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Abstract. In [B1] rotation numbers of patterns on the interval and twist patterns
were introduced. We prove that twist patterns of a given rotation number with
minimal topological entropy are unimodal, estimate their entropy depending on the
rotation number, and study the properties of the entropy with respect to the number
of laps in a pattern.

0. Introduction

In the theory of discrete dynamical systems, periodic orbits (cycles) play a very
important role. The question of coexistence of various types of cycles for the same
map admits particularly nice answers in dimension one. However, one has to decide
what to consider a “type” of a cycle. For interval maps, two choices have been
widely adopted. One is to look only at the period of a cycle. Then the results are
very strong, namely the following Sharkovskĭı theorem holds. To state it let us first
introduce the Sharkovskĭı ordering for positive integers:

3 � 5 � 7 � · · · � 2 ·3 � 2 ·5 � 2 ·7 � . . . 22 ·3 � 22 ·5 � 22 ·7 � · · · � 8 � 4 � 2 � 1

Denote by Sh(k) the set of all integers m such that k � m, by Sh(2∞) the set
{1, 2, 4, 8, . . . }, and by P (f) the set of periods of cycles of a map f .

Theorem 0.1 ([S]). If f : [0, 1] → [0, 1] is continuous, m � n, and m ∈ P (f) then
n ∈ P (f) and so there exists k ∈ N ∪ {2∞} such that P (f) = Sh(k). Moreover,
if k ∈ N ∪ {2∞} then there exists a continuous map f : [0, 1] → [0, 1] such that
P (f) = Sh(k).

Unfortunately, the classification of cycles by period only is very coarse. Another
choice has quite the opposite features. The classification is very fine (we look at
the permutation determined by the cycle), but the results are much weaker than
for periods (see e.g. [ALM2]).
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Recently a third possible choice has been discovered ([B1], see also [BK]). It gives
a better classification than just by periods, and on the other hand, it admits a full
description of possible sets of types. It is based on ideas from the theory of maps of
a circle of degree one and employs rotation numbers. In this paper we will continue
the investigation of connections between this approach and the second one (with
permutations). Therefore, we have to start with a brief description of the approach
via rotation numbers.

One can define rotation numbers in a variety of cases using the following approach
(see, e.g. [MZ], [Z]). Let X be a compact metric space, let f : X → X be a
continuous map, and let ϕ : X → Rn be a bounded Borel function. Then for any
periodic point x of period n let us call the number 1

n

∑n−1
i=0 ϕ(f i(x)) the ϕ-rotation

number of x. With a proper choice of ϕ the set of all ϕ-rotation numbers of periodic
points of f may contain a lot of information about the dynamics of f .

In case of classical rotation numbers of circle maps of degree 1 the function ϕ is
the displacement for the lifting of the map. Therefore the sum

∑n−1
i=0 ϕ(f ix) = m

taken along the orbit of an n-periodic point x is an integer. We call the pair
(m,n) ≡ rp(x) the rotation pair of x. Let us denote the set of all rotation pairs
of periodic points of f by RP (f). Also, for real numbers a ≤ b set M(a, b) =
{(p, q) ∈ Z × N : p/q ∈ (a, b)} (in particular M(a, a) = ∅). For a ∈ R and
l ∈ Z+ ∪ {2∞} ∪ {0} let Q(a, l) be empty if a is irrational or l = 0; otherwise let it
be {(ks, ns) : s ∈ Sh(l)}, where a = k/n with k, n coprime (see [M1])

Theorem 0.2 ([M1]). For a continuous circle map f of degree 1 there exist a, b ∈
R such that a ≤ b, and l, r ∈ N∪{2∞} such that RP (f) = M(a, b)∪Q(a, l)∪Q(b, r).
Moreover, for every a, b ∈ R such that a ≤ b and l, r ∈ N ∪ {2∞}, there exists a
continuous circle map f of degree 1 such that RP (f) = M(a, b) ∪Q(a, l) ∪Q(b, r).

In the case of interval maps one can define rotation numbers in the following
way. Let f : [0, 1] → [0, 1] be continuous, let Per(f) be its set of periodic points,
and let Fix(f) be its set of fixed points. It is easy to see that if Per(f) = Fix(f)
then for any y the ω-limit set ω(y) is a set consisting of a fixed point of f . Assume
that Per(f) 6= Fix(f) and define a function χ as follows:

χ(x) =











1 if f(x) < x,
1
2 if f(x) = x,

0 if f(x) > x.

In other words, χ is a slightly modified indicator function of the set L = {x :
f(x) < x}. Then for any non-fixed periodic point y of period p(y) the number
l(y) = card{orb(y)∩L} =

∑n−1
i=0 χ(f iy) is well-defined; the pair rp(y) = (l(y), p(y))

is called the rotation pair of y and the set of all rotation pairs of periodic non-fixed
points of f is denoted by RP (f). Also, the χ-rotation number %χ(y) = %(y) =
l(y)/p(y) is simply called the rotation number of y.

Theorem 0.3 ([B1]). (1) For a continuous interval map f with non-fixed periodic
points there exist 0 ≤ a ≤ 1/2 ≤ b ≤ 1 and l, r ∈ Z+ ∪ {2∞} ∪ {0} such that
RP (f) = N(a, b) ∪Q(a, l) ∪Q(b, r), if a < b = 1/2 then r = 3, if a = 1/2 < b then
l = 3, if a = b = 1/2 then r = l 6= 0, if a = 0 then l = 0 and if b = 1 then r = 0.
(2) If a, b, l, r are numbers satisfying all the properties from statement (1) then there
is a continuous interval map f such that RP (f) = N(a, b) ∪Q(a, l) ∪Q(b, r).
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Theorem 0.3 implies that the closure of the set of rotation numbers of all periodic
points of f is an interval contained in [0, 1] and containing 1/2. We call this interval
the rotation interval of f and denote it by If .

A cycle is called twist if there is a map with this cycle and no other cycle of the
same rotation number. This agrees with the terminology for circle maps (see e.g.
[ALM2]). As usual, the entropy of a cycle is the minimal topological entropy of a
map with this cycle. Section 2 is devoted mainly to the proof that twist cycles of
minimal entropy are unimodal.

In Section 3 we establish the connection between our rotation numbers and those
introduced for unimodal maps by Gambaudo and Tresser in [GT]. We also derive
a formula for the entropy of unimodal twist cycles. To state it, we need some
definitions from [ALMT]. For µ ∈ [0, 1], µ 6= 1/2, let λ(µ) be the unique root of the
equation

∑

p/q∈(µ,1−µ)

t−q = 1

(in [ALMT] it was denoted βµ,1−µ; also, we do not assume here that µ < 1 − µ,
so by the interval (µ, 1− µ) we simply mean the interval with the endpoints µ and
1 − µ). In the above equation we take the sum over all pairs of natural numbers
p, q such that p/q ∈ (µ, 1 − µ). Note that in fact the number λ(µ) is defined for
any µ ∈ [0, 1], µ 6= 1/2, not only for rational ones. Also, λ(µ) is continuous as a
function of µ.

We prove in Section 3 that the topological entropy of a unimodal twist cycle of
rotation number µ is log λ(µ). This, together with the results of Section 2, implies
the following theorem.

Theorem 3.9. (1) For any number 0 < % < 1, % 6= 1/2, if the rotation interval of
f contains % then h(f) ≥ log λ(%). Thus, if a map f has a periodic point of rotation
number % then h(f) ≥ log λ(%).
(2) For every µ ∈ [0, 1/2) there is a continuous interval map with rotation interval
[µ, 1/2] and topological entropy log λ(µ).

In Section 4, using a result of Bobok and Kuchta ([BK]), we describe a simple
way of constructing all twist patterns (that is types of twist cycles, or in other
words, their permutations). We also compute the number of twist patterns of a
given rotation number.

In Section 5 we study some other possible connections between the rotation
number and the entropy of twist cycles.

The equation for λ(µ) found in Section 3 is not very useful for concrete compu-
tations. Therefore, we give a more “computable” equation in the Appendix. Then
we derive some estimates that shed light on the behavior of topological entropy in
one-parameter families of unimodal maps.
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1. Preliminaries

In this paper we provide estimates of the entropy of a map f given that it has
a periodic point of rotation number %. Furthermore, we estimate the entropy of a
map f given that µ ∈ If for some µ ∈ [0, 1] (we do not assume µ to be rational
here). To explain our approach we have to introduce a few notions concerning
so-called combinatorial dynamics (the best sources on this matter are [MN] and
[ALM2], where one also can find much more extensive lists of references).

One can think of a pattern as a cyclic permutation of the set 1, 2, . . . , n. Accord-
ing to [MN] we should rather use the term cyclic pattern, and according to [ALM2],
oriented pattern. However, since we are dealing here only with them, we just say
“pattern”. If an interval map f on its cycle P is conjugate to a pattern π by a
strictly increasing map then P is a representative of π in f and f exhibits π on P
([MN]). A pattern π forces a pattern θ if every continuous interval map f which
exhibits π also exhibits θ. Baldwin [Ba] showed that forcing is a partial ordering.

The infimum of the topological entropies of continuous maps exhibiting a pattern
π is called the entropy of the pattern π. If P = {x1 < x2 < · · · < xn} is a cycle of
f : [a, b] → [a, b] then f is called P -monotone if it is constant on [a, x1], constant on
[xn, b], and monotone on each one of the intervals [xi, xi+1]. If P is a representative
of π in f and f is P -monotone then f exhibits only patterns forced by π and the
topological entropy of f is equal to the entropy of π ([ALM2]).

Clearly one can talk about the rotation pair rp(π) and the rotation number %(π)
of a pattern π of period larger than 1. The rotation number is invariant under
a monotone semiconjugacy. More precisely, if a pattern π′ is semiconjugate to a
pattern π′ by a monotone (not necessarily strictly) increasing map then π′ is said
to be a reduction of π. Then the definition immediately implies that %(π) = %(π′).
We call a pattern π a twist pattern or simply twist if it does not force other patterns
of the same rotation number. Note that Theorem 0.3 implies that rotation pairs
of twists consist of coprime numbers. In particular, the only twists of rotation
number 1/2 are of periods 1 and 2, and so from now on we consider only twists
of rotation numbers distinct from 1/2. Also we would like to make the following
remark explaining to some extent the importance of twists. It is an immediate
corollary to Theorem 0.3 and the fact that forcing is a partial ordering.

Corollary 1.1. If a map f has a point of rotation number µ = p/q with p, q
coprime, then f exhibits a twist pattern of rotation number µ. Moreover, any twist
pattern of rotation number µ has rotation pair (p, q).

In the particular case of unimodal patterns (by unimodal we mean patterns with
a unique interior local extremum), a full characterization of twists was given in [B2].
It turns out that for every rotation number % 6= 1/2 there is a unique unimodal twist
with this rotation number. We denote it by ϕ%. Before we describe the structure of
ϕ%, note that it is enough to consider unimodal patterns whose only interior local
extremum is a maximum. In terms of rotation numbers this translates into the
observation that it is enough to deal with twists of rotation numbers smaller than
1/2. Let us now state the following lemma.

Lemma 1.2 ([B2]). Let p/q 6= 1/2 be a rational number and let p, q be coprime.
Then there is a unique unimodal twist π = ϕp/q of rotation number p/q. If p/q <
1/2 then the twist π can be described as follows:

(1) π : {1, . . . , q} → {1, . . . , q},
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(2) π(j) = j + p for 1 ≤ j ≤ q − 2p,
(3) π(j) = p + q − j for q − 2p + 1 ≤ j ≤ q − p,
(4) π(j) = q + 1− j for q − p + 1 ≤ j ≤ q.

If p/q > 1/2 then the twist ϕp/q is defined similarly.

In fact the twist from Lemma 1.2 can be obtained as the result of the following
procedure (see [B2]). Let θ : {1, . . . , q} → {1, . . . , q} be defined as the shift by
p to the right modulo q. In other words, let θ(j) = j + p if 1 ≤ j ≤ q − p and
θ(j) = j+p−q if q−p+1 ≤ j ≤ q. Let the permutation ψ : {1, . . . , q} → {1, . . . , q}
be such that ψ(j) = j if 1 ≤ j ≤ q− p and ψ(j) = 2q− p+1− j otherwise (in other
words, ψ is the identity on 1, . . . , q− p and reverses orientation on q− p+1, . . . , q).
Now, π = ψ−1 ◦ θ ◦ ψ. In other words, π is conjugate to θ via ψ.

Let us discuss the following question. Suppose that a rational number µ belongs
to the rotation interval If of a map f . Does it imply that there is an f -periodic point
with rotation number µ? By Theorem 0.3 the answer is affirmative if µ belongs to
the interior of If . The case of endpoints is not that obvious in the general situation
but for piecewise monotone maps the answer is still affirmative as is shown in [B3].
Namely, one can prove the following result.

Proposition 1.3 ([B3]). If f is piecewise monotone and µ 6= 0, 1 belongs to If

then there is a cycle of f of rotation number µ.

Note that by Corollary 1.1 the periodic orbit from Proposition 1.3 may be chosen
to represent a twist of rotation number µ.

Now we describe some tools developed in [B1]. Let U be the family of all self-
mappings of the interval [0, 1] with a unique fixed point, say, a. Let f ∈ U . Then
all points to the left of a are mapped to the right (f(x) > x) and all points to the
right of a are mapped to the left (f(x) < x). We study a kind of symbolic dynamics
for these maps. Let I0, I1, . . . be intervals having a as an endpoint (we call them
admissible) such that f(Ij) ⊃ Ij+1 for 0 ≤ j. Then we say that (I0, I1, . . . ) is a
chain of intervals (note that a chain of intervals need not be finite). If a finite chain
of intervals (I0, . . . , Ik−1) is such that f(Ik−1) ⊃ I0 then we call (I0, . . . , Ik−1) a
loop of intervals. Clearly if (I0, . . . , Ik−1) is a loop then k > 1, since the image of
an admissible interval cannot contain this interval.

Let ϕ be a function defined on the family of all admissible intervals such that
ϕ([b, a]) = 0 if b < a and ϕ([a, c]) = 1 if a < c. For a loop ᾱ = (I0, . . . , Ik−1) let us
call the pair of numbers (p, k), where p =

∑k−1
j=0 ϕ(Ij), the rotation pair of ᾱ, and

let us call the number %(ᾱ) = p/k the rotation number of ᾱ. We finish this series of
definitions with the following one. A sequence (y1, . . . , yl) is called non-repetitive if
it cannot be represented as several repetitions of a shorter sequence.

Lemma 1.4 ([B1]). Let f ∈ U and let ᾱ = (I0, . . . , Ik−1) be an admissible loop.
Then there are the following possibilities.
(1) Assume that k is even, ϕ(Ij) = 0 if j is even, and ϕ(Ij) = 1 if j is odd. Then
f has a periodic point of period 2.
(2) Otherwise, there is a periodic point x ∈ I0 such that x 6= a, f j(x) ∈ Ij (0 ≤
j ≤ k − 1), fk(x) = x and so %(x) = %(ᾱ). Moreover, if the sequence of numbers
(ϕ(I0), . . . , ϕ(Ik−1)) is non-repetitive then rp(x) = rp(ᾱ).

The above lemma and some other tools are helpful in studying general properties
of twists which we are about to describe. The following lemma was proven in [B1].
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Lemma 1.5 ([B1]). A twist forces a unique fixed point.

Let π be a pattern with rp(π) = (r, n) and let P be a representative of π in f .
Assume that f ∈ U (i.e. f has a unique fixed point); by Lemma 1.5 this is true if π
is a twist and f is P -monotone. It has already been mentioned that the cases when
2r ≤ n and 2r ≥ n are similar, so we assume that 2r ≤ n (and so %(π) = r/n ≤ 1/2).
Denote A0 = {x ∈ P : x < a, f(x) < a}, A1 = {x ∈ P : x < a, f(x) > a}, A2 =
{x ∈ P : a < x}. Also, for any cycle X = {x0, x1 = f(x0), . . . , xk−1 = fk−1(x0)} of
f let us denote the loop ([x0, a], [x1, a], . . . , [xk−1, a]) by ᾱ(X).

Lemma 1.6 ([B1]). Let π be a twist. Then the following hold.

(1) f(A2) lies to the left of a.
(2) f is increasing on A0 and decreasing on A1 ∪A2.
(3) f2(x) < x for all x ∈ A1.

When working with maps f ∈ U we will use terminology similar to that from
[ALM1] and [M3]. Namely, let f ∈ U , let a be the unique fixed point of f , and let
P be a cycle of f . Then all points x ∈ P such that x and f(x) lie to the same side
of a are called green and all other points of P are called black.

Remark 1.7. Assume that π is a twist, P is a representative of π in f , and f is
P -monotone. Then the rotation interval of f is [%(π), 1/2].

Proof. By Lemma 1.6 a twist of rotation number less than 1/2 forces only patterns
of rotation numbers less than or equal to 1/2. Hence, the rotation interval of f
is [µ, 1/2] for some µ. If µ < %(π) than by Theorem 0.3 there is a pattern γ of
rotation number m/n < %(π) forced by π. By the same theorem γ forces a pattern
of rotation number %(π). This contradicts the definition of a twist.

Let us now turn to well known results allowing us to estimate (and in some cases
even compute) the topological entropy of a map. We say that two non-degenerate
closed intervals are almost disjoint if their intersection consists of at most one
point. Now, if f : [0, 1] → [0, 1] is continuous and Ij , j = 0, 1, . . . , are pairwise
almost disjoint intervals then a matrix associated with these intervals is the n × n
matrix A = (aij)

i,j=n−1
i,j=0 such that aij = 1 if f(Ii) ⊃ Ij and aij = 0 otherwise. In

particular, if P is a representative of π in f and f is P -monotone, then the points
of P divide the interval into pairwise disjoint subintervals. We forget about the
intervals to the left of the leftmost point of P and to the right of the rightmost
point of P . Then the corresponding associated matrix depends only on π, and is
called a matrix associated with π. Finally, let us denote the spectral radius of a
matrix B by r(B).

Lemma 1.8 ([BGMY]). (1) If f : [0, 1] → [0, 1] is continuous, [0, 1] is parti-
tioned into n pairwise almost disjoint intervals {Ij}n−1

j=0 and A is the corresponding
associated matrix then h(f) ≥ ln r(A).

(2) If π is a permutation and A is the matrix associated with π then the entropy
of π is ln r(A).

2. Twists of minimal entropy are unimodal

The aim of this section is to prove the following theorem.
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Theorem 2.1. If π is a non-unimodal twist and θ is a unimodal twist of the same
rotation number than h(π) > h(θ).

As was explained in the introduction, this implies that the entropy of any map
which contains µ in its rotation interval is larger than or equal to λ(µ). Throughout
this section we consider a twist pattern π and its representative P in a P -monotone
map f : [0, 1] → [0, 1]. Then by Lemma 1.5, f ∈ U . The unique fixed point of f
will be denoted by a. The definition implies that all local extrema of f belong to
P . In various lemmas additional assumptions about π will be made. We prove a
few lemmas which lead to Theorem 2.1. Lemma 2.2 relies upon Lemma 1.6 and
some results of [BGMY] stated in Section 1.

Lemma 2.2. If f is not unimodal then h(f) ≥ (1/2) ln 3.

Proof. Assume that f is not unimodal. Then there are points xl < xm < xr of P
such that f(xl) > f(xm) and f(xr) > f(xm). By Lemma 1.6 (2), at least one of
the points xm, xr belongs to A0, and therefore is green. Similarly, at least one of
the points xl, xm belongs to A1 ∪A2, and therefore is black. Hence, P has a black
point to the left of a green point. The rightmost point of P ∩ [0, a] is black and by
Lemma 1.6 (1) all points of P to the right of it are also black. Therefore there is
k ≥ 1 and consecutive (in space) points y0 < y1 < · · · < yk < yk+1 of P such that
y0 and yk+1 are black, y1, . . . , yk are green, and yk+1 < a.

We claim that f2(yk+1) ≤ y0. Suppose that this is false. Then f2(yk+1) ≥ y1.
This implies that that the set A = [y1, f(yk+1)] ∩ P is invariant. Indeed, all green
points from A are mapped to the left of a and therefore their images remain in
A. If ζ ∈ A ∩ [y1, a] is a black point then yk+1 ≤ ζ < a, so by Lemma 1.6 (2),
a < f(ζ) ≤ f(yk+1), and hence f(ζ) ∈ A. Finally, if ζ ∈ A ∩ [a, f(yk+1)] then,
again by Lemma 1.6 (2), f(ζ) ∈ [f2(yk+1), a] ⊂ [y1, a], and thus f(ζ) ∈ A. Hence
A is an invariant proper subset of P (indeed, y0 ∈ P \A), which is impossible since
P is a cycle. This proves our claim. Thus, there exists z ∈ (a, f(yk+1)] such that
f(z) = y0. Note that by Lemma 1.6 (2), f(y0) > f(yk+1) > z.

By Lemma 1.8, in order to complete the proof it is enough to find three almost
disjoint intervals I, J,K such that the f2-image of each one of them contains I∪J∪
K. Set K = [yk+1, a]. The fact that yk is a green point and yk+1 is a black point
implies that there is a point ξ ∈ (yk, yk+1) such that f(ξ) = a. Set J = [ξ, yk+1]
and I = [y0, ξ]. Clearly, I, J,K are almost disjoint and f(I)∩ f(J)∩ f(K) ⊃ [a, z].
Hence f2(I), f2(J), f2(K) contain I ∪ J ∪K. This completes the proof.

Lemma 2.2 easily implies the following corollary.

Corollary 2.3. If f is not unimodal and 1/3 ≤ %(π) < 1/2 then h(f) > h(ϕ%(π)).

Proof. By Lemma 1.8, h(ϕ1/3) = ln µ, where µ = (1 +
√

5)/2, and h(ϕ%(π)) ≤
h(ϕ1/3) = ln µ. At the same time by Lemma 2.2, h(f) ≥ ln

√
3. Therefore the

corollary follows from the fact that
√

3 > µ.

To prove Theorem 2.1, it remains to consider twists π such that %(π) < 1/3.

Lemma 2.4. Let π be a non-unimodal twist such that %(π) < 1/3. Then h(f) ≥
ln 2.

Proof. Assume that h(f) < ln 2 and establish some properties of f that follow from
the assumption.
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Step 1. If x ∈ P then the following is impossible: x < f3(x) < f(x) < a < f2(x).

Let ᾱ be the loop formed by the intervals joining a with the consecutive (in
time) points of P . If x < f3(x) < f(x) < a < f2(x) then we can consider a
loop β̄ obtained by erasing the intervals [x, a], [f(x), a], [f2(x), a] from the loop ᾱ.
Obviously β̄ is admissible. Moreover, if rp(P ) = (p, q) then rp(β̄) = (p− 1, q − 3).
Now the fact that p/q < 1/3 implies that %(β̄) = (p − 1)/(q − 3) < p/q. By
Lemma 1.4, the existence of the loop β̄ implies that there is an f -periodic point y
with rotation number %(y) = %(β̄) < p/q. Since f is P -monotone, π forces θ, where
θ is the pattern of the orbit Q of y. By Theorem 0.3, a Q-monotone map has a
cycle R with %(R) = p/q. Therefore θ forces γ, where γ is the pattern of R. Since
π 6= θ and forcing is a partial ordering, we have π 6= γ. This is a contradiction,
since π is a twist and it forces γ.

Step 2. The following is impossible: f3(x) ≤ y < x < f(x) < a < f2(x) ≤ f(y).
In particular, it is impossible that f3(x) < x < f(x) < a < f2(x) ≤ f4(x).

Let I = [y, x], J = [x, f(x)],K = [f(x), f2(x)]. Then f(I) ⊃ K, f(J) ⊃ K,
f(K) ⊃ I ∪ J ∪K. Moreover, by Lemma 1.8, h(f) ≥ ln r(A), where A is the 3× 3
matrix defined as follows: aij = 0 if both i and j are smaller than 3 and aij = 1
otherwise. The characteristic polynomial of A is −λ3 +λ2 +2λ = −λ(λ+1)(λ−2),
and thus r(A) = 2. Therefore h(f) ≥ ln 2, which contradicts the assumption that
h(f) < ln 2.

Let us now complete the proof by showing how the assumption h(f) < ln 2 leads
to the contradiction. Let c be the point at which f attains the global maximum.
Let us move backwards along the preimages of c belonging to P until we first meet
a green point lying to the left of a and to the right of c; the existence of such a
point follows from the fact that f is not unimodal. Denote this green point by d.
Then by the choice of d we have d < f(d) < a < f2(d). Let us show that f3(d) < c.
Indeed, by Lemma 1.6 (3), f3(d) < f(d). Now, f3(d) ∈ (d, f(d)) is impossible by
Step 1. Moreover, if f3(d) ∈ (c, d) then f3(d) must be a black point because of
the choice of d. By Lemma 1.6 (2) this implies that f4(d) > f2(d), so we have
f3(d) < d < f(d) < a < f2(d) < f4(d), which is impossible by Step 2. Therefore
f3(d) ≤ c. At the same time f(c) > f2(d), since attains the global maximum at c.
Thus we have f3(d) ≤ c < d < f(d) < a < f2(d) < f(c), which is impossible by
Step 2. The contradiction completes the proof.

3. Unimodal maps and the formula for minimal entropy

In this section we will derive a formula for the minimal entropy of a pattern of
a given rotation number µ < 1/2. In fact, our result will be even stronger than
that: this will be a formula for the minimal topological entropy of a continuous
interval map with the rotation interval containing [µ, 1/2], and it will work also for
irrational µ’s (see Introduction). Moreover, we show that for every µ < 1/2 there
is a continuous interval map with topological entropy given by this formula and
rotation interval [µ, 1/2]. We also prove that for unimodal maps the left endpoint
of the rotation interval is closely related to the rotation interval bound introduced
by Gambaudo and Tresser in [GT].

In this section we work mainly with unimodal maps. There are several ways
of defining unimodal maps. We have to choose one of them. Let I = [0, 1]. We
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shall call a continuous map f : I → I unimodal if there exists c ∈ (0, 1) such that
f(c) = 1, f(1) = 0, and f is increasing on the interval [0, c] and decreasing on [c, 1].
Suppose there is a fixed point b ∈ [0, c]. Then clearly the map has a 2-horseshoe
(more precisely, f [b, c] ⊃ [b, c]∪ [c, 1] and f [c, 1] ⊃ [b, c]∪ [c, 1]); at the same time it
is clear that all the points to the left of b are attracted by fixed points, i.e. behave
trivially in the dynamical sense. Therefore without loss of generality we may also
assume that there are no fixed points in (0, c). If x ∈ I then sometimes there is
another point in I with the same image under f as x. We shall denote this point
by x′. Thus, we have f(x′) = f(x) and x′ 6= x. A unimodal map f has a unique
fixed point in [c, 1]. We shall denote this fixed point by a. It is well known that
the point a′ exists if and only if the topological entropy of f is larger than or equal
to (1/2) log 2. Otherwise the rotation interval of f is degenerate, so we will assume
throughout this section that h(f) ≥ (1/2) log 2.

Clearly any periodic point of a unimodal map f has rotation number less than
or equal to 1/2. Therefore the rotation interval If of f is a of the form [µ, 1/2].
We will refer to µ as the lower rotation number of f and denote it by LRN(f).
One can give another interpretation of the rotation interval of a map (see [B3], [B4]
for an alternative definition and discussion). For unimodal maps (and in fact for a
much larger class of maps) it is especially simple. Namely, for any point x let us
consider the set of all limits of the averages 1

n

∑n−1
i=0 χ(f i(x)). It is proven in [B3]

that the union of all these limits over all points of the interval coincides with If .

Figure 3.1. Truncated tent map

Let us look at the full tent map T : I → I given by

T (x) =
{

2x if 0 ≤ x ≤ 1
2 ,

2− 2x if 1
2 ≤ x ≤ 1,

and at the truncated tent maps given by Tα(x) = min(T (x), α) (see [ALM2]; see also
Figure 3.1). Although the maps Tα are not unimodal in our sense, they can serve
as excellent models for unimodal maps. Therefore we will treat them as unimodal
maps. If c is needed, we will choose a point from the plateau [α/2, 1−α/2] instead.
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Moreover, we will disregard the existence of the fixed point 0 if α < 1. If we do this,
then to find the lower rotation number of Tα it is enough to look at the rotation
numbers of cycles of Tα and take their infimum. Set LNR(α) = LNR(Tα). The
rotation interval as a function of a truncation of a given (not necessarily unimodal)
map is studied in [B2]. In the unimodal case the results of [B2] imply that the
rotation interval [LNR(α), 1/2] of Tα does not get smaller with the growth of α
and depends on α continuously. This means that LNR(α) is a non-increasing
continuous function of α.

For any µ ∈ (0, 1/2) let β(µ) be the smallest number such that LNR(β(µ)) = µ.
In the next lemma we need the following observation connected with kneading
invariants (see [CE]). It is well known that the kneading invariants of unimodal
maps are linearly ordered. Suppose there are two different unimodal twist patterns
π1, π2 of the same rotation number µ; denote their kneading invariants by ν1 and
ν2 and suppose for the definiteness that ν1 > ν2. If f is a unimodal map whose
periodic critical point represents the pattern π1 then by the well known properties
of kneading invariants f has another periodic orbit representing the pattern π2.
This contradicts the fact that π2 is a twist pattern. Therefore there is a unique
twist unimodal pattern of a given rotation number µ. We will denote it by ϕµ.

Lemma 3.1. If µ is rational then every unimodal map with the kneading invariant
equal to that of Tβ(µ) has the turning point c periodic and the orbit of c has the
unimodal twist pattern ϕµ of rotation number µ.

Proof. Let us show that Tβ(µ) has one of the endpoints of its critical interval periodic
(denote this point by u), so that the orbit of u is a unimodal twist of rotation number
µ. Indeed, otherwise there is a cycle Q of Tβ(µ) of rotation number µ such that
if ν = max Q then ν < β(µ). Consider the map Tν . It has the cycle Q and so
LNR(ν) ≤ µ, contradicting the definition of β(µ). This proves the lemma.

We will call a unimodal map with the kneading invariant equal to the kneading
invariant of Tβ(µ) for some µ, a unimodal twist map.

The following basic property of the lower rotation number for unimodal maps
follows immediately from the kneading theory and the definition of LRN .

Lemma 3.2. For unimodal maps, the lower rotation number depends only on the
kneading invariant. Moreover, this dependence is non-increasing.

The following easy lemma was proven in [B1].

Lemma 3.3 ([B1]). A twist pattern is irreducible. In particular the kneading
invariant of a unimodal twist map is indecomposable.

We will be dealing with interval maps or circle maps that have finitely many
discontinuities. Then a problem may arise, what should be the values of the map
at the points of discontinuity. A wrong choice of those values may result in losing
some rotation numbers. The simplest solution to this problem is to consider the
one-sided limits at the points of discontinuity. Thus, for a map g, we will consider
(x, limy↗x g(y), limy↗x g2(y), . . . ) and (x, limy↘x g(y), limy↘x g2(y), . . . ) as orbits.
However, if (x, g(x), g2(x), . . . ) is not one of those, we do not consider it as an orbit.
Thus, we even do not have to define g at the points of discontinuity.

Let us fix a unimodal map f such that LNR(f) = µ. We will now discuss some
results obtained in [B2], in order to explain how Lemma 1.2 describing unimodal
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twists can be proved. The main idea in [B2] is to change a unimodal map so that
the results of [M4] are applicable. More precisely, using a discontinuous conjugacy
and then a special lifting one can get a map of the real line into itself with special
properties, called in [M4] an old map. For such maps the rotation numbers were
introduced in [M4]. Our construction implies that the rotation numbers for the old
map obtained in such a way, coincide with the rotation numbers for the original
unimodal map. Therefore we can now rely upon [M4].

To realize this plan let us first define the discontinuous conjugacy σc : I → I as
the identity on [0, a] and the symmetry (with respect to (a + 1)/2) on [a, 1]. Thus,
σc(x) = x if 0 ≤ x ≤ a and σc(x) = a+1−x if a ≤ x ≤ 1. Now we define ˜f : I → I
by ˜f = σc ◦ f ◦ σc (see Figure 3.2).

We have to specify a lifting F of a map f . We do it by setting on [0, 1)

F (x) =

{

˜f(x) if 0 ≤ x ≤ a,
˜f(x) + 1 if a < x < 1,

and then as usual: if x = k + y with y ∈ [0, 1) then F (x) = k + F (y). The map F
we get in this way is an old map (see [M4]). Clearly, the usual rotation numbers for
F are the same as our rotation numbers, except perhaps for for the orbits passing
through points of discontinuity. As we mentioned, in this case we consider one-sided
limits. For them, arbitrarily long pieces of orbits of all maps under consideration
are approximated by pieces of orbits of the same lengths that do not pass through
any discontinuities. Therefore all rotation numbers for the two maps agree. Notice
that with this approach a point of an orientation reversing cycle may be “cut in
halves”, so its period is twice as large as it should be. This does not affect its
rotation number, so it does not harm us. On the other hand, the idea of cutting a
point in halves is intriguing and may lead to the study of such interesting objects
as intervals (x, x] and [x, x).

Thus, the rotation sets of f and F are the same. In particular, µ is the left
endpoint of the rotation interval of F .

Figure 3.2. Functions ˜f (left) and F (right)
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The following lemma was proved in [B2].

Lemma 3.4 ([B2]). If f is a unimodal twist map then the f -orbit of c misses
the set (a′, c) ∪ [a, 0′). If µ is rational then the orbit of c has pattern described in
Lemma 1.2.

We are not going to reprove this lemma here. However, we will need some tools
used in the proof, so we have to introduce them.

Assume that f is unimodal and let F be defined as above. The map Fl (defined
by Fl(x) = infy≥x F (y), see [M4], [ALM2]) has the rotation number equal to the
left endpoint of the rotation interval of F , that is to µ. This map coincides with
F outside the open intervals where it is constant. In [0, 1) they are the intervals
I = (a′, c) and J = σc(a, 0′). Note that Fl(I) = {a} and Fl(a) = 1 ∈ J . For f we
get the compact f -invariant set A of all points missing intervals (a′, c) and (a, 0′).
Any of these points has rotation number µ and we have c ∈ A. Note that the
Fl-orbit of c and the F -orbit of c (the right-hand limit) coincide.

Now let us return to the general situation. To every unimodal map f on I = [0, 1]
there corresponds a symmetric Lorenz-like map g on [0, 2] (see [GT]). By symmetric
Lorenz-like we mean that g is increasing on each one of the intervals [0, 1] and [1, 2],
limx↗1 g(x) = 2, and if g(1+x) = 1+y then g(1−x) = 1−y (the graph is symmetric
with respect to the point (1, 1)). We get the graph of g by reflecting the graph of
f with respect to the line x = 1, then reflecting the resulting graph with respect to
the line y = 1 (so when we fold the 2× 2 square of paper in four and look against
light, we see the same lines on all four quarters), and finally erasing all decreasing
pieces of our picture (see [H], [GT]; see also Figure 3.3).

Figure 3.3. Lorenz-like map g corresponding to f



ENTROPY OF TWIST INTERVAL MAPS 13

By the same method as for ˜f , one can define rotation numbers for g (see
[ALMT]). Strictly speaking, one should start by rescaling [0, 2] back to [0, 1]. Then
we look at the lifting G of g defined so that G|(0,1/2) = g|(0,1/2), G|(1/2,1) =
g|(1/2,1) + 1, G|(k,k+1) = G|(0,1) + k. The rotation interval of G may also be called
the rotation interval of g. Since g is symmetric, its rotation interval is symmetric
with respect to 1/2. It is easy to see that the G-orbit of 0 (the right-hand limit)
and the Gl-orbit of 0 coincide if and only if the g-orbit of 0 misses (2− 0′, 2].

Lemma 3.5. Assume that f is a unimodal twist map. Then, if fn(0) ∈ [0, a′]∪[c, a)
then gn(0) = fn(0), and if fn(0) ∈ [0′, 1] then gn(0) = 2 − fn(0). In particular,
the g-orbit of 0 misses (2− 0′, 2].

Proof. By Lemma 3.4, the f -orbit of 0 misses (a′, c) ∪ [a, 0′). We prove the first
claim of the lemma by induction. For n = 0 it is clearly true. Assume that it is
true for some n and prove it for n + 1 replacing n.

Suppose first that fn(0) ∈ [0, a′]. By the inductive hypothesis, gn(0) = fn(0) ∈
[0, a′] and so gn+1(0) = g(fn(0)) = fn+1(0) (the maps f and g coincide on [0, a′]).
Since fn+1(0) cannot lie in (a′, c), the point gn+1(0) = fn+1(0) belongs to [0, a] \
(a′, c) = [0, a′] ∪ [c, a]. Hence, in this case the claim is true.

Suppose now that fn(0) ∈ [c, a). By the inductive hypothesis, gn(0) = fn(0) ∈
[c, a) and so gn+1(0) = g(fn(0)) = 2 − fn+1(0) (we have g(x) = 2 − f(x) for
x ∈ [c, a)). Since fn+1(0) cannot lie in (a, 0′), the point gn+1(0) = 2 − fn+1(0)
belongs to [1, 2 − a) \ (2 − 0′, 2 − a) = [1, 2 − 0′]. Hence, in this case the claim is
also true.

Suppose at last that fn(0) ∈ [0′, 1]. By the inductive hypothesis, gn(0) = 2 −
fn(0) ∈ [1, 2] and so gn+1(0) = g(2− fn(0)) = fn+1(0) (the maps f(·) and g(2− ·)
coincide on [0′, 1]). Since fn+1(0) cannot lie in (a′, c), the point gn+1(0) = fn+1(0)
belongs to [0, f(0)]\(a′, c) ⊂ [0, a′]∪ [c, a]. Hence, also in this case the claim is true.

We have proved the first claim of the lemma, and from this claim it follows
immediately that gn(0) belongs to one of the intervals [0, a′], [c, a), or [1, 2 − 0′].
Therefore the g-orbit of 0 misses (2− 0′, 2].

Proposition 3.6. Assume that f is a unimodal twist map with lower rotation
number µ. Then the rotation interval of g is [µ, 1− µ].

Proof. By the symmetry, the rotation interval of g is [ν, 1 − ν], where ν is the
rotation number of Gl. By Lemma 3.5, the G-orbit of 0 (the right-hand limit) and
the Gl-orbit of 0 coincide. Therefore ν is the G-rotation number (right) of 0. The
rotation numbers for G can be computed using g and the characteristic function
of [1, 2], cohomologous to the displacement function. However, by Lemma 3.5,
counting the number of times when gn(0) belongs to [1, 2] is equivalent to counting
the number of times when fn(0) is in (a, 1]. Therefore ν is equal to the f -rotation
number of 0. Since 0 = f2(c), ν is equal to the f -rotation number of c. This
number is the same as the F -rotation number of c. Since the Fl-orbit of c and the
F -orbit of c coincide, ν is equal to the rotation number of Fl, that is to µ. This
completes the proof.

Now we can prove the first of the main results of this section. In [GT], Gambaudo
and Tresser introduced the rotation interval bound ω(f) for a unimodal map f .
They worked with the upper map and an interval of length 2. Since we are working
with the lower map and an interval of length 1, we prefer to use the rotation number
of Fl, which is equal to 1− (ω(f)/2). We will call it the GT-rotation number of f .
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Theorem 3.7. For unimodal maps the lower rotation number and the GT-rotation
number coincide.

Proof. By Lemma 3.2, the lower rotation number is a non-increasing function of
the kneading invariant. From [GT] it can be easily deduced that the same is true
for the GT-rotation number. Let f be a unimodal map. If its topological entropy
is equal to (1/2) log 2 then its lower rotation number is 1/2, and it is easy to check
that the same holds for its GT-rotation number. Therefore the same is true if the
topological entropy of f is smaller.

The rest of the proof is simple because of the properties of both rotation numbers.
In terms of kneading invariants, it is enough to show that if K is a kneading invariant
then its GT-rotation number GT (K) equals its lower rotation number LRN(K).
Let LRN(K) = µ and let K ′ be the kneading invariant of the twist of rotation
number µ. Also let (K1,K2, . . . ) be a sequence of kneading invariants of twists
of rotation numbers µ1 < µ2 < . . . , µi → µ. By monotonicity of both rotation
numbers we have µ = LRN(K) = LRN(K ′) = GT (K ′) ≥ GT (K) and at the
same time for any i the kneading invariant Ki is bigger than K (since µi < µ),
so µi = LRN(Ki) = GT (Ki) ≤ GT (K). After taking the limit this implies that
µ ≤ GT (K). Therefore µ = LNR(K) = GT (K).

Now we are going to show that the formula from [ALMT] for the minimal entropy
of the Lorenz-like maps with rotation interval [µ, 1 − µ] gives also the entropy
of a unimodal twist map with lower rotation number µ. For this we need some
definitions from [ALMT].

For µ ∈ [0, 1/2) let λ(µ) be the unique root of the equation

∑

µ<p/q<1−µ

t−q = 1

(in [ALMT] it was denoted βµ,1−µ). In the above equation we take the sum over
all pairs of natural numbers p, q such that µ < p/q < 1 − µ. For γ, δ ∈ R with
γ > 1 we set Fγ,δ(x) = γx + δ for x ∈ [0, 1) and then extend Fγ,δ to R to an old
map in the usual way. Note that we state Theorem 3.8 here in a bit more general
form than in Introduction, covering cases of both rational and irrational µ.

Theorem 3.8. The topological entropy of a unimodal twist map with lower rotation
number µ is log λ(µ).

Proof. Denote by Sλ the unimodal map of constant slope λ (see e.g.[ALM2]). By
Lemma 3.3, any unimodal twist map has indecomposable kneading invariant. Then
there exists a unimodal map of constant slope with this kneading invariant. There-
fore for every µ ∈ [0, 1/2) there exists Λ(µ) such that SΛ(µ) is a unimodal twist
map with lower rotation number µ. Since the topological entropy of Sλ is log λ, in
order to prove the theorem it is enough to show that Λ(µ) = λ(µ).

Fix µ ∈ (0, 1/2). According to Proposition 15 of [ALMT], there exists δ such
that the map H1 = Fλ(µ),δ has rotation interval [µ, 1 − µ]. The map H2 with the
graph symmetric to the graph of H1 with respect to the point (1/2, 1) has rotation
interval symmetric to the rotation interval of H1 with respect to 1/2, that is also
[µ, 1 − µ]. The map H0 = (1/2)(H1 + H2) lies between H1 and H2 (i.e. either
H1 ≤ H0 ≤ H2 or H2 ≤ H0 ≤ H1), and therefore its rotation interval is also
[µ, 1 − µ]. It is a map of constant slope λ(µ), so its entropy is log λ(µ). On (0, 1)
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this map is affine and H0(1/2) = 1. Since µ > 0, H0 has no fixed points and hence
λ(µ) < 2. Therefore H0 is a lifting of the symmetric Lorenz-like map of constant
slope λ(µ). This Lorenz-like map can be obtained from Sλ(µ) by the procedure
described earlier in this section. By Theorem 3.7 the lower rotation number of
Sλ(µ) is µ. This proves that λ(µ) ≥ Λ(µ).

On the other hand, by Theorem 3.7 the Lorenz-like map obtained from SΛ(µ) has
rotation interval [µ, 1 − µ] and topological entropy log Λ(µ) (since it has constant
slope Λ(µ)). By Theorem C of [ALMT], this entropy is larger than or equal to
log λ(µ), and we get Λ(µ) ≥ λ(µ). This completes the proof if µ > 0.

It is easy to see that limµ↘0 Λ(µ) = 2 = Λ(0). By a property of λ(·) proved in
[ALMT] we have limµ↘0 λ(µ) = λ(0). Therefore we get also Λ(0) = λ(0).

Combining Theorem 3.8 with the results of Section 2 we obtain Theorem 3.9
which is the main result of this section.

Theorem 3.9. (1) For any number 0 < % < 1, % 6= 1/2, if the rotation interval of
f contains % then h(f) ≥ log λ(%). Thus, if a map f has a periodic point of rotation
number % then h(f) ≥ log λ(%).
(2) For every µ ∈ [0, 1/2) there is a continuous interval map with rotation interval
[µ, 1/2] and topological entropy log λ(µ).

Proof. (1) We may assume that % < 1/2. By Theorem 0.3, for any rational µ ∈
(%, 1/2] there is an f -periodic point of rotation number µ and thus by Corollary 1.1 f
exhibits a twist pattern, say, γ, of rotation number µ. Now, if θ is the unimodal twist
of rotation number µ then Theorem 2.1 implies that h(f) ≥ h(γ) > h(θ) = log λ(µ).
Choosing µ arbitrarily close to % and making use of the continuity of λ(µ) we get
the required result.

(2) This follows immediately from Theorem 3.8.

Remark 3.10. Two unimodal maps with the same topological entropy have the
same lower rotation numbers. Therefore we may look at the lower rotation number
as a function of entropy. In other words, look at the function ϕ such that ϕ(λ)
is the lower rotation number of Sλ. By Lemma 3.4 the set A of parameters λ for
which Sλ is a unimodal twist map, is contained in the set B of parameters λ for
which the Sλ-orbit of c misses (a′, c). Clearly, the complement of B is open, so B
is closed. By [BM], B has Lebesgue measure zero. Moreover, if an interval in the
parameter space is disjoint from A then ϕ is constant on it. Therefore the function
ϕ is locally constant almost everywhere. �

4. Constructing twist patterns

In this section we will describe a simple algorithm allowing us to construct all
twist patterns of a given rotation number. Following the terminology of [ALM1]
and [M3], we will call the patterns satisfying the conditions from Lemma 1.6 green
patterns, and their representatives green cycles. Thus, Lemma 1.6 states that every
twist pattern is green. In [BK], where Lemma 1.6 is also proved, green cycles are
called parallel unicycles.

In [BK] Bobok and Kuchta gave a simple algorithm for checking whether a
green cycle is twist (they call twist cycles X-minimal orbits). To each green cycle
(P, ϕ) they assigned a code K : P → Z as follows. Let the rotation pair of P
be rp(P ) = (n,m + n). This means that there are m points of P to the left of
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the fixed point a and n to the right of a. For the leftmost element x of P we set
K(x) = 0, and then we define by induction: K(ϕ(y)) = K(y) + n if y < a and
K(ϕ(y)) = K(y)−m if y > a. Notice that when we get back to x then m times we
added n and n times we subtracted m, so we get again 0. A code is called monotone
if it is increasing to the left of a and decreasing to the right of a.

For the sake of completeness we include our proof of the following theorem from
[BK].

Theorem 4.1 ([BK]). A green cycle is twist if and only if its code is monotone.

Before we prove this theorem, we prove a lemma which will be used also later.

Lemma 4.2. If m and n are coprime then codes for different points of P are
different.

Proof. Assume that m and n are coprime, and let z 6= y be two points of P . We
get K(z) from K(y) by adding i times n and subtracting j times m for some non-
negative integers i, j such that i ≤ m, j ≤ n, and 0 < i+j < m+n. If K(z) = K(y)
then in = jm. Since n and m are coprime, it follows that n divides j and m divides
i, and hence m + n ≤ i + j. This is impossible, and thus K(z) 6= K(y).

Proof of Theorem 4.1. Let P be a green cycle of rotation pair (n,m + n) of a P -
linear map f . Let a be the unique fixed point of f . We modify the code by dividing
it by m + n, and denote the new code by L. That is, L(x) = K(x)/(m + n) for
x ∈ P . Then L(f(x)) = L(x)+µ−χ(x), where µ = n/(m+n). We know that if P
is twist then m and n are coprime. It is easy to check that if the code is monotone
than also m and n are coprime (we can assume that m 6= n and then there are no
two distinct points with the same code). Therefore we may assume in the proof
that m and n are coprime.

Suppose first that P is twist, but its code is not monotone. By Corollary 1.1, m
and n are coprime. Since the code is not monotone, there are points x, y ∈ P on
the same side of a and such that x is farther than y from a but L(x) ≥ L(y). By
Lemma 4.2 we get L(x) > L(y). We have x = fk(y) for some k ∈ {1, 2, . . . ,m+n−
1}. Look at the loop (I0, I1, . . . , Ik−1) of intervals (see Section 1), where Ii is the
interval having a and f i(y) as endpoints. Then L(x)−L(y) = kµ−

∑k−1
i=0 χ(f i(y)).

Therefore (1/k)
∑k−1

i=0 χ(f i(y)) < µ. This means that the rotation number of the
cycle R corresponding to our loop is smaller than µ. Therefore the pattern π of P
forces the pattern π′ of R. By Theorem 0.3, the R-linear map exhibits a cycle of
rotation number µ, so π′ forces a pattern π′′ of rotation number µ. Since π and
π′ have different rotation numbers, they are different. Therefore π′′ 6= π. Since π
forces π′′, this means that π is not twist, a contradiction. This proves that if P is
twist then its code is monotone.

Now we assume that the code of P is monotone and show that P is twist. For
this we use the P ∪{a}-graph of f (see [ALM2]). For every P ∪{a}-basic interval I
we denote by v(I) its endpoint that is farther from a than the other one. The other
endpoint of I has code larger than L(v(I)) or is equal to a. Because of this, and
because of the monotonicity of the code, if I f -covers a P ∪ {a}-basic interval J
then L(v(J)) ≥ L(f(v(I))), and equality holds only if v(J) = f(v(I)). Let R be a
cycle of f and let (I0, I1, . . . , Ik−1) be the corresponding loop in the P ∪ {a}-graph
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of f . If we set Ik = I0 then we get

k−1
∑

i=0

L(v(Ii)) =
k−1
∑

i=0

L(v(Ii+1)) ≥
k−1
∑

i=0

L(f(v(Ii))) =
k−1
∑

i=0

L(v(Ii)) + kµ−
k−1
∑

i=0

χ(v(Ii)).

Moreover, the equality holds only if v(Ii+1) = f(v(Ii)) for each i. Since P is green,
this condition is equivalent to our loop being the fundamental loop, that is to
R = P . Thus, (1/k)

∑k−1
i=0 χ(f i(y)) ≥ µ, and this means that the rotation number

of R is greater than or equal to µ. Moreover, the equality holds only if R = P .
This proves that P is a twist.

Note that the last part of the above proof shows also that if the code is monotone
then µ is an endpoint of the rotation interval of f .

Now let us make an observation that will allow us to simplify the search for twist
patterns. Namely, in the situation described above the code of P is monotone if
and only if it is increasing to the left of a. Indeed, ϕ restricted to the points of
P to the right of a is decreasing, and for each such a point y we have ϕ(y) < a
and K(ϕ(y)) = K(y) − m. Thus, if K is increasing to the left of a, it has to be
decreasing to the right of a. This means that there is no need to look to the right
of a. Therefore, instead of looking at the green cycle (P, ϕ) we can look at the
corresponding green pseudocycle (R, ψ) defined by R = {x ∈ P : x < a} and

ψ(x) =
{

ϕ(x) if ϕ(x) < a,

ϕ2(x) if ϕ(x) > a.

In fact, R is a cycle itself, but we will not think of it as a cycle of any map, but as
a “short version” of P . Clearly, we can reconstruct P from R.

Note that if a point x ∈ R is green then ψ(x) > x and if it is black then ψ(x) < x.
We have n black and m − n green points. By Theorem 0.3, if P is twist then m
and n are relatively prime, so if we are looking for twist patterns, we can make this
assumption.

The code K restricted to R can be obtained very easily. Namely, we start from
the leftmost point z of R and set K(z) = 0. Then we proceed by induction: if y is
green then K(ψ(y)) = K(y) + n and if y is black then K(ψ(y)) = K(y) + n−m.

We can look at our green pseudocycle in the following way. Let us start from
some point x of R and go along the pseudocycle R: x, ψ(x), ψ2(x), . . . , until we get
back to x. Note which point is black and which is green. The information we get
in such a way can be represented as m points on a circle, some of them black, some
of them green (in the same order as we met them when going along R). Of course,
two pictures like that are equivalent if we get one of them from the other one via
an orientation preserving homeomorphism of a circle. We will call their equivalence
classes circular models. Obviously, if we start from different points in a pseudocycle
we get equivalent pictures, or, in other words, the same circular model.

In such a way for every twist pattern of rotation number n/(m + n) we get a
corresponding circular model with n black and m− n green points.

Theorem 4.3. Let m and n be relatively prime positive integers such that m > n.
Then the correspondence between twist patterns of rotation number n/(m + n) and
circular models with n black and m− n green points is one-to-one.

Proof. We have to show that from a circular model we can reconstruct (in a unique
way) a twist pattern. We have a set Q of m points on a circle, n of them black
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and m − n green. Let us assign a code L to them. We start at some x ∈ Q, set
L(x) = 0 and then move along the circle. If z follows y in our journey, then we
set L(z) = L(y) + n if y is green and L(z) = L(y) + n −m if y is black (exactly
as for a green pseudocycle). Since there are n black and m− n green points, when
we get back to x we get again L(x) = 0. By Lemma 4.2, if z 6= y are points of
Q then L(z) 6= L(y). Let q be the smallest of the numbers L(y), y ∈ Q. Set
K(y) = L(y)− q for all y ∈ Q. Now transfer the points of Q to an interval in such
a way that the code K is increasing. Since m and n are relatively prime, the codes
for different points are different, so we can do it (in a unique way). It is easy to
see that in such a way we get a green pseudocycle with an increasing code. As we
noticed earlier, from this pseudocycle we can reconstruct a twist cycle. When we
start from a twist cycle, get its circular model, and get back to a cycle using the
procedure described above then we end up with a cycle of the same pattern as the
one we started with. This completes the proof.

The procedure described in the proof of Theorem 4.3 allows us easily to produce
all twist patterns of a given rotation number. In particular, we can compute how
many of them there are.

Proposition 4.4. Let m and n be relatively prime positive integers such that m >
n. Then there are 1

m

(m
n

)

twist patterns of rotation number n/(m + n).

Proof. By Theorem 4.3 it is enough to show that there are 1
m

(m
n

)

circular models
with n black and m−n green points. We can think of those points as placed at the
m-th roots of 1 (if the circle is the unit circle in the complex plane). There are

(m
n

)

choices for the positions of black points. If we rotate the circle by the angle 2kπ/m
(k ∈ {1, 2, . . . , m − 1}) then we get the same circular model. Thus the number of
circular models with n black and m−n green points is 1

m

(m
n

)

, provided no rotation
as above maps all the black points to black ones. Suppose that it does. The orbit
of any black point for this rotation has period m/ gcd(m, k) (where gcd(·, ·) denotes
the greatest common divisor) and the set of all black points is the union of j such
orbits for some j. Thus, n = jm/ gcd(m, k). The number i = m/ gcd(m, k) is a
divisor of m, and i > 1 since k < m. Therefore m and n have a common divisor
i > 1, a contradiction. This completes the proof.

5. Rotation number and modality vs. entropy

We know already that for every rational number from (0, 1/2) there is a twist
pattern with this rotation number and entropy smaller than log 2. Namely, this is
a unimodal pattern. However, we can ask how does the entropy of twist patterns
behave when the modality increases. We will show that various behaviors are
possible. The entropy may stay bounded, but it also may increase to infinity.

We start by looking for twist cycles with large entropy. In fact, modality cannot
be small if the entropy is large, but we will include the estimate for modality because
we can get it easily.

Let (R, ψ) be a green pseudocycle. A switch will be an R-basic interval with
endpoints of different color (let us recall that an interval [x, y] is R-basic if x, y ∈ R
and there are no points of R in (x, y); see e.g. [ALM2]).

Lemma 5.1. Let (P, ϕ) be a green cycle and let (R, ψ) be the corresponding green
pseudocycle. Then for every black point x ∈ R we have h(P ) ≥ 1

2 log s(x), where
s(x) is the number of switches between ψ(x) and x.
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Proof. Let f be the P -linear map and let a be the fixed point of f . Let x be a
black point of R. For each switch J contained in [ψ(x), x] = [f2(x), x] we have
[a, f(x)] ⊂ f(J) and [f2(x), x] ⊂ f([a, f(x)]). Therefore J1 ⊂ f2(J2) for every
switches J1, J2 between ψ(x) and x. Thus, there is an s(x)-horseshoe for f2, and
hence h(P ) = h(f) ≥ 1

2 log s(x).

Let P be a green cycle. Since the leftmost point of P is green (we assume that
the rotation number of P is less than 1/2), and to the right of the fixed point there
are only black points, the modality of P is equal to 2l− 1, where l is the number of
local maxima. The local maxima occur exactly at the leftmost points of the blocks
of black points. Therefore l is also equal to the number of blocks of black points
in P . The point of P immediately to the left of the fixed point is also black, so
l is also equal to the number of blocks of black points in the corresponding green
pseudocycle (and to the number of blocks of green points, since those numbers are
equal).

Notice also that the switches separate blocks of black and green points. The
leftmost point of a green pseudocycle is green and the rightmost one is black.
Therefore the number of switches in a green pseudocycle is 2l−1, exactly the same
as the modality of the corresponding green cycle.

Proposition 5.2. Let m and n be relatively prime positive integers such that m−n
is odd and m > 3n. Then there exist twist patterns of rotation numbers 2n/(m+3n)
and (m − n)/(2m), both with modality 2n + 1 and entropy larger than or equal to
1
2 log 2n.

Proof. Let us look at the green pseudocycle (R, ψ) defined as follows. We set
R = {2i : i = 0, 1, . . . ,m − 1} ∪ {m − n + 2i : i = 0, 1, . . . , n − 1}. The points 2i
for i = 0, 1, . . . ,m − n − 1 are green and we set for them ψ(2i) = 2i + 2n. The
rest of the points of R are black and for a black point j we set ψ(j) = j − (m− n).
Thus, there are m − n green points and 2n black points. Moreover, if K is the
code for R then K(j) = j for every j ∈ R. Hence, the code for R is monotone, so
the corresponding green cycle P is twist. The only thing that is not immediately
clear is that R is a cycle. To check it, observe first that ψ is one-to-one. Then note
that m− n and 2n are coprime, so (m− n)k = 2ns is possible only if k = 2nt and
s = (m − n)t for some t. Thus the pair k = 2n, s = m − n is the one with the
smallest sum for which (m−n)k = 2ns holds. This sum is m + n, so for any j ∈ R
all the numbers j, ψ(j), . . . , ψm+n−1(j) are distinct. This proves that (R, ψ) is a
cycle, so our construction makes sense.

There are m + n points in R, 2n of them black. Therefore the rotation number
of P is 2n/(m + 3n).

Since m > 3n, we have 2(m − n) > m − n + 2(n − 1) + 1, i.e. there is at least
one green point between the black point m − n + 2(n − 1) and the leftmost black
point 2(m − n) of the last block of black points. Therefore there are n + 1 blocks
of black points in R (n of them of length 1). Hence, the modality of P is 2n + 1.
We have ψ(2(m− n)) = m− n and there are 2n switches from m− n to 2(m− n).
Thus, by Lemma 5.1, the entropy of P is larger than or equal to 1

2 log 2n.
Let us now look at the green pseudocycle R′ symmetric to R. By “symmetric”

we mean that we get R′ from R by reversing the orientation of the real line and
switching black and green colors. Thus, for instance the leftmost point of R will be
the rightmost one of R′, and green points of R will be black points of R′. Suppose
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that x was green in R. When moving to ψ(x), we added 2n (that is the number
of black points in R) to the code. In R′, the point x is black, and when we are
moving to ψ(x), we subtract 2n (that is the number of green points in R′) from
the code. Similar things happen if x was black in R. Therefore the code for R′ can
be obtained by subtracting the code for R from 2m − 2. Thus, the code for R′ is
increasing, so the corresponding green cycle P ′ is twist.

The modality of P ′ is equal to the number of switches in R′, which is the same
as the number of switches in R, that is 2n+1. There are m+n points in R′, m−n
of them black. Therefore the rotation number of P is (m− n)/(2m).

We have (in R) ψ(m−n−1) = m+n−1, and since m+n−1 = (m−n)+2(n−1)+1,
there are 2n switches between m−n−1 and m+n−1. Thus, applying Lemma 5.1
to R′, we get h(P ′) ≥ 1

2 log 2n.

It is not immediately clear which rational numbers we get as rotation numbers
in Proposition 5.2. We can see this from the following lemma.

Lemma 5.3. Let p and q be relatively prime positive integers.

(a) Assume that 0 < p/q < 1/3 and p is even. Then there exist relatively
prime positive integers m and n such that m − n is odd, m > 3n, and
p = 2n, q = m + 3n.

(b) Assume that 1/3 < p/q < 1/2 and q is even. Then there exist relatively
prime positive integers m and n such that m − n is odd, m > 3n, and
p = m− n, q = 2m.

Proof. Assume that 0 < p/q < 1/3 and p is even. Set n = p/2 and m = q−3n. Then
p = 2n and q = m + 3n. Since p is even, q is odd, and therefore m− n = q − 4n is
odd. If m and n have a common divisor i > 1 then i divides p = 2n and q = m+3n.
Since p and q are relatively prime, this is impossible, and therefore m and n are
relatively prime. This proves (a).

Assume now that 1/3 < p/q < 1/2 and q is even. Set m = q/2 and n = m− p.
Then p = m − n and q = 2m. Since q is even, m − n = p is odd. If m and n
have a common divisor i > 1 then i divides q = 2m and p = m− n. Since p and q
are relatively prime, this is impossible, and therefore m and n are relatively prime.
This proves (b).

From Proposition 5.2 and Lemma 5.3 we get immediately the following theorem.

Theorem 5.4. For every % ∈ [0, 1/2] there exists a sequence of twist patterns with
rotation numbers converging to % and entropies increasing to infinity.

Now we want to find twist patterns with large modality and relatively small
entropy. Let m and n be relatively prime positive integers such that m > n. Let
us look at the circular model with n black and m − n green points and such that
all black points are grouped in one block (and consequently, all green points are
grouped in one block). Since there are 2 blocks in this model, we will call the
corresponding twist pattern a 2B pattern of type (m,n). According to the usual
rules, we will call a representative of a 2B pattern of type (m,n) a 2B cycle of type
(m,n).

By looking at the circular model we are working with, we see that in the corre-
sponding green pseudocycle R each green point is mapped to the next green point
to the right, and the last one is mapped to the rightmost point of R (which is
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black). Similarly, each black point is mapped to the next black point to the left,
and the last one is mapped to the leftmost point of R (which is green). It is also
easy to see that the black points will have codes i(m− n), i = 1, 2, . . . , n and the
green points will have codes jn, j = 0, 1, . . . ,m− n− 1.

Lemma 5.5. A 2B pattern of type (m,n) has rotation number n/(m + n) and
modality 2min(n, m− n)− 1.

Proof. Since there are m points in the corresponding green pseudocycle R, and n
of them are black, the rotation number of our cycle is n/(m + n).

Let us compute the number of blocks of black or green points in R. If n < m−n
then between two consecutive multiples of n there can be at most one integer
divisible by m−n, so all blocks of black points have length 1. Similarly, if m−n <
n then all blocks of green points have length 1. Therefore the modality of the
corresponding pattern is 2min(n, m− n)− 1.

Now we want to estimate the entropy of a 2B pattern.

Proposition 5.6. The entropy of any 2B pattern is smaller than or equal to log 10.

Proof. Let P be a 2B cycle of type (m,n) and let f be the P -linear map. Look at
the (P ∪ {a})-graph G of f (see e.g. [ALM2]), where a is the fixed point. Call a
(P ∪{a})-basic interval green if both of its endpoints are green, and black otherwise.

Because of the way the green points are mapped, each green interval f -covers
only some basic interval(s) to the right of itself (but to the left of a). Moreover, if
n < m−n then all blocks of black points have length 1, so a green interval f -covers
only the next basic interval to the right, or two of them, if they are black.

With the black intervals, it is more complicated. If a black interval J f -covers
some basic intervals to the left of a, these intervals are to the right of J . Moreover,
it f -covers some basic intervals to the right of a, and those basic intervals f -cover
in turn some basic intervals to the left of a. Those basic intervals to the left of a
lie to the right of the image of one of the endpoints of J under f2. Notice that
this image is the point where this endpoint is mapped for the corresponding green
pseudocycle.

Now we start to simplify the picture by changing the graph. We do it in such
a way that the entropy does not decrease. Look at the generalized oriented graph
H constructed in the following way (“generalized” means that there may be more
than one arrow from a vertex to a vertex). The vertices of H are those vertices of
G that correspond to the basic intervals to the left of a. The arrows of G between
those vertices are also the arrows of H. Moreover, we add an arrow in H from a
vertex A to a vertex B if there is a vertex C of G that is not a vertex of H and
there are arrows from A to C and from C to B in G. Since f maps the part of the
interval to the right of a to the part of the interval to the left of a in a monotone
way, for every vertices A and B of H there is at most one intermediate C as above.
Therefore we add at most one additional arrow from A to B, and hence in H there
are at most two arrows from A to B.

The entropy of a Markov graph can be computed as the upper limit of the n-
th root of the number of loops of length at most n (see e.g. [ALM2]). To every
loop in G there corresponds a loop in H of the same or smaller length, and this
correspondence is one-to-one. Therefore the entropy of H is larger than or equal
to the entropy of G.
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Let us denote the vertices of H (remember that they are basic intervals) by Ai

with i < j if the basic interval Ai is to the left to the basic interval Aj . We shall use
the information about the f -covering that we already have in two different ways,
depending on whether m− n < n or n < m− n.

If m − n < n then the blocks of green points have length 1. Therefore in the
corresponding green pseudopattern the black points are mapped at most by 2 to
the left. Hence, from a vertex Ai of H there are no arrows to Aj with j < i − 2.
Moreover, if j ≤ i then there is at most one arrow from Ai to Aj . Thus, we replace
H by a new generalized oriented graph K with the same vertices and no arrows
from Ai to Aj if j < i− 2, one arrow from Ai to Aj if i− 2 ≤ j ≤ i, and two arrows
from Ai to Aj if j > i.

Clearly, there is some n such that there are paths of length n in K from every
vertex to every vertex. This means that the n-th power of the transition matrix
M of K is strictly positive. From the Perron-Frobenius theory of positive matrices
we know that for every positive vector v the growth rate of ‖Mnv‖ as n goes to
infinity is equal to the spectral radius of M . Therefore if we find a positive vector
v and a number α such that Mv ≤ αv then we will know that the spectral radius
of M is smaller than or equal to α.

To specify the vector v we have to specify its component vi for every vertex Ai

of K. Then the i-th component of the vector Mv will be equal to the sum of vj

over all arrows from Ai to Aj and all vertices Aj of K. Let us set vi = 2N−i, where
N is the number of vertices of K. Then the i-th component ui of Mv is equal to
2N−(i−2) +2N−(i−1) +2N−i +2(2N−(i+1) + · · ·+2N−N ) (one or two first summands
may be not there, if i = 2 or i = 1). Hence,

ui ≤ 2N−(i−2) +2N−(i−1) +2N−i +2
∞
∑

j=1

2N−i−j = (4+2+1+2)2N−i = 9vi ≤ 10vi.

Therefore h(P ) = h(G) ≤ h(H) ≤ h(K) ≤ log 10.
If n < m − n then the blocks of black points have length 1. Therefore from a

green vertex Ai of H there emerges only one arrow if the next vertex to the right
is green (to this vertex), or only two arrows if the next two vertices to the right are
black (to those vertices). There is also a special case – the rightmost green vertex
of H, and there is only one arrow emerging from it. This arrow goes to the next
vertex to the right, which is in this case black. The black vertices of H come in
pairs of adjacent vertices. From each element of such a pair there emerge at most
two arrows to each vertex to the right of this pair, at most one arrow to the vertices
of the next pair to the left (the leftmost vertex if there are no black vertices to the
left of our pair) and to the right of them, up to and including our pair, and none
to the rest of vertices.

Similarly as in the previous case, we replace the graph H by a graph K that has
exactly the arrows listed above (and the same vertices as H). Again, some power
of the transition matrix M of K is positive, so we may use the same method for
estimating the entropy of K as before. To each black vertex of the i-th pair from
the right we assign the component of v equal to 2i. To the j-th green vertex of K
to the left of such a pair (but to the right of the next pair of black vertices) we
assign the component of v equal to 2i−j . Now the component of Mv corresponding
to a green vertex of K is at most 4 times the component of v corresponding to this
vertex. For a black vertex we can bound this ratio by 2 (because of the arrows to



ENTROPY OF TWIST INTERVAL MAPS 23

black vertices to the right) plus 1 (because of the arrows to the green vertices to the
right) plus 2 (because of the arrows to those vertices themselves) plus 4 (because
of the arrows to the black vertices of the next pair to the left) plus 1 (because
of the arrows to the green vertices to the left). This gives Mv ≤ 10v. Therefore
h(P ) = h(G) ≤ h(H) ≤ h(K) ≤ log 10.

From Lemma 5.5 and Proposition 5.6 we get immediately the following theorem.

Theorem 5.7. For every % ∈ [0, 1/2] there exists a sequence of twist patterns
with rotation numbers converging to %, entropies bounded from above by log 10, and
modalities increasing to infinity.

Appendix: Computation of entropy

The formula we found in Section 3 for λ(µ) looks elegant, but is very impractical
for concrete computations. Therefore we will present a “computable” formula for
rational values of µ. We denote the integer part of t by E(t).

Lemma A.1. If µ = p/q with p and q coprime, then λ(µ) is the largest root of the
polynomial

q−1
∑

i=0

ε(i)zi = 0,

where ε(i) = −1 if i = q− 2−E(kq/(q− p)) for some k ∈ {0, 1, . . . , q− p− 1} and
ε(i) = 1 otherwise.

Proof. We will use some functions defined in [ALMS] and [ALMM] without quoting
unnecessary definitions. We are interested only in the dependencies between them
and in the definitions of the first and the last functions. All the time we shall use
the fact that the largest root of our equation is larger than 1. Therefore we will be
able to multiply or divide the equations by polynomials that have no zeros larger
than 1.

The first formula from [ALMM] interesting to us is

Rc,d(z) =
∑

c<p/q<d

z−q.

Thus, our equation for λ(µ) can be rewritten as Rµ,1−µ(z) = 1. Now we will use
the following formulas from [ALMS]:

Qc,d(z) = (z − 1)(1− 2Rc,d(z)),

Qc,d(z) = z + 1 +
2z

z − 1
− 2(T1−c(z) + Td(z))

(we assume that 0 ≤ c < 1). Thus, our equation can be rewritten as

z + 1 +
2z

z − 1
− 4T1−µ(z) = −(z − 1),

that is

2T1−µ(z) =
z2

z − 1
.
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Then we use the formula
Qd(z) = z + 1− 2Td(z)

from [ALMM], where Qd is a function from [ALMS]. Our equation becomes simply

Q1−µ(z) =
1

1− z
.

Now we assume that µ = p/q with p and q coprime. Moreover, we know that
p/q < 1/2. Lemma 14 of [ALMS] gives us

H1−µ(z) = (zq − 1)Q1−µ(z),

where

H1−µ(z) = zq+1 − zq − z − 1− 2
q−p−1
∑

j=1

zE(jq/(q−p))+1.

Hence our equation becomes now

zq+1 − zq − z − 1 +
q−1
∑

i=0

zi − 2
q−p−1
∑

j=1

zE(jq/(q−p))+1 = 0.

Note that 1 < q/(q−p) < 2, so if 1 ≤ j ≤ q−p−1 then 2 ≤ E(jp/(q−p))+1 ≤ q−1.
Therefore we can rewrite our equation once more, this time as

zq−1 − zq−2 +
q−3
∑

i=0

zi − 2
q−p−1
∑

j=1

zE(jq/(q−p))−1 = 0.

Another way to write it is
q−1
∑

i=0

ε(i)zi = 0,

where ε(q − 1) = 1, ε(q − 2) = −1, and for 0 ≤ i ≤ q − 3 we have ε(i) = −1 if
i = E(jq/(q − p))− 1 for some j ∈ {1, 2, . . . , q − p− 1} and ε(i) = 1 otherwise.

Now we notice that if j ∈ {1, 2, . . . , q − p− 1} then jq/(q − p) is not an integer.
Therefore E(jq/(q − p)) − 1 = q − 2 − E(kq/(q − p)), where k = q − p − j. If
k = 0 then q − 2− E(kq/(q − p)) = q − 2, so we get the required formula for ε(i):
ε(i) = −1 if i = q−2−E(kq/(q−p)) for some k ∈ {0, 1, . . . , q−p−1} and ε(i) = 1
otherwise.

Remark A.2. The formula from Lemma A.1 can be obtained also from the knead-
ing invariant of unimodal twist maps with rotation interval [µ, 1/2]. Alternatively,
this kneading invariant can be obtained from our formula. We leave the relevant
computations to a curious reader. �

We can look at the LRN and the topological entropy in a more global way. For
unimodal maps LRN is a coarser invariant than entropy. Indeed, if the kneading
invariant of a map is an asterisk product of two kneading invariants, then LRN
depends only on the “outer” one. That means that on any set of unimodal maps
with the same entropy, LRN is constant. Therefore there is a function µ(·) :
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[0, log 2] → [0, 1/2] such that if h(f) = log t then LRN(f) = µ(t) (cf. Remark 3.10).
By Lemma 3.2, this function is non-increasing. Since there are unimodal maps with
all lower rotation numbers between 0 and 1/2, this function is also continuous.

It follows that for every µ there is a maximal interval [λ(µ), ˜λ(µ)] (perhaps
degenerated to a point) on which µ(·) is constant and equal µ. Its left endpoint
is the number λ(µ) that we investigated. Its right endpoint is ˜λ(µ), which is the
maximal entropy of a unimodal map with rotation interval [µ, 1/2]. We have ˜λ(µ) =
limν↗µ λ(ν), and therefore ˜λ(µ) is the unique root of the equation Sµ(t) = 1, where

Sµ(t) =
∑

µ≤p/q≤1−µ

t−q.

Therefore ˜λ(µ) = λ(µ) if µ is irrational and ˜λ(µ) > λ(µ) if µ is rational.
To obtain an equation for ˜λ(µ) similar to the one from Lemma A.1, we have

to replace in the proof of that lemma Q1−µ(z) by lim ν↗µ Q1−µ(z), which is equal
to Q1−µ(z) − 2(1 − z)/(zq − 1) by Lemma 21 of [ALMS]. Therefore the equation
Q1−µ = 1/(1− z) has to be replaced by Q1−µ = 1/(1− z)+ 2(z− 1)/(zq − 1). This
leads eventually to the equation

q−1
∑

i=0

ε(i)zi =
2(z − 1)

z2

for ˜λ(µ).
When we look at the function inverse to µ(·), we see that it is discontinuous,

with log ˜λ(µ) − log λ(µ) = log(˜λ(µ)/λ(µ)) representing the jump in topological
entropy when the kneading invariant is moving through the values for which the
lower rotation number is µ (it occurs only if µ is rational). Our next aim will be to
estimate this jump from below and above.

Lemma A.3. For every µ = p/q ∈ [0, 1/2] with p and q coprime we have

1
q

log

(

1 +
3− 2

√
2

λq

)

< log
˜λ(µ)
λ(µ)

< log
λq + 1
λq − 1

.

Proof. To make the formulas simpler, we will fix µ = p/q and write λ, ˜λ for
λ(µ), ˜λ(µ) respectively.

Assume first that µ < 1/2. Set

P (z) =
q−1
∑

i=0

ε(i)zi ,

˜Q(z) =
q−1
∑

i=0

(zi − λi) =
zq − 1
z − 1

− λq − 1
λ− 1

,

and
˜R(z) =

zq − 1
λ− 1

− λq − 1
λ− 1

=
zq − λq

λ− 1
.
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We have

P ′(z) =
q−1
∑

i=1

ε(i)izi−1 ≤
q−1
∑

i=1

izi−1 = ˜Q′(z)

and P (λ) = ˜Q(λ) = ˜R(λ) = 0. Therefore P (z) ≤ ˜Q(z) for every z ≥ λ. Moreover,
for z ≥ λ we have z − 1 ≥ λ − 1 and zq − 1 > 0 (since λ > 1), so ˜Q(z) ≤ ˜R(z).
Therefore for z ≥ λ we get P (z) ≤ ˜R(z).

Next, by computing the derivative of 2(z − 1)/z2 we check that this function is
increasing in [λ, 2]. We know that λ < ˜λ < 2, so

˜R(˜λ) ≥ P (˜λ) =
2(˜λ− 1)

˜λ2
>

2(λ− 1)
λ2 > 0 = ˜R(λ) .

Therefore there is ν ∈ (λ, ˜λ) such that ˜R(ν) = 2(λ− 1)/λ2. By the definition of ˜R,
we get

˜λq > νq = λq +
2(λ− 1)2

λ2 .

Up to now, we were assuming that µ < 1/2. In this case λ ≥
√

2, so 2(λ−1)/λ2 ≥
3− 2

√
2, and we get the estimate

log
˜λ
λ

>
1
q

log

(

1 +
3− 2

√
2

λq

)

.

If µ = 1/2 then λ = 1, ˜λ =
√

2, and q = 2, so the above estimate also holds.
We continue with an estimate from above. Again for µ < 1/2, set

̂R(z) = Rµ,1−µ

(

1
z

)

=
∑

µ<p/q<1−µ

zq, ̂S(z) = Sµ

(

1
z

)

=
∑

µ≤p/q≤1−µ

zq.

Then the reciprocals β and ˜β of λ and ˜λ are the smallest positive roots of the
equations ̂R(z) = 1 and ̂S(z) = 1 respectively. Hence ˜λ/λ = β/˜β. Note also that
̂S(z) = ̂R(z) + 2zq/(1− zq).

Observe that ̂S is convex. Therefore the straight line segment which connects
the points (0, 0) and (β, ̂S(β)) lies above the corresponding piece of the graph of
̂S. Then ˜β > δ, where (δ, 1) is the point at which this segment intersects the line
y = 1. We have β/δ = ̂S(β) = ̂R(β) + 2βq/(1− βq) = (1 + βq)/(1− βq). Therefore
β/˜β < β/δ = (1 + βq)/(1 − βq), so ˜λ/λ < (λq + 1)/(λq − 1). This gives us an
estimate

log
˜λ
λ

< log
λq + 1
λq − 1

.

If µ = 1/2 then λ = 1, so the right-hand side of the above inequality is ∞ (not a
very useful estimate, but still a valid one).
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Remark A.4. We have

log
λq + 1
λq − 1

= log
(

1 +
2

λq − 1

)

<
2

λq − 1
.

On the other hand, if q is large then

1
q

log

(

1 +
3− 2

√
2

λq

)

∼ 3− 2
√

2
qλq .

�

Remark A.5. We can modify slightly the estimate from above, to get an estimate
of log(ν/λ) for ν ∈ (λ, ˜λ] in terms of ν and q. Namely, we use the fact that ̂R
is convex and draw a line through (0, 0) and (γ, ̂R(γ)), where γ = 1/ν. This line
intersects the line y = 1 at (ζ, 1). Then ζ > β, so

ν
λ

=
β
γ

<
ζ
γ

=
1

̂R(γ)
=

1
̂S(γ)− 2γ2

1−γq

.

Since ̂S(γ) ≥ 1, we get
ν
λ

<
1− γq

1− 3γq =
νq − 1
νq − 3

.

Therefore

log
ν
λ

< log
νq − 1
νq − 3

= log
(

1 +
2

νq − 3

)

<
2

νq − 3
.

The above estimate is correct only if νq > 3. This means that we cannot use it
in the case µ = 1/2. We would not do it anyway, since in this case we know that
λ = 1. On the other hand, if q ≥ 4 then ν >

√
2, so νq > 4 > 3, and the estimate

is correct. This leaves the case q = 3. Then the only choice for µ is 1/3, and from
Lemma A.1 we get λ = (1 +

√
5)/2. Thus νq > 2 +

√
5 > 3, so the estimate works

also in this case. �

We would like to discuss some applications of the above estimates to the conjec-
ture on entropy monotonicity. All computer experiments show that for a “reason-
able” one-parameter family of smooth unimodal maps, topological entropy depends
on a parameter in a monotone way. However, only for the family of quadratic maps
this monotonicity has been proved (see [Ś]). Assume for definiteness that we are
looking at a one-parameter family (fa)0≤a≤1 of maps and h(f0) = 0, h(f1) = log 2.
If the entropy grows with the parameter, then b ≥ a implies h(fb) ≥ h(fa). If we
cannot prove this, we can still ask: given a, if we know that b ≥ a, what can we
say of h(fb)? Perhaps it is larger than h(fa) minus some small epsilon?

Here our estimates can help. Namely, there is a large class of families of smooth
unimodal maps for which the lower rotation number depends on the parameter in
a monotone way. The first set of assumptions guaranteeing this was found in [GT].
Much weaker assumptions (resulting in much wider classes of maps) were found in
[B2]. Let us call such a family LRN-monotone. The only problem with applying
our results is that we want the estimates in terms of h(fa) rather than λ and q.
However, we can cope with this. From our estimates one can easily deduce the
following result.



28 ALEXANDER BLOKH AND MICHA L MISIUREWICZ

Proposition A.6. Let (fa) be an LRN-monotone family of unimodal maps. Fix
q0 > 2. Then there are finitely many intervals [λj , ˜λj ] such that h(fa) has rational
lower rotation number with denominator smaller than q0 if and only if h(fa) is the
logarithm of a number from one of the intervals λj , ˜λj ]. The numbers λj and ˜λj

are the largest roots of the equations

q−1
∑

i=0

ε(i)zi = 0,
q−1
∑

i=0

ε(i)zi =
2(z − 1)

z2

respectively, where the coefficients ε(i) are as in Lemma A.1.
If h(fa) = log ν with ν ∈ [λk, ˜λk] then for all b ≥ a we have h(fb) ≥ log λk. If ν

does not belong to any of the intervals [λj , ˜λj ] then for all b ≥ a we have

h(fb) > max

(

log ˜λk , h(fa)− 2
˜λq0

k − 1
, h(fa)− 2

νq0 − 3

)

,

where ˜λk is the largest ˜λj smaller than ν.
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