards b and
staying on (b, x] for m steps in a row. This contradicts the previous paragraph and
proves that if b is weakly repelling for fm, then it is weakly repelling for f . Now
by Lemma 7.2.4 b is weakly repelling for fn for all n ≥ 1.

Let f have finitely many periodic cutpoints a1, . . . , ak of f . For each ai there
exists Ni such that ai is fixed for fNi and there exists a component Bi of D \ {ai}
such that ai is weakly repelling for fNi in Bi. Set N = N1 · · · · ·Nk. Then it follows
from Lemma 7.2.4 that each ai is fixed for fN and weakly repelling for fN in Bi.
Observe that, as we showed above, the endpoints of D which are fixed under fN

are in fact weakly repelling for fN . Without loss of generality we may use f for
fN in the rest of the proof.

Let A = ∪k
i=1a

i and let B be a component of D\A. Then B is a subdendrite of
D to which the above tools apply: D plays the role of D2, B plays the role of D1,
and E is exactly the boundary ∂B of B (by the construction ∂B ⊂ A). Suppose
that each point a ∈ ∂B is weakly repelling in B. Then all fixed points of f in B are
endpoints of B, and all of them are weakly repelling for f . Thus, by Lemma 7.2.5
there exists a fixed cutpoint in B, a contradiction. Hence for some a ∈ ∂B we
have that a is not weakly repelling in B \ {a}. By the assumption there exists a
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component, say, C ′, of D \ {a} disjoint from B such that a is weakly repelling in
C ′. Let C be the component of D \A non-disjoint from C ′ with a ∈ ∂C.

We can now apply the same argument to C. If all boundary points of C are
weakly repelling for f in C, then by Lemma 7.2.5 C will contain a fixed cutpoint, a
contradiction. Hence there exists a point d ∈ A such that d is not weakly repelling
for f in C and a component F of D\A whose closure meets C at d, and d is weakly
repelling in F . Note that B ∩F = ∅. Clearly, after finitely many steps this process
will have to end (recall, that D is a dendrite), ultimately leading to a component Z
of D \A such that all fixed points of f in Z are endpoints of Z at which f is weakly
repelling. Again, Lemma 7.2.5 applies to Z and there exists a fixed cutpoint in Z,
a contradiction. �

An important application of Theorem 7.2.6 is to dendritic topological Julia
sets. They can be defined as follows. Consider an equivalence relation ∼ on the
unit circle S1 ⊂ C. Equivalence classes of ∼ will be called (∼-)classes and will be
denoted by boldface letters. A ∼-class consisting of two points is called a leaf ; a
class consisting of at least three points is called a gap . Fix an integer d > 1 and
define the map σd : S1 → S1 by σd(z) = zd, where z is a complex number with
|z| = 1. Then the equivalence ∼ is said to be a (d-)invariant lamination (this is
more restrictive than Thurston’s definition in [Thu09]) if:
(E1) ∼ is closed : the graph of ∼ is a closed subset of S1 × S1;
(E2) ∼ defines a lamination, i.e., it is unlinked : if g1 and g2 are distinct ∼-classes,
then their convex hulls Ch(g1),Ch(g2) in the unit disk D are disjoint,
(D1) ∼ is forward invariant : for a ∼-class g, the set σd(g) is a ∼-class too
which implies that
(D2) ∼ is backward invariant : for a ∼-class g, its preimage σ−1

d (g) = {x ∈ S1 :
σd(x) ∈ g} is a union of ∼-classes;
(D3) for any gap g, the map σd|g : g → σd(g) is a map with positive orientation, i.e.,
for every connected component (s, t) of S1 \ g the arc (σd(s), σd(t)) is a connected
component of S1 \ σd(g).

The lamination in which all points of S1 are equivalent is said to be degen-
erate. It is easy to see that if a forward invariant lamination ∼ has a ∼-class
with non-empty interior then ∼ is degenerate. Hence equivalence classes of any
non-degenerate forward invariant lamination are totally disconnected.

Let ∼ define an invariant lamination. A ∼-class g is periodic if σn(g) = g for
some n ≥ 1. Let p : S1 → J∼ = S1/ ∼ be the quotient map of S1 onto its quotient
space J∼. We can extend the equivalence relation ∼ to an equivalence relation ≈
of the entire plane by defining x ≈ y if either x and y are contained in the convex
hull of one equivalence class of ∼, or x = y. Then the quotient map m : C → C/ ≈
is a monotone map whose point inverses are convex continua or points. Note that
p(S1) = S1/ ∼= m(D) = D/ ≈. Let f∼ : J∼ → J∼ be the map induced by σd. We
call J∼ a topological Julia set and the induced map f∼ a topological polynomial.
Recall that a branched covering map f : X → Y is a finite-to-one and open map
for which there exists a finite set F ⊂ Y such that f |X\f−1(F ) is a covering map.
Note that f∼ is a branched covering map, and in particular, f∼ has finitely many
critical points (i.e., points where f is not locally one-to-one). It is easy to see that
if g is a ∼-class then valJ∼(p(g)) = |g| where by |A| we denote the cardinality of a
set A.
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Theorem 7.2.7. Suppose that the topological Julia set J∼ is a dendrite and
f∼ : J∼ → J∼ is a topological polynomial. Then all periodic points of f∼ are
weakly repelling and f∼ has infinitely many periodic cutpoints.

Proof. Suppose that x is an f∼-fixed point and set g = p−1(x). Then σd(g) =
g. Suppose first, that x is an endpoint of J∼. Then g is a singleton. Choose
y ̸= x ∈ J∼. Then the unique arc [x, y] ⊂ J∼ contains points yk → x of valence 2
because there are no more than countably many vertices of J∼ (see Theorem 10.23
in [Nad92]). It follows that ∼-classes p−1(yk) are leaves separating g from the rest
of the circle and repelled from g under the action of σd which is expanding. Hence
f∼(yi) is separated from x by yi and so x is weakly repelling.

Suppose that x is not an endpoint. Choose a very small connected neighbor-
hood U of x. It is easy to see that each component A of U \ {x} corresponds to
a single non-degenerate chord ℓA in the boundary of the Euclidean convex hull,
Ch(g) = G, of g. Recall that S1 = R \ Z and that the endpoints aA and bA of ℓA
are points in S1. Denote by σd(ℓA) the chord with endpoints σd(aA) and σd(bA)
and by |ℓA| = min{|aA−bA|, 1−|aA−bA|}, the length of ℓA. Since f∼ is a branched
covering map, for each component A of U \ {x} there exists a unique component
B = h(A) of U \ {x} such that f∼(A) ∩B ̸= ∅. This defines a map h from the set
A of all components of U \ {x} to itself. It follows that for each chord ℓA ⊂ ∂G,
σd(ℓA) is a non-degenerate chord in ∂G.

Suppose that there exist ℓA ⊂ ∂G and n > 0 such that σn
d (ℓA) = ℓA. Then

it follows that the endpoints of ℓA are fixed under σ2n
d . Connect x to a point

y ∈ A with the arc [x, y], and choose, as in the first paragraph, a sequence of points
yk ∈ [x, y], yk → x of valence 2. Then again by the expanding properties of σ2n

d it
follows that f∼(yi) is separated from x by yi and so x is weakly repelling (for f2n∼
in A).

It remains to show that there must exist a component A of U \ {x} with
σn
d (ℓA) = ℓA for some n > 0. Clearly ∂G can contain at most finitely many

chords ℓA such that its length L(ℓA) ≥ 1/(2(d + 1)). If L(ℓ) < 1/(2(d + 1)), then
L(σd(ℓ)) = d · L(ℓ) (i.e. σd expands the length of small leaves by the factor d).

Since the family of chords in the boundary ofG is forward invariant and for each
chord ℓA with L(ℓA) < 1/(2(d + 1)), L(σd(ℓA)) = d · L(ℓA), such a periodic chord
must exist (since if this is not the case there must exist an infinite number of distinct
leaves in the boundary of G of length bigger than 1/(2(d+ 1)), a contradiction.

Hence all periodic points of f∼ are weakly repelling and by Theorem 7.2.6 f∼
has infinitely many periodic cutpoints. �

7.3. Non-invariant continua and positively oriented maps of the plane

In this subsection we will extend Theorem 7.1.3 and obtain a general fixed point
theorem which shows that if a non-separating plane continuum, not necessarily
invariant, maps in an appropriate way, then it contains a fixed point. However we
begin with Lemma 7.3.1 which gives a sufficient condition for the non-negativity of
the variation of an arc.

Lemma 7.3.1. Let f : C → C be positively oriented, X a continuum and
C = [a, b] a bumping arc of X such that f(a), f(b) ∈ X and f(C) ∩ C = ∅. Let
v ∈ C \ X, and let Jv be a junction at v ∈ C defined as in Definition 2.2.2. If
there exists a continuum K disjoint from Jv such that C is a bumping arc of K
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and f(K) ∩ Jv ⊂ {v} (e.g., K can be a subcontinuum of X with a, b ∈ K), then
var(f, C) ≥ 0.

Proof. Consider two cases. First, let f(K) ∩ Jv = ∅. Choose an arc I very
close to K so that S = I ∪ C is a bumping simple closed curve around K and by
continuity f(I)∩Jv = ∅. Then v ̸∈ f(S). Moreover, since f(I) is disjoint from Jv, it
is easy to see that var(f, C) = win(f, S, v) ≥ 0 (recall that f is positively oriented).
Suppose now that f(K) ∩ Jv = {v}. Then we can perturb the junction Jv slightly
in a small neighborhood of v, obtaining a new junction Jd such that intersections
of f(C) with Jv and Jd are the same (and, hence, yield the same variation) and
f(K) ∩ Jd = ∅. Now proceed as in the first case. �

Let us recall the notion of (strongly) scrambling the boundary of a planar
continuum introduced in Definition 5.4.1 (it extends the notion of scrambling the
boundary from maps of dendrites to maps of the plane).

Definition 5.4.1. Suppose that f : C → C is a positively oriented map and
X ⊂ C is a non-separating continuum. Suppose that there exist n ≥ 0 disjoint
non-separating continua Zi such that the following properties hold:

(1) f(X) \X ⊂ ∪iZi;
(2) for all i, Zi ∩X = Ki is a non-separating continuum;
(3) for all i, f(Ki) ∩ [Zi \Ki] = ∅.

Then the map f is said to scramble the boundary (of X). If instead of (3) we have

(3a) for all i, either f(Ki) ⊂ Ki, or f(Ki) ∩ Zi = ∅
then we say that f strongly scrambles the boundary (of X); clearly, if f strongly
scrambles the boundary of X, then it scrambles the boundary of X. In either case,
the continua Ki are called exit continua (of X).

We will always use the same notation (for X, Zi and Ki) introduced in Defini-
tion 5.4.1 unless explicitly stated otherwise. Let us make a few remarks. First, even
though we use the notion only for positively oriented maps f , the definitions can
be given for all continuous functions. Also, observe, that in the situation of Defini-
tion 5.4.1 if X is invariant then f automatically strongly scrambles the boundary
because the set of exit continua can be taken to be empty. We will also agree that
the choice of the sets Zi is optimal in the sense that if (f(X)\X)∩Zi = ∅ for some i,
then the set Zi will be removed from the list. In particular, all continua Zi contain
points from f(X) \X and hence all continua Ki have points from f(X) \X ∩X.

By Remark 5.4.2X∪(
∪
Zi) is a non-separating continuum. Suppose that we are

in the situation of the previous section, D1 ⊂ D2 are dendrites, E = D2 \D1∩D1 =
{z1, . . . , zl} is finite, and f : D1 → D2 scrambles the boundary in the sense of the
previous section. For each zi consider the union of all components of D2 \ D1

whose closures contain zi, and denote by Zi the closure of their union. In other
words, Zi is the closed connected piece of D2 which “grows” out of D1 at zi. Then
Zi ∩D1 = {zi}, each Zi is a dendrite itself, and f strongly scrambles the boundary
in the sense of the new definition too. This explains why we use similar terminology
in both cases.

From now on we fix a positively oriented map f . Even though some of the
main applications of the results are to polynomial maps, this generality is well
justified because in some arguments (e.g., when dealing with parabolic points) we
have to locally perturb our map to make sure that the local index at a parabolic
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fixed point equals 1, and this leads to the loss of analytic properties of the map (see
Lemma 7.5.1). Let us now prove the following technical lemma.

Lemma 7.3.2. Suppose that f is positively oriented, scrambles the boundary
of X, Q is a bumping arc of X such that its endpoints map back into X and
f(Q) ∩Q = ∅. Then var(f,Q) ≥ 0.

Proof. Suppose first that Q \
∪
Zi ̸= ∅ and choose v ∈ Q \

∪
Zi. Since

v ∈ Q \
∪
Zi and X ∪ (

∪
Zi) is non-separating, there exists a junction Jv, with

v ∈ Q, such that Jv ∩ [X ∪ Q ∪ (
∪
Zi)] = {v} and, hence, Jv ∩ f(X) ⊂ {v}. Now

the desired result follows from Lemma 7.3.1.
Suppose now that Q \

∪
Zi = ∅. Then Q ⊂ Zi for some i and so Q ∩X ⊂ Ki.

In particular, both endpoints of Q belong to Ki. Choose a point v ∈ Q. Then
again there is a junction connecting v and infinity outside X (except possibly for
v). Since all sets Zj , j ̸= i are positively distant from v and X ∪ (

∪
i ̸=j Zi) is non-

separating, the junction Jv can be chosen to avoid all sets Zj , j ̸= i. Now, by part
(3) of Definition 5.4.1, f(Ki)∩ Jv ⊂ {v}, hence by Lemma 7.3.1 var(f,Q) ≥ 0. �

Lemma 7.3.2 is applied in Theorem 7.3.3 in which we show that a map which
strongly scrambles the boundary has fixed points. In fact, Lemma 7.3.2 is a major
technical tool in our other results too. Indeed, suppose that a positively oriented
map f scrambles the boundary of X. If we can construct a bumping simple closed
curve S around X which has a partition into bumping arcs (links of S) whose
endpoints map into X (or at least into T (S)) and whose images are disjoint from
themselves, then Lemma 7.3.2 would imply that the variation of S is non-negative.
By Theorem 3.2.2 this would imply that the index of S is positive. Hence by
Theorem 3.1.4 there are fixed points in T (S). Choosing S to be sufficiently tight
around X we see that there are fixed points in X. Thus, the construction of a
tight bumping simple closed curve S with a partition satisfying the above listed
properties becomes a major task.

For the sake of convenience we now sketch the proof of Theorem 7.3.3 which
allows us to emphasize the main ideas rather than details. The main steps in
constructing S are as follows. First we assume by way of contradiction that f has
no fixed points in X. By Theorem 7.1.3 then f(X) ̸⊂ X and f(Ki) ̸⊂ Ki for any i.
By the definition of strong scrambling then f(Ki) is “far away” from Zi for any i.
Choose a tight bumping simple closed curve S around X with very small links. We
need to construct a partition of S into bumping arcs whose endpoints map into X
(or at least into T (S)) and whose images are disjoint from themselves. Since there
are no fixed points in X, we may assume that all links of S move off themselves.
However some of them may have endpoint(s) mapping outside X which prevents
the corresponding partition from being the one we are looking for. So, we enlarge
these links by consecutive concatenating them to each other until the images of the
endpoints of these concatenations are inside X and these concatenations still map
off themselves (the latter needs to be proven which is a big part of the proof of
Theorem 7.3.3).

The bumping simple closed curve S then remains as before, but the partition
changes because we enlarge some links. Still, the construction shows that the new
partition is satisfactory, and since S can be chosen arbitrarily tight, this implies
the existence of a fixed point in X as explained before. Thus, a new development
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is that we are able to construct a partition of S which has all the above listed
necessary properties having possibly very long links.

To achieve the goal of replacing some links in S by their concatenations we
consider the links with at least one endpoint mapped outside X in detail (indeed,
Lemma 7.3.2 already applies to all other links) and use the fact that f strongly
scrambles the boundary. The idea is to consider consecutive links of S with end-
points mapped into Zi \ X. Their concatenation is a connected piece of S with
endpoints (and a lot of other points) belonging to X and mapping into one Zi.
If we begin the concatenation right before the images of links enter Zi \ X and
stop it right after the images of the links exit Zi \ X we will have one condition
of Lemma 7.3.2 satisfied because the endpoints of the thus constructed new “big”
concatenation link T of S map into X.

We need to verify that T moves off itself under f . This is easy to see for the
end-links of T : each end-link has the image “crossing” into X from Zi \X, hence
the images of end-links are close to Ki. However the set Ki is mapped “far away”
from Zi by the definition of strong scrambling and because none of the Kj ’s is
invariant by the assumption. This implies that the end-links themselves must be
far away from Ki (and hence from Zi). If now we move from link to link inside T
we see that those links cannot approach Zi too closely because if they do, they will
have to “be close to Ki”, and their images will have to be close to the image of Ki

which is far away from Zi, a contradiction with the fact that all links in T have
endpoints which map into Zi \X. In other words, the dynamics of Ki prevents the
new bigger links from getting even close to Zi under f which shows that T moves
off itself as desired (after all, the images of new bigger links are close to the set
Zi \X).

Given a compact set K denote by B(K, ε) the open set of all points whose
distance to K is less than ε. By d(·, ·) we denote the distance between two points
or sets.

Theorem 7.3.3. Suppose f : C → C is positively oriented, X is a non-
separating continuum and f strongly scrambles the boundary of X. Then f has a
fixed point in X.

Proof. If f(X) ⊂ X then the result follows from Theorem 7.1.3. Similarly,
if there exists i such that f(Ki) ⊂ Ki, then f has a fixed point in Ki ⊂ X and
we are also done. Hence we may assume that f(X) \ X ̸= ∅, there are m > 0
sets Zi, i = 1, . . . ,m, (f(X) \ X) ∩ Zi ̸= ∅ for any i, and f(Ki) ∩ Zi = ∅ for
all i (making these claims we rely upon the fact that f strongly scrambles the
boundary). Suppose that f |X is fixed point free. Then there exists ε > 0 such that
for all x ∈ X, d(x, f(x)) > ε. We may assume that 2ε < min{d(Zi, Zj) | i ̸= j}. We
now choose constants η′, η, δ and a bumping simple closed curve S (whose initial
links are crosscuts) of X so that the following holds.

(1) 0 < η′ < η < δ < ε/3.
(2) For each x ∈ X ∩B(Ki, 3δ) we have d(f(x), Zi) > 3δ.
(3) For each x ∈ X \B(Ki, 3δ) we have d(x,Zi) > 3η.
(4) For each i there is a point xi ∈ X with f(xi) = zi ∈ Zi and d(zi, X) > 3η.

Since by Theorem 3.7.4 ∂f(X) ⊂ f(∂X) and X is non-separating, we
may assume that xi ∈ ∂X.

(5) X ⊂ T (S) and A = X ∩ S = {a0 < · · · < an < an+1 = a0} with points of
A numbered in the positive circular order around S.
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Figure 7.1. Replacing the links [an(1)−1, an(1)], . . . ,
[am(1)−1, am(1)] by a single link [an(1)−1, am(1)].

(6) f |T (S) is fixed point free.

(7) For any Qi = (ai, ai+1) ⊂ S, diam(Qi) + diam(f(Qi)) < η.
(8) For any x, y ∈ X with d(x, y) < η′ we have d(f(x), f(y)) < η.
(9) A is an η′-net in ∂X (i.e., the Hausdorff distance between A and ∂X is

less than η′).

Observe that Qi is contained in the closed ball centered at ai of radius diam(Qi)
and f(Qi) is contained in the closed ball centered at f(ai) of radius diam(f(Qi));
hence by (7) and since d(x, f(x)) > ε for all x ∈ X we see that Qi ∩ f(Qi) = ∅ for
every i (we rely on the triangle inequality here too).

Claim 1. There exists a point aj ∈ A such that f(aj) ∈ X \
∪

iB(Zi, η).

Proof of Claim 1. Set B(Zi, 3η) = Ti. We will show that there exists a point
x ∈ ∂X with f(x) ∈ X \

∪
Ti. Indeed, suppose first that m = 1. Then by (2) and

the assumption that f(Ki) ∩ Zi = ∅ for each i we have f(K1) ⊂ X \ T1, and we
can choose any point of K1 ∩ ∂X as x. Now, suppose that m ≥ 2. Observe that by
the choice of ε and by (1) the compacta Ti are pairwise disjoint. By (4) for each i
there are points xi in ∂X such that f(xi) ∈ Zi ⊂ Ti. Since the sets f−1(Ti) ∩ X
are pairwise disjoint non-empty compacta we see that the set V = ∂X \

∪
f−1(Ti)

is non-empty (because ∂X is a continuum). Now we can choose any point of V as
x.

Notice now that by the choice of A (see (9)) we can find a point aj such that
d(aj , x) < η′ which by (8) implies that d(f(aj), f(x)) < η and hence f(aj) ∈
X \ (

∪
B(Zi, η)) as desired. �

By Claim 1, we assume without loss of generality, that f(a0) ∈ X \
∪
B(Zi, η).

Now, by (4) there exists a point x1 such that f(x1) = z1 is more than 3η-distant



74 7. FIXED POINTS

from X. We can find al ∈ A such that d(al, x1) < η′ and hence by (8) and by the
triangle inequality f(al) is at least 2η-distant from X. On the other hand, f(a0) ∈
X. By the choice of a0, we can find minimal n(1) < m(1) from {0, 1, . . . ,m + 1}
such that the following claims hold. Without loss of generality, n(1) = 1.

(1) f(an(1)−1) ∈ X.
(2) f(ar) ∈ f(X) \ X for all r with n(1) ≤ r ≤ m(1) − 1 (and so, since

diam(f(Qu)) < ε/3 for any u and d(Zs, Zt) > 2ε for all s ̸= t, there exists
i(1) ∈ {1, . . . , n} with f(ar) ∈ Zi(1) for all n(1) ≤ r ≤ m(1)− 1).

(3) f(am(1)) ∈ X.

Consider the arc Q′ = [an(1)−1, am(1)] ⊂ S and show that f(Q′) ∩ Q′ = ∅.
As we walk along Q′ and mark the f -images of points an(1)−1, an(1), . . . , am(1),
we begin in X at f(an(1)−1), then enter Zi(1) \ X and walk inside it, and then
exit Zi(1) \ X at f(am(1)) ∈ X. Since every step in this walk is rather short (by
(7) diam(Qi) + diam(f(Qi)) < η), we see that d(f(an(1)−1), Zi(1) \ X) < η and
d(f(am(1)), Zi(1) \X) < η. On the other hand for each r, n(1) ≤ r ≤ m(1)− 1, we
have f(ar) ∈ Zi(1) \ X. Thus, d(f(ar), Zi(1)) < η for each n(1) − 1 ≤ r ≤ m(1).
Since by (7) for each link Q of S we have diam(Q) + diam(f(Q)) < η, we now see
by the triangle inequality that d(f(Q′), Zi(1)) < 2η.

This implies that for n(1)−1 ≤ r ≤ m(1), d(ar,Ki(1)) > 3δ (because otherwise
by (2) f(ar) would be farther away from Zi(1) than 3δ > η, a contradiction) and so
d(ar, Zi(1)) > 3η (because ar ∈ X \B(Ki(1), 3δ) and by (3)). Since by (7) for each
link of S we have diam(Q) + diam(f(Q)) < η, then d(Q′, Zi(1)) > 2η.

Therefore f(Q′) ∩ Q′ = ∅. This allows us to replace the original division of S
into links Q0, . . . , Qm(1)−1 by a new one in which Q′ plays the role of a new link;
in other words, we simply delete the points {an(1), . . . , am(1)−1} from A. Thus,
Q′ is a bumping arc whose endpoints map back into the continuum X and such
that f(Q′) ∩ Q′ = ∅. Therefore Q′ satisfies the conditions of Lemma 7.3.2, and
so var(f,Q′) ≥ 0. Observe also that for Q′ the associated continuum Zi(1) is
well-defined because the distance between distinct continua Zi is greater than 2ε.
Replace the string of links {Q0, . . . , Qm(1)−1} in S by the single link Q′ = Q′

0 which
has as endpoints an(1)−1 and am(1). Continuing in the same manner and moving
along S, in the end we obtain a finite set A′ = {a0 = a′0 < a′1 < · · · < a′k} ⊂ A such
that for each i we have f(a′i) ∈ X ⊂ T (S) and for each arc Q′

i = [a′i, a
′
i+1] we have

f(Q′
i)∩Q′

i = ∅. In other words, we will construct a partition of S satisfying all the
required properties: its links are bumping arcs whose endpoints map back into X
and whose images are disjoint from themselves. As outlined after Lemma 7.3.2, this
yields a contradiction. More precisely, by Theorem 3.2.2, ind(f, S) =

∑
var(f,Q′

i)+
1, and since by Lemma 7.3.2, var(f,Q′

i) ≥ 0 for all i, ind(f, S) ≥ 1 contradicting
the fact that f is fixed point free in T (S) (see Theorem 3.1.4). �

7.4. Maps with isolated fixed points

In this section we assume that all maps f : C → C are positively oriented maps
with isolated fixed points.

Definition 7.4.1. Given a map f : X → Y we say that c ∈ X is a critical
point of f if for each neighborhood U of c, there exist x1 ̸= x2 ∈ U such that
f(x1) = f(x2). Hence, if x is not a critical point of f , then f is locally one-to-one
near x.
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If a point x belongs to a non-degenerate continuum collapsed to a point under
f then x is critical; also any point which is an accumulation point of collapsing
continua is critical. However in these cases the map near x may be monotone.
A more interesting case is when the map near x is not monotone; then x is a
branchpoint of f and it is critical even if there are no collapsing continua close by.
One can define the local degree degf (a) as the number of components of f−1(y)
non-disjoint from a small neighborhood of a (y then should be chosen close to
f(a)). It is well-known that for a positively oriented map f and a point a which
is a component of f−1(f(a)) the local degree degf (a) equals the winding number
win(f, S, f(a)) for any small simple closed curve S around a. Then branchpoints
are exactly the points at which the local degree is greater than 1. Notice that since
we do not assume any smoothness, a critical point may well be both fixed (periodic)
and topologically repelling in the sense that some small neighborhoods of c = f(c)
map over themselves by f .

Let us recall the notion of a local index of a map at a point which is first
introduced in Definition 5.4.3.

Definition 5.4.3. Suppose that f : C → C is a positively oriented map with
isolated fixed points and x is a fixed point of f . Then the local index of f at x,
denoted by ind(f, x), is defined as ind(f, S) where S is a small simple closed curve
around x.

It is easy to see that, since f is positively oriented and has isolated fixed points,
the local index is well-defined, i.e. does not depend on the choice of S. By modifying
a translation map one can give an example of a homeomorphism of the plane which
has exactly one fixed point x with local index 0. Still in some cases the local index
at a fixed point must be positive.

Definition 7.4.2. Let f : C → C be a map. A fixed point x is said to be
topologically repelling if there exists a sequence of simple closed curves Sj → {x}
such that x ∈ int(T (Sj)) ⊂ T (Sj) ⊂ int(T (f(Sj)). A fixed point x is said to be
topologically attracting if there exists a sequence of simple closed curves Sj → {x}
not containing x and such that x ∈ int(T (f(Sj)) ⊂ T (f(Sj)) ⊂ int(T (Sj)).

Lemma 7.4.3. Let f : C → C be a positively oriented map with isolated fixed
points. If a is a topologically repelling fixed point then we have that ind(f, a) =
degf (a) ≥ 1. If however a is a topologically attracting fixed point then ind(f, a) = 1.

Proof. Consider the case of the repelling fixed point a. Then it follows that,
as x runs along a small simple closed curve S with a ∈ T (S), the vector from x
to f(x) produces the same winding number as the vector from a to f(x). As we
remarked before, it is well-known that this winding number equals degf (a); on the
other hand, ind(f, S) > 0 since f is positively oriented and has isolated fixed points.
The argument for an attracting fixed point is similar. �

If however a fixed point x is neither topologically repelling nor topologically
attracting, then ind(f, x) could be greater than 1 even in the non-critical case.
Indeed, by definition ind(f, x) coincides with the winding number of f(z) − z on
a small simple closed curve S around x with respect to the origin. If, e.g., f is
rational and f ′(x) ̸= 1 then this implies that ind(f, x) = 1. However if f ′(x) = 1
then ind(f, x) is the multiplicity at x (i.e., the local degree of the map f(z) − z
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at x). This is related to the following useful theorem. It is a version of the more
general topological argument principle.

Theorem 7.4.4. Suppose that f is positively oriented and has isolated fixed
points. Then for any simple closed curve S ⊂ C, which contains no fixed points of
f , its index equals the sum of local indices taken over all fixed points in T (S). In
particular if for each fixed point p ∈ T (S) we have that ind(f, x) = 1 then ind(f, S)
equals the number n(f, S) of fixed points inside T (S).

Theorem 7.4.4 implies Theorem 3.1.4 for positively oriented maps with isolated
fixed points (indeed, if ind(f, S) ̸= 0 then by Theorem 7.4.4 there must exist fixed
points in T (S)), and actually provides more information. By the above analysis,
Lemma 7.4.3 and Theorem 7.4.4, ind(f, S) equals the number n(f, S) of fixed points
inside T (S) if all f -fixed points in T (S) are either topologically attracting, or such
that f has a complex derivative f ′ at x, and f ′(x) ̸= 1; if f -fixed points can also
be topologically repelling, then ind(f, S) ≥ n(f, S)

In the spirit of the previous parts of the paper, we are still concerned with
finding f -fixed points inside non-invariant continua of which f (strongly) scrambles
the boundary. However we now specify the types of fixed points we are looking
for. Thus, the main result of this subsection proves the existence of specific fixed
points in non-degenerate continua satisfying the appropriate boundary conditions
and shows that in some cases such continua must be degenerate. It is in this form
that we apply the result later in this subsection.

Recall that an essential crossing of an external ray R and a crosscut Q was
defined in Definition 3.6.4; there an external ray Rt is said to cross a crosscut Q
essentially if and only if there exists x ∈ Rt such that the bounded component of
Rt \{x} is contained in the bounded complementary domain of T (X)∪Q. The fact
that a crosscut crosses a ray essentially can be similarly restated in the language
of the uniformization plane (i.e., if the ray and the crosscut are replaced by their
counterparts in the uniformization plane while X is replaced by the unit disk in
the uniformization plane).

For the next definition we need to make an observation. Suppose that f :
C → C is a map and D is a closed Jordan disk with interior non-disjoint from
a continuum X such that f(D ∩ X) ⊂ X and f(∂D \X) ∩ D = ∅. Suppose in
addition that |∂D ∩X| ≥ 2. Then the closure of any component Q of ∂D \X is a
bumping arc whose endpoints map back into X and such that f(Q)∩Q = ∅ (indeed,

f(∂D \X) ∩D = ∅ implies that f(Q) ∩Q = ∅). Thus, var(f,Q) is well-defined.

Definition 7.4.5. Let f be a positively oriented map and X a continuum. If
f(p) = p and p ∈ ∂X then we say that f repels outside X at p provided there exists
a ray R ⊂ C \X from ∞ which lands on p and a sequence of simple closed curves
Sj bounding closed disks Dj such that D1 ⊃ D2 ⊃ . . . , p ∈ int(Dj), ∩Dj = {p},
f(D1 ∩X) ⊂ X, f(Sj \X) ∩Dj = ∅ and for each j there exists a component Qj

of Sj \X such that Qj ∩R ̸= ∅ and var(f,Qj) ̸= 0.

Definition 7.4.5 gives some information about dynamics around p.

Lemma 7.4.6. Suppose that f : C → C is a positively oriented map, X a non-
separating continuum, p ∈ ∂X such that f(p) = p and f repels outside X at p. If
R is the ray from the Definition 7.4.5 then f(Qj)∩R ̸= 0. Moreover, if f scrambles
the boundary of X, then var(f,Qj) > 0.
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Thus, even though R above may be non-invariant, there are crosscuts approach-
ing p which are mapped by f “along R farther away from p”.

Proof. Take z ∈ R ∩ Qj so that (z,∞)R ∩ Qj = ∅. Choose a junction with
[z,∞]R (the subray of R running from z to infinity) playing the role of Ri and two
other rays close to [z,∞]R on both sides. Then f(Qj)∩R = ∅ implies var(f,Qj) = 0,
a contradiction. The second claim follows by Lemma 7.3.2. �

We will use the following version of uniformization. Let X be a non-separating
continuum and φ : D∞ → C \ X an onto conformal map such that φ(∞) = ∞
(here D∞ = C \ D is the complement of the closed unit disk). Thus, we choose
the uniformization, under which the complement C \D of the closed unit disk cor-
responds to the complement C \ X of X. Of course, the same can be considered
on the two-dimensional sphere C∞ which is sometimes more convenient. Notice,
that since D is a non-separating continuum in C, we can use for it the usual termi-
nology (crosscuts, shadows, etc). Also recall that the shadow of a crosscut C of a
nonseparating continuum X is the bounded component of C \ [X ∪C] (and not its
closure).

Then, given a crosscut C of X with endpoints x, y, we can associate to its
endpoints external angles as follows. It is well known [Mil00] that φ−1(C) is a
crosscut of the closed unit disk with endpoints α, β. It follows that we can extend
φ by defining φ(α) = x and φ(β) = y. Note that this extension is not necessarily
continuous. In this case we say that α corresponds to x and β corresponds to
y. There is a unique arc I ⊂ S1 with endpoints α, β, contained in the shadow of
φ−1(C). Assuming that the positive orientation on I is from α to β, we choose the
appropriate orientation of C (i.e., in this case from x to y) and call such an oriented
C positively oriented.

Observe that in this situation if D is a disk around a point x ∈ X then com-
ponents of ∂D \X are crosscuts of X whose φ-preimages are crosscuts of D in the
uniformization plane. However, these preimage-crosscuts in D∞ may be located all
over S1.

The next theorem is the main result of this subsection.

Theorem 7.4.7. Suppose that f is a positively oriented map of the plane with
only isolated fixed points, X ⊂ C is a non-separating continuum or a point, and
the following conditions hold.

(1h) For each fixed point p ∈ X we have that x ∈ ∂X, ind(f, p) = 1 and f
repels outside X at p.

(2h) The map f scrambles the boundary of X. Moreover, using the notation
from Definition 5.4.1 it can be said that for each i either f(Ki) ∩ Zi = ∅,
or there exists a neighborhood Ui of Ki with f(Ui ∩X) ⊂ X.

Then X is a point.

Proof. Suppose that X is not a point. Since f has isolated fixed points,
there exists a simply connected neighborhood V of X such that all fixed points
{p1, . . . , pm} of f |V belong to X. The idea of the proof is to construct a tight
bumping simple closed curve S such that X ⊂ T (S) ⊂ V and var(f, S) ≥ m.
Hence ind(f, S) = var(f, S) + 1 ≥ m + 1 while by Theorem 7.4.4 our assumptions
imply that ind(f, S) = m, a contradiction.
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Figure 7.2. Illustration to the proof of Theorem 7.4.7.

First we need to make a few choices of neighborhoods and constants; we assume
that there are n exit continua K1, . . . ,Kn. We also assume that they are numbered
so that for 1 ≤ i ≤ n1 we have f(Ki) ∩ Zi = ∅ and for n1 < i ≤ n we have
f(Ki) ∩ Zi ̸= ∅. Choose for each i a small neighborhood Ui of Ki as follows.

CHOOSING NEIGHBORHOODS Ui OF EXIT CONTINUA Ki

(1) By assumption (2) of the theorem we may assume that f(Ui ∩ X) ⊂ X
for each i with n1 < i ≤ n.

(2) By continuity we may assume that d(Ui ∪ Zi, f(Ui)) > 0 for 1 ≤ i ≤ n1.
(3) We may assume that T (X ∪

∪
Ui) ⊂ V and Ui ∩ Uk = ∅ for all i ̸= k.

(4) We may assume that every fixed point of f contained in Ui is contained
in Ki.

Let {p1, . . . , pt} be all fixed points of f in X \
∪

iKi and let {pt+1, . . . , pm} be
all the fixed points contained in

∪
Ki. Observe that then by part (4) of the choice

of neighborhoods Ui we have pi ∈ X\
∪
Us if 1 ≤ i ≤ t. Also, it follows that for each

j, t+ 1 ≤ j ≤ m, there exists a unique rj , 1 ≤ rj ≤ n, such that pj ∈ Krj . For each
fixed point pj ∈ X we rely upon Definition 7.4.5 and, as specified in that definition,
choose a ray Rj ⊂ C \ X landing on pj . Now we choose closed disks Dj around
each pj from Definition 7.4.5 so that, in addition to properties from Definition 7.4.5
(listed below as (6), (9) and (10)), they satisfy the following conditions.

THE CHOICE OF CLOSED DISKS Dj

(5) Dj ∩Ri = ∅ for all i ̸= j.

(6) f(Sj \X) ∩Dj = ∅.
(7) T (X ∪

∪
j Dj) ⊂ V .
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(8) [Dj ∪ f(Dj)] ∩ [Dk ∪ f(Dk)] = ∅ for all j ̸= k.
(9) f(Dj ∩X) ⊂ X (this is possible because f repels outside X at each fixed

point of f and by Definition 7.4.5).
(10) Denote by Q(j, s) all components of Sj \X; then there exists a component,

Q(j, s(j)), of Sj \X, with var(f,Q(j, s(j))) > 0 and Q(j, s(j)) ∩ Rj ̸= ∅
(this is possible by Definition 7.4.5 and Lemma 7.4.6).

(11) [Dj ∪ f(Dj)] ∩
∪
Ui = ∅ for all 1 ≤ j ≤ t.

(12) If t < j ≤ m then [Dj ∪ f(Dj)] ⊂ Urj .

Let us use our standard uniformization φ : D∞ → C \X described before the
statement of the theorem. It serves as an important tool; in particular it allows us
to pull crosscuts from the plane containing X to D∞ and introduce the appropriate
orientation on all these crosscuts.

Claim A. Suppose that W ⊂ Dj is a Jordan disk around pj (e.g., W may coincide
with Dj) and C is a crosscut which is a component of ∂W \X. Then the shadow of
Q(i, s(i)), i ̸= j is not contained in the shadow of C (thus, the shadows of Q(j, s(j))
and Q(i, s(i))) are disjoint). Moreover, if W is sufficiently small, then the shadow
of Q(j, s(j)) is not contained in the shadow of C either.

Proof of Claim A. By condition (8) from the choice of the disks Dj those disks
are pairwise disjoint. Hence all the crosscuts Q(r, t) are pairwise disjoint, and
C ∩Q(i, s(i)) = ∅. If the shadow of Q(i, s(i)) is contained in the shadow of C, then
the ray Ri intersects C, contradicting condition (5) from the choice of the disks Dj .
Hence Sh(Q(j, s(j)) ∩ Sh(Q(i, s(i)) = ∅ for i ̸= j (otherwise, because the crosscuts
are pairwise disjoint, one of the shadows would contain the other one, impossible
by the just proven). Now, if Sh(Q(j, s(j)) ⊂ Sh(C), then, in D∞, φ−1(C) shields
φ(Q(j, s(j)) from infinity and must be, together with C, of a bounded away from
zero size. Hence, if W is very small, this cannot happen. �

Now we define another collection of disks around the points pj . By Claim A
for each j we choose a small Jordan disk D′

j from Definition 7.4.5 around pj so that
no shadow Sh(Q(i, s(i)) is contained in the shadow of any crosscut C which is a

component of (∂D′
j) \X. In particular, for each such C, f(C)∩C = ∅. Let us now

choose a few constants.

THE CHOICE OF CONSTANTS η < δ < ε

(13) Choose ε > 0 such that for all x ∈ X \
∪
D′

j , d(x, f(x)) > 3ε and for each
crosscut C of X of diameter less than ε with at least one endpoint outside
of

∪
Dj we have that f(C) is disjoint from C (observe that outside any

given neighborhood of {p1, . . . , pm} all points of X move under f by a
bounded away from zero distance).

(14) Choose δ > 0 so that the following several inequalities hold:
(a) 3δ < ε,
(b) 3δ < d(Zi, Zj) for all i ̸= j,
(c) 3δ < d(Zi, [X ∪ f(X)] \ [Zi ∪ Ui]) for each i,
(d) 3δ < d(Ki,C \ Ui) for each i,
(e) if f(Ki) ∩ Zi = ∅, then 3δ < d(f(Ui), Zi ∪ Ui).

(15) By continuity choose η > 0 such that for each set H ⊂ V of diameter less
than η we have diam(H)+diam(f(H)) < δ and that d(D′

i, D
′
j) > η, i ̸= j.
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By (11) and (13) above, if a set H ⊂ V is of diameter at most η and H ̸⊂
∪
D′

i,
then f(H) ∩H = ∅. Indeed, otherwise let x ∈ H \

∪
D′

i and y ∈ H be such that
f(y) ∈ H. Then by (13) d(x, f(x)) > 3ε while by (15) and the triangle inequality
d(x, f(x)) ≤ d(x, f(y)) + d(f(y), f(x)) < δ < ε/3, a contradiction.

Consider the family EX of all components of the sets (∂D′
i)\X, and the crosscuts

Q(i, s(i)). By condition (8) from the choice of the closed disks Dj , the disks Dj are
pairwise disjoint; hence, the crosscuts in EX are pairwise disjoint.

Let T be the topological hull T = T (X ∪ (
∪
D′

j) ∪
∪
Q(i, s(i))). Then T is

a non-separating continuum. Call C ∈ EX an unshielded (crosscut of X) if it is
a part of ∂T and denote the family of all such crosscuts by Eu

X . By Claim A all
crosscuts Q(i, s(i)) are unshielded. Call φ-preimages of unshielded crosscuts un-
shielded (crosscuts of D) and denote their family by Eu

D . Clearly, any two unshielded
crosscuts have disjoint shadows.

For each C ∈ Eu
X , let CD = φ−1(C). Note that there are at most finitely

many crosscuts C ∈ Eu
X with diam(C) ≥ η/30. Let C1, . . . , Cq be the collection

of all crosscuts Q(i, s(i)) and all crosscuts in Eu
X with diameters at least η/30. By

definition 7.4.5, f(Cj) ∩ Cj = ∅ for each j. Then the crosscuts Cj
D = φ−1(Cj) are

all pairwise disjoint and have disjoint shadows. Hence we may assume that, if the
endpoints of Cj

D are αj , βj , then α1 < β1 < · · · < αq < βq < αq+1 = α1 in the
positive circular order around S1.

For each i, 1 ≤ i ≤ q, choose a finite chain of crosscuts F i
j in D∞ with endpoints

γj , γj+1 where βi = γ1 < γ2 < · · · < γk = αi+1 so that all closures of crosscuts from
the collection {C1

D, . . . , C
q
D}∪{F i

j}i,j , 1 ≤ j ≤ k(i) (except for the adjacent crosscuts
which share endpoints) and their shadows are pairwise disjoint (this can be easily
done, e.g. because accessible points on the boundary of X are dense), φ(F i

j ) = Gi
j

is a crosscut of X and diam(Gi
j) < η/30 for all i, j. In addition we may assume

that non-adjacent Gi
j have disjoint sets of endpoints. Let Y = T (

∪
Ci

D ∪
∪
F i
j ).

Then Y is a Jordan disk whose boundary is a simple closed curve Ŝ′′ ⊂ D∞. Let

S′′ = φ(Ŝ′′). The set S′′ ∩X is finite. It partitions S′′ into links which include all
Ci’s. However, some links of the form Gi

j may be very close to a fixed point of f
and may not move off themselves under f . Hence we modify S′′ as follows.

Claim B. There exists a bumping simple closed curve S such that:

(1b) ∪q
j=1C

j ⊂ S.

(2b) all components of S \ [X ∪
∪

iD
′
i ∪

∪
Ci] are of diameter less than η,

(3b) for each i components of S ∩ int(D′
i) are so small that they stay far away

from the fixed points and are moved off themselves by f .

Let Z = T (S′′ ∪
∪
D′

j). Then Z is a Jordan disk whose boundary is a simple

closed curve S′, and all crosscuts Ci are still contained in S′. We modify S′, keeping
all Ci’s but changing S′ \

∪
Ci so that the resulting bumping simple closed curve

S can be partitioned into finitely many links each of which does not go deep into
the interior of

∪
D′

j and, hence, moves off itself under f .

Consider the crosscuts Eu
D in D∞. If the chain {F i

1, . . . , F
i
k(i)} intersects a

crosscut Q ∈ Eu
D let pQ and rQ be the first and last point of intersection of the

arc ∪iF
i
j and Q. Then pQ ̸= rQ. If φ([pQ, rQ]) is small then move forward along

S′′. Otherwise suppose that the endpoints of φ(Q) are aQ and bQ and assume that
aQ < bQ in the positive order aroundX. Suppose that pQ ∈ F i

j which has endpoints
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γj and γj+1 and rQ ∈ F i
k which has endpoints γk and γk+1 and γj+1 ≤ γk. Replace

the subarc from γj up to γk+1 in S′′ by an arc joining the same endpoints whose
φ-image is very close to φ(Q). Moving forward along S′′ in the positive direction
and making finitely often similar modifications, we obtain the desired simple closed
curve S. This completes the proof of Claim B. �

We want to compute the variation of S. Each link Q(j, s(j)) contributes at least
1 towards var(f, S), and we want to show that all other links have non-negative
variation. To do so we want to apply Lemma 7.3.2. Hence we need to verify that
all links of S are bumping arcs whose endpoints map back into X such that their
images are disjoint from themselves. By Claim B, all links of S move off themselves.
However some links of S may have endpoints mapped off X. To ensure that for our
bumping simple closed curve endpoints e of its links map back into X we have to
replace some of the finite chains of links of S by one link which is their concatenation
(this is similar to what was done in Theorem 7.3.3). Then we will have to check if
the new “bigger” links still have images disjoint from themselves.

Denote by A the initial partition of S into links which are called A-links.

Claim C. There exists a partition A′ of S whose links are bumping arcs with
endpoints mapped back into X and whose images are disjoint from themselves.
Moreover, A′-links are concatenations of A-links of S such that all A-links of S
of type Q(i, t) remain A′-links of S.

Proof of Claim C. Suppose that X ∩ S = A = {a0 < a1 < · · · < an} and a0 ∈ A
is such that f(a0) ∈ X (by arguments similar to those in Theorem 7.3.3 one can
show that we can make this assumption without loss of generality). We only need
to enlarge and concatenate links of S with at least one endpoint of the link mapped
outside X. Therefore all links of S of the form Q(j, s) do not come under this
category of links because by Definition 7.4.5 their endpoints do map into X. Other
links, however, may have endpoints mapped outside X. Observe, that by the
construction all those other links are less than η in diameter and hence have the
property (15) of the choice of the constants.

Let t′ be minimal such that f(at′) ̸∈ X and t′′ > t′ be minimal such that
f(at′′) ∈ X. Then f(at′) ∈ Zi for some i. Since every component of [at′ , at′′ ] \X
has image of diameter less than δ (which is less than the distance between any two
sets Zr, Zl), f(at) ∈ Zi \X for all t′ ≤ t < t′′. On the other hand, for t′ ≤ t < t′′,
at ̸∈ Ui. To see this, note that if f(Ki) ∩ Zi = ∅, then by the above made choices
f(Ui) ∩ Zi = ∅, and if f(Ki) ∩ Zi ̸= ∅, then f(Ui ∩ X) ⊂ X by the assumption.
Thus, all points at, t

′ ≤ t < t′′ are in X \ Ui while all their images f(at) are in
Zi \X, which by the property (14c) of the constant δ implies that these two finite
sets of points are at least 3δ distant.

Now, by the proven above, all the A-links of S in the arc [at′−1, at′′ ] are of
diameters less than η. Hence it follows from the properties (15) and (14c) of the
constant δ that f([at′−1, at′′ ]) ∩ [at′−1, at′′ ] = ∅ and we can remove the points at,
for t′ ≤ t < t′′ from the partition A of S. By continuing in the same fashion we
obtain a subset A′ ⊂ A such that for the closure of each component C of S \ A′,
f(C) ∩ C = ∅ and for both endpoints a and a′ of C, {f(a), f(a′)} ⊂ X. Moreover,
as was observed above, the enlarging of links of S does not concern any links of the
original bumping simple closed curve of the form Q(j, s), in particular for each j,
Q(j, j(s)) is an A′-link of S. �
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Now we apply a version of the standard argument from the proof of The-
orem 7.1.3; here, instead of Theorem 3.1.4 we use the fact that f satisfies the
argument principle. Indeed, by Theorem 3.2.2 and Lemma 7.3.2, ind(f, S) ≥∑

j var(f,Q(j, j(s))) + 1 ≥ m+ 1 contradicting Theorem 7.4.4. �

It is possible to use a different approach in Definition 7.4.5 and Theorem 7.4.7.
Namely, a version of Definition 7.4.5 could define repelling outside X at a fixed
point p as the existence of a family of closed disks Dj with similar properties except
now we would require the existence of at least ind(f, p) pairwise non-homotopic
rays outside X from ∞ to p (landing on p) and the existence of the same number
of components of Sj \ X non-disjoint from corresponding rays and with non-zero
variation on each such component.

Then a version of Theorem 7.4.7 would state that if a positively oriented map
with isolated fixed points f repels outside X at each of its fixed points, and the
condition (2h) of Theorem 7.4.7 is satisfied, then X must be a point. The proof of
this version of Theorem 7.4.7 is almost the same, except for a bit heavier notation
needed (now that we have not one, but ind(f, p) crosscuts with positive variation
around each fixed point in X. Since for our applications Theorem 7.4.7 suffices we
restricted ourselves to this case.

Theorem 7.4.7 implies the following.

Corollary 7.4.8. Suppose that f is a positively oriented map with isolated
fixed points, and X ⊂ C is a non-separating and non-degenerate continuum satis-
fying condition (2h) stated in Theorem 7.4.7 and such that all fixed points in X
belong to ∂X. Then either f does not repel outside X at one of its fixed points, or
the local index at one of its fixed points is not equal to 1.

Lemma 7.4.9 gives a verifiable sufficient condition for a fixed point a belonging
to a locally invariant continuum X to be such that the map f repels outside X.
We will apply the lemma in the next section.

Lemma 7.4.9. Suppose that f is a positively oriented map, X ⊂ C is a non-
separating continuum or a point and p ∈ ∂X is a fixed point of f such that:

(i) there exists a neighborhood U of p such that f |U is one-to-one and f(U ∩
X) ⊂ X,

(ii) there exists a ray R ⊂ C∞ \ X from infinity such that R = R ∪ {p},
f |R : R → R is a homeomorphism and for each x ∈ R, f(x) separates x
from ∞ in R,

(iii) there exists a nested sequence of closed disks Dj ⊂ U with boundaries Sj

containing p in their interiors such that
∩
Dj = {p} and f(Sj \X)∩Dj =

∅.
Then for a sufficiently large j there exists a component C of Sj \ X with

C ∩R ̸= ∅ and var(f, C) > 0, so that f repels outside X at p.

Observe that here we show that var(f, C) > 0 without any “scrambling” as-
sumptions on f .

Proof. Choose a Jordan disk U as in (i) so that (∂U)∩R = {q} is a point and
X \U ̸= ∅. Choose j so that Dj∪f(Dj) ⊂ U . By [BO06] there is a component C of
(∂Dj)\X such that R crosses C essentially (see Definition 3.6.4). Slightly adjusting
Dj , we may assume that R∩∂Dj is finite and each intersection is transversal. Since
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Figure 7.3. Illustration to the proof of Lemma 7.4.9.

R crosses C essentially, |R ∩ C| is odd; since f is one-to-one on U , |f(C) ∩ R| is
odd as well.

Let u, v be the endpoints of C. Observe, that C can be included in a simple
closed curve S around X so that X ⊂ T (S). Since by (i) f(U ∩ X) ⊂ X, we
see that f(u) ∈ T (S), f(v) ∈ T (S) and variation var(f, C) > 0 is well-defined (see
Definition 2.2.2).

Let us move along R from infinity to p and denote by w be the first point of C∩R
which we meet and by z the last point. Then by (ii), f(C)∩ [p, z]R = ∅. Also, by (i)
|f(C)∩R| = |f(C∩R)| is odd. Since X\Dj ̸= ∅ and X∩([z, w]C∪[z, w]R) = ∅, X is
contained in the unbounded component V∞ of the complement to [z, w]C ∪ [z, w]R.
Since u and v belong to U ∩ X, their images f(u) and f(v) belong to X as well.
Hence f(u), f(v) ∈ V∞.

Claim A. |f(C) ∩ [z, w]R| is even.

Proof of Claim A. A complementary domain O of [z, w]C∪[z, w]R is called even/odd
if there is an arc J from infinity to a point in O so that J ∩ C ∩ R = ∅, J ∩
([z, w]C ∪ [z, w]R) is finite, every intersection is transversal and |J ∩ ([z, w]C ∪
[z, w]R)| is even/odd, respectively. By [OT82] the notion of an even/odd domain
is independent of J , well-defined and each complementary domain of [z, w]C∪[z, w]R
is either even or odd. Since by (iii) f(C)∩C = ∅, f(C) can only intersect C ∪R at
points of R. Also, whenever f(C) meets [z, w]R, it crosses from an even to an odd
domain or vice versa. Since both f(u) and f(v) are in the unbounded (and hence
even) domain of C \ [f(C) ∪ [z, w]R], |f(C) ∩ [z, w]R| is even as desired. �

Observe that f(C) is outside Dj and hence is disjoint from [p, z]R ⊂ Dj . Since
|f(C)∩R| is odd and |f(C)∩ [p, w]R| = |f(C)∩ [z, w]R| is even, |f(C)∩ [w,∞]R| is
odd. Since every intersection is transversal, we can replace [w,∞]R by a junction
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Jw such that every intersection point of f(C) ∩ [w,∞]R contributes exactly +1 or
−1 to the count. Hence var(f, C) ̸= 0.

We prove next that var(f, C) > 0. Note that [p, q]R ⊂ U is an arc which
meets ∂U only at q. Let W be the component of U \ (C ∪ R) whose boundary
contains (∂U) \ q. Note that u and v are accessible points in ∂W . Hence points
u and v can be connected with an arc K inside W disjoint from R ∪ C. Then,
since f |U is a homeomorphism, f(K) ∩ R = ∅. By Lemma 7.3.1 this implies
that var(f, C) ≥ 0 and by the previous paragraph then var(f, C) > 0 (basically, we
simply choose a junction J ′

w close to [w,∞]R such that f(K)∩J ′
w = ∅ and conclude

that var(f, C) = win(f, C ∪K,w) > 0 since f is a positively oriented map). �

It is now easy to see that the following corollary holds.

Corollary 7.4.10. Suppose that X ⊂ C is a non-separating continuum or a
point and f : C → C is a positively oriented map with isolated fixed points, and
the following conditions hold.

(a) Each fixed point p ∈ X is topologically repelling, belongs to ∂X, and has a
neighborhood Up such that f(Up∩X) ⊂ X and f |Up is a homeomorphism.

(b) For each fixed point p ∈ X, there exists a ray R ⊂ C∞ \X from infinity
landing on p, f |R : R→ R is a homeomorphism and for each x ∈ R, f(x)
separates x from ∞ in R.

(c) The map f scrambles the boundary of X. Moreover for every i either
f(Ki)∩Zi = ∅ or there exists a neighborhood Ui ofKi with f(Ui∩X) ⊂ X.

Then X is a (fixed) point.

Proof. Let us apply Theorem 7.4.7. To do so, we verify its conditions. The
facts that X ⊂ C is a non-separating continuum or a point and f : C → C is a
positively oriented map with isolated fixed points are clearly satisfied. To verify
condition (1h) of Theorem 7.4.7, suppose that p ∈ X is a fixed point. Then by (a)
above p ∈ ∂X. Moreover, p is topologically repelling, and so by Lemma 7.4.3 the
index at p is +1.

It remains to verify that f repels outsideX at p. To do so we apply Lemma 7.4.9.
Since p is topologically repelling, there exists a nested sequence of closed disks
Dj ⊂ U with boundaries Sj containing p in their interiors, with

∩
Dj = {p} and

f(Sj \X) ∩ Dj = ∅. Hence the condition (iii) of Lemma 7.4.9 is satisfied. The
condition (i) of Lemma 7.4.9 immediately follows from (a) above; the condition (ii)
of Lemma 7.4.9 immediately follows from (b) above. Hence by Lemma 7.4.9 the
map f repels outside X at p. Therefore the condition (1h) of Theorem 7.4.7 is
satisfied. Condition (2h) of Theorem 7.4.7 is also satisfied (it simply coincides with
condition (c) of our corollary), hence by Theorem 7.4.7 X is a point. �

7.5. Applications to complex dynamics

We begin by introducing a few facts concerning local dynamics at parabolic and
repelling periodic points of a polynomial which were not necessary for stating the
results of this section in Chapter 5 but are needed for the proofs. A nice description
of this can be found in [Mil00] ([CG93] can also serve as a good source here).

Let P : C → C be a complex polynomial, JP its Julia set (JP is the closure
of the set of repelling periodic points of P ) and KP = T (JP ) the “filled-in” Julia
set. Recall That σd : S1 → S1 is defined by σd(α) = dα mod 1, where S1 = R/Z
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is parameterized by [0, 1). (This map is conjugate to the map z → zd restricted
to the unit circle in the complex plane.) If p is a periodic point of P of period n
and (Pn)′(p) = re2πiα with r ≥ 0, then p is repelling if r > 1, parabolic if r = 1
and α ∈ Q, irrational neutral if r = 1 and α ∈ R \ Q and attracting if r < 1. If
p is a repelling or parabolic fixed point in a non-degenerate component Y of KP ,
then by [DH85a, LP96] there exist 1 ≤ k < ∞ external rays Rα(i) such that
σd|{α(1),...,α(k)} : {α(1), . . . , α(k)} → {α(1), . . . , α(k)} is a permutation, all α(i) are
of the same minimal period under σd, for each j the ray Rα(j) lands on p, and no
other external rays land on p.

Components of C \ JP are called Fatou domains. There are three types of
bounded Fatou domains U . A Fatou domain U is called an attracting domain if it
contains an attracting periodic point, a Siegel domain if it contains an irrational
neutral periodic point and a parabolic domain if it is periodic but contains no
periodic points. In the latter case there always exists a parabolic periodic point
on the boundary of the parabolic Fatou domain. An irrational neutral periodic
point inside a Siegel domain is called a Siegel (periodic) point ; an irrational neutral
periodic point in JP is called a Cremer (periodic) point.

Any two distinct parabolic Fatou domains which contain the same parabolic
periodic point in their boundaries are separated by two external rays which land
at this parabolic point. It is also known that points inside these parabolic domains
are attracted by the orbit of this parabolic periodic point while points on the
external rays landing at points of this orbit are repelled to infinity. Suppose that
p is a parabolic fixed point, P ′(p) = e2πi

r
q , r, q ∈ Z, R0, . . . , Rm−1 are all external

rays landing at p and U0, . . . , Uk−1 are all Fatou domains which contain p in their
boundaries. Moreover, suppose that both rays and domains are numbered according
to the positive circular order around p. Then combinatorially one can think of the
local action of P on rays and domains at p as a rotation by r/q. This means that
P (Uj) = U(j+r) mod k and all rays between Ui and Ui+1 are mapped by P in an
order preserving way onto all rays between U(i+r) mod k and U(i+1+r) mod k).

Before we continue we want to recall the notion of a general puzzle-piece which
is first introduced in Definition 5.5.1.

Definition 5.5.1 (General puzzle-piece). Let P : C → C be a polynomial.
Let X ⊂ KP be a non-separating subcontinuum or a point such that the following
holds.

(1) There existsm ≥ 0 andm pairwise disjoint non-separating continua/points
E1 ⊂ X, . . . , Em ⊂ X.

(2) There exist m finite sets of external rays A1 = {Ra1
1
, . . . , Ra1

i1
}, . . . , Am =

{Ram
1
, . . . , Ram

im
} with ik ≥ 2, 1 ≤ k ≤ m.

(3) We have Π(Aj) ⊂ Ej (so the set Ej ∪ (∪ij
k=1Raj

k
) = E′

j is closed and

connected).
(4) X intersects a unique component CX of C \ ∪E′

j .
(5) For each Fatou domain U either U ∩X = ∅ or U ⊂ X.

We call suchX with the continua Ei and the external rays Rαk
i
a general puzzle-

piece and call the continua Ei exit continua of X. For each k, the set E′
k divides

the plane into ik open sets which we will call wedges (at Ek); denote by Wk the
wedge which contains X \ Ek (it is well-defined by (4) above).
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Figure 7.4. A general puzzle-piece

Let us now see whether condition (1) of Theorem 7.4.7 applies to the polynomial
P with fixed parabolic points in a general puzzle-piece X such that P (X)∩CX ⊂ X
(loosely, it means that P (X) does not “grow” at points of CX). We need to check
that at a fixed parabolic point p ∈ X the map P repels outside X and the local
index is 1.

For convenience, consider p ∈ CX . Let L be a cycle of parabolic domains
containing p in their boundaries. To make a more complete picture, we first observe
that either L ⊂ X or all domains in L are disjoint from X. Indeed, suppose that
one of the domains in L is contained in X. Then, as there is no “growth” of P (X)
at p, we see that all domains of L are in X. Otherwise by condition (5) from
Definition 5.5.1 all domains in L are disjoint from X.

Suppose first that P ′(p) ̸= 1. There must exist small disks D such that com-
ponents of (∂D) \ X map outside D. Let Q be a crosscut which is a component
of (∂D) \ X. Choose an external ray R landing at p and crossing Q essentially.
By the analysis of dynamics around p (the fact that P locally “rotates”, see, e.g.,
[Mil00]) and since P (X)∩CX ⊂ X, we conclude that P (Q)∩R = ∅. However, then
var(f,Q) = 0, a contradiction with the existence of a crosscut of positive variation
in (∂D) \X.

On the other hand, if P ′(p) = 1 then, as was explained right after the proof
of Lemma 7.4.3, ind(P, p) > 1 (again, see, e.g., [Mil00]) which contradicts the
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condition (1) of Theorem 7.4.7 as well. Hence in the parabolic case Theorem 7.4.7
cannot be applied “as is” to the polynomial P . Moreover, since at parabolic points
the map is not topologically repelling, neither is Corollary 7.4.10 applicable in this
case.

The idea allowing us to still deal with parabolic points is that we can change
P inside the parabolic domains in question without compromising the rest of the
arguments and modifying these parabolic points to topologically repelling periodic
points. The thus constructed new map g will no longer be holomorphic but will
satisfy the conditions of Corollary 7.4.10. We formalize this idea in the following
lemma.

Lemma 7.5.1. Suppose that {pj}, 1 ≤ j ≤ m, are all parabolic fixed points of a
polynomial P with P ′(pj) = 1. Then there exists a positively oriented map gP = g
which coincides with P outside the invariant parabolic Fatou domains, is locally
one-to-one at each pj (hence pj is not a critical point of g) and is such that all the
points pj are topologically repelling fixed points of g. In particular, ind(g, pj) = +1
for all j, 1 ≤ j ≤ m.

Proof. Let us consider a fixed parabolic point p = pj . Let Fi be the invariant
Fatou domains containing p in their boundaries Bi. By a nice recent result of Yin
and Roesch [RY08], the boundary Bi of each Fi is a simple closed curve and P |Bi

is conjugate to the map z → zd(i) for some integer d(i) ≥ 2. Let ψ : Fi → D
be a conformal isomorphism. Since Bi is a simple closed curve, ψ extends to a
homeomorphism on D. Since f |Bi is conjugate to the map z → zd(i), it now follows
that the map P |Fi

can be replaced by a map topologically conjugate by ψ to the

map gi(z) = zd(i) on the closed unit disk D which agrees with f on Bi. Let g be the
map defined by g(z) = P (z) for each z ∈ C \

∪
Fi and g(z) = gi(z) when z ∈ Fi.

Then g is clearly a positively oriented map.
Since by the analysis of the dynamics around parabolic points [Mil00] P repels

points away from p outside parabolic domains Fi, we conclude, by the construction,
that p is a topologically repelling fixed point of g. Clearly, degg(p) = 1, hence by
Lemma 7.4.3 ind(g, p) = degg(p) = 1 as desired. Continuing in this fashion, we can
change P on all invariant parabolic domains with fixed points pj , 1 ≤ j ≤ m, in
their boundaries to a map g which satisfies the requirements of the lemma. �

We use Lemma 7.5.1 in the proof of the Theorem 7.5.2. Recall, that a fixed
point x of a polynomial P is said to be non-rotational if there is a fixed external
ray landing at x (it follows that each such point is either repelling or parabolic).

Theorem 7.5.2. Let P be a polynomial with filled-in Julia set KP and let Y
be a non-degenerate periodic component of KP such that P p(Y ) = Y . Suppose
that X ⊂ Y is a non-degenerate general puzzle-piece with m ≥ 0 exit continua
E1, . . . , Em such that P p(X) ∩ CX ⊂ X and either P p(Ei) ⊂ Wi, or Ei is a P p-
fixed point. Then at least one of the following claims holds:

(1) X contains a P p-invariant parabolic domain,
(2) X contains a P p-fixed point which is neither repelling nor parabolic, or
(3) X has an external ray R landing at a repelling or parabolic P p-fixed

point such that P p(R) ∩R = ∅ (i.e., P p locally rotates at some parabolic
or repelling P p-fixed point).
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Equivalently, suppose that Y is a non-degenerate periodic component of KP

such that P p(Y ) = Y , X ⊂ Y is a general puzzle-piece with m ≥ 0 exit continua
E1, . . . , Em such that P p(X)∩CX ⊂ X and either P p(Ei) ⊂Wi, or Ei is a P

p-fixed
point; if, moreover, X contains only non-rotational P p-fixed points and does not
contain P p-invariant parabolic domains, then it is degenerate.

Proof. We may assume that p = 1 and P (Y ) = Y . We show that if none of
the conclusions (1)-(3) hold, then Corollary 7.4.10 applies and therefore X must
be a point, contradicting the assumption that X is non-degenerate. However, if X
contains parabolic points, we first use Lemma 7.5.1 and replace P by the positively
oriented map g constructed in that lemma. If conclusion (1) does not hold, then
X contains no invariant parabolic domains, and so P |X = g|X . Let us now check
conditions of Corollary 7.4.10.

First we check condition (a) of Corollary 7.4.10. Indeed, consider a fixed point
y ∈ X. Then y is a repelling or parabolic fixed point of P (this is because we assume
that claim (2) of Theorem 7.5.2 does not hold and hence all P p-fixed points in X
are repelling or parabolic). By Lemma 7.5.1 this implies that y is a topologically
repelling fixed point of g. Let us show that there exists a small neighborhood U of
y such that g(U ∩X) ⊂ X. This is clear if y ∈ CX because g(X)∩CX ⊂ X by our
assumptions. Assume now that y ̸∈ CX which means that {y} = Ek is one of the
exit-continua of X. Observe that there a few fixed external rays of P landing at
y (the rays are fixed because we assume that the conclusion (3) of Theorem 7.5.2
does not hold and hence all rays which land at y must be fixed). Choose the two
rays R1, R2 which land at y and form the boundary of the wedge Wk at y which
contains X. Since g(X)∩CX ⊂ X by our assumptions, this implies that in a small
neighborhood Uk of Ek the intersection Uk∩X maps (by g or P ) into X as desired.
This completes the verification of condition (a) of Corollary 7.4.10.

Condition (b) of Corollary 7.4.10 (i.e., the existence of a fixed external ray
landing at each fixed point in X) follows immediately from the assumption that
claim (3) of Theorem 7.5.2 above does not hold.

Let us now check condition (c) of Corollary 7.4.10. Set g(X) \ X = P (X) \
X = H. We may assume that H ̸= ∅ and we can think of g(X) = P (X) as a
continuum which “grows” out of X. In particular, m ≥ 1. Fix k, 1 ≤ k ≤ m. Since
g(X)∩CX ⊂ X, any component ofH whose closure intersects Ek must be contained
in one of the wedges at Ek (such wedges are defined in Definition 7.4.10), but not
in Wk. Let Zk be the topological hull of the union of all components of H which
meet Ek together with Ek. Then Zk is a non-separating continuum. Since either
g(Ei) ⊂ Wi or Ei is a fixed point, the map g scrambles the boundary of X (see
Definition 5.4.1). Moreover, if Ek is mapped into Wk then clearly g(Ek) ∩ Zk = ∅
(because Zk\Ek is contained in the other wedges at Ek and is disjoint fromWk). On
the other hand, consider a fixed point y ∈ X such that Ek = {y}. Then condition
(c) of Corollary 7.4.10 follows from (a) which has already been verified. Hence, by
Corollary 7.4.10 we conclude, that X is a point, a contradiction.

�
Notice that if X is a general puzzle-piece with m = 0 in Theorem 7.5.2, then

CX = C. Hence in this case P (X)∩CX ⊂ X implies P (X) ⊂ X and X is invariant.
Thus, a non-separating invariant continuum X ⊂ KP is a general puzzle-piece if
and only if for every Fatou domain U of P either U ∩X = ∅, or U ⊂ X.

The proof of the next corollary is left to the reader.
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Corollary 7.5.3. Suppose that Y is a non-degenerate periodic component of
KP with P p(Y ) = Y , X ⊂ Y is a general puzzle-piece which is either invariant or
has m > 0 exit continua E1, . . . , Em such that X ∩ CX = KP ∩ CX , and either
P pn(Ei) ⊂ Wi for all n > 0, or Ei is a periodic point. If, moreover, X contains no
periodic parabolic domains, no attracting, Cremer, or Siegel periodic points, and
at most finitely many periodic points with more than one external ray landing at
them, then X is a point.

Theorem 7.5.2 is useful in proving the degeneracy of certain impressions and
establishing local connectedness of the Julia set at some points (see [BCO08]).
Recall that the impression Imp(α) of an angle in the connected case can be defined

as the intersection of the closures of all shadows Sh(C) of all crosscuts C such that
Rα crosses C essentially. Corollary 7.5.4 is proved for a somewhat larger class of
subcontinua of JP which includes impressions as an important particular case.

Consider a repelling or parabolic periodic or preperiodic point x and all external
rays landing at x. Then the union of two such rays and x is said to be a legal cut
of the plane. Also, suppose that x, y ∈ ∂U are two periodic or preperiodic points
in the boundary of an attracting or parabolic Fatou domain U . By [RY08] there
exists an arc A ⊂ U connecting x and y. The union of A and two external rays
landing at x and y is also a legal cut of the plane. Finally, call a continuum Q
periodic if for some n > 0 we have Pn(Q) ⊂ Q.

Corollary 7.5.4. Let P : C → C be a complex polynomial and Q ⊂ JP be a
periodic continuum such that for every legal cut C the set Q\C is contained in one
component of C\C. Suppose that T (Q) contains no Siegel or Cremer points. Then
Q is degenerate. In particular, if JP is connected and Q is a periodic impression
such that T (Q) contains no Cremer or Siegel points, then Q is a point.

Proof. By considering an appropriate power of P we may assume that Q
is invariant and non-degenerate. Clearly this implies that T (Q) is invariant too.
Suppose that p′ ∈ Q is a fixed point of P and Rβ is an external ray landing at p′.
Then P (Rβ) also lands on p′. If Rβ is not fixed, then C = Rβ ∪ P (Rβ) is a legal
cut. The local dynamics at p′ and the fact that Q is invariant imply now that Q
has points on either side of C, a contradiction with the assumptions on Q. Hence
each fixed repelling or parabolic point in Q is non-rotational.

Let us show that Q can only intersect the closure of a parabolic or attracting
Fatou domain U at one point. Indeed, suppose otherwise and let x, y ∈ ∂U ∩Q, x ̸=
y. Then there exists an arc I ⊂ ∂U with endpoints x, y, contained in Q because
otherwise Q will “shield” some points of ∂U from infinity contradicting the fact
that all points of ∂U belong to the closure of the basin of attraction of infinity. By
[RY08] we can find, say, periodic points u, v ∈ I and include them in a legal cut
T which will separate some points of I (and hence of Q) from other points of I,
contradiction with our assumptions. Hence T (Q) cannot contain an attracting or
parabolic domain U since otherwise, by the above, Q must shield part of ∂U from
the basin of attraction of infinity, a contradiction. This implies that T (Q) cannot
contain parabolic domains or attracting points. By the assumption T (Q) does not
contain Cremer or Siegel points either. Hence by Corollary 7.5.3 Q is a point as
desired. �
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In the particular case in the end of the statement we assume that JP is con-
nected; the same result in fact holds for all Julia sets but will require the introduc-
tion of the notion of the impression for disconnected Julia sets which we avoid here
for the sake of simplicity. The verification of the fact that impressions satisfy the
conditions of the corollary is straightforward and therefore is left to the reader. In
particular, suppose Rα is a periodic external ray and the topological hull T (Imp(α))
of the impression of α contains only repelling or parabolic periodic points. Then,
by Corollary 7.5.4, Imp(α) is degenerate.

Note that the assumptions of Corollary 7.5.4 are equivalent to the following.
Suppose that Q ⊂ JP is a periodic continuum such that for every legal cut C the set
Q \ C is contained in one component of C \ C. As in the proof of Corollary 7.5.4,
this implies that Q can only intersect the boundaries of attracting or parabolic
domains at no more than one point. To make the conclusion of the corollary, we
need to check that T (Q) contains no Siegel or Cremer points. We claim that this
is equivalent to the following:

(1) Q contains no Cremer point;
(2) if the boundary of a Siegel disk is decomposable, then Q is disjoint from

it;
(3) if the boundary of a Siegel disk is indecomposable (it is not known if such

Siegel disks exist), then Q intersects it in at most one point.

Indeed if (1) - (3) above are satisfied then, by an argument similar to the proof
of Corollary 7.5.4, T (Q) contains no Cremer or Siegel points. Now, suppose that
T (Q) contains no Cremer or Siegel points. Then by Corollary 7.5.4 Q = {q} is a
point. Hence (1) and (3) hold trivially. If B is the decomposable boundary of a
Siegel disk and q ∈ B, then we may assume that B and Q are invariant. It is known
[Rog92a, Rog92b] that there exists a monotone map p : B → S1 and an induced
map g : S1 → S1 which is an irrational rotation. Since Q is invariant, Q = B, a
contradiction. Hence (2) holds as well.
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