MA 125-CT, CALCULUS I September 26, 2016

September 20, 2010
Name (Print last name first):
TEST I
Show all your work! No partial credit will be given for the answer only!
PART I
Part I consists of questions. Clearly write your answer in the space provided after each question. Show all of your your work! All 8 problems in Part I are 7 points each.
Question 1
Use the definition of the derivative to show that the derivative of $y = f(x) = x^2$ is $f'(x) = 2x$.
Question 2
Find the derivative of $f(x) = x(x^2 + \sqrt{x})$
Answer:

Question 3

Find the derivative of $y = f(x) = x \sin(x)$.

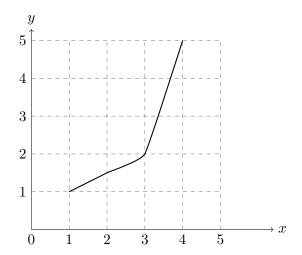
Answer:

Question 4

Find the derivative of $y = f(x) = \frac{x^2}{x+1}$.

Answer:

Question 5


Find the equation of the tangent line to the graph of $y = f(x) = 2x^3 + x$ at the point x = 1.

Answer:

Question 6

Using the graph of the function y = f(x) on the next page to estimate: f(2) and the derivative f'(2).

Answer:	_			_	_	_		_		_		_	_	_	

Question 7

Find the following limit:

$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x - 3}$$

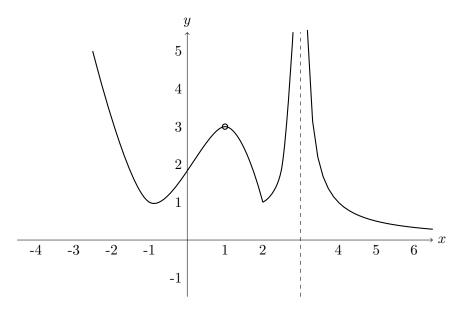
Question 8

Evaluate the following limit:

$$\lim_{x \to \infty} \frac{\cos^4(x)}{\sqrt{x}}$$

PART II

Part II consists of 4 problems. You must show correct reasons to get full credit. Displaying only the final answer (even if correct) without the relevant steps will not get full credit.


Problem 1 (12 points)

Recall that the displacement of a particle is the difference between its two positions associated with two moments of time. Suppose that $S(t) = 2t^3 + 3t^2 - 12t \ m$ is the position of a particle at time t (in seconds) on a line. Find:

- (a) the velocity at time t = 1;
- (b) the displacement from t = 0 to t = 3.

Problem 2 (10 points)

Given the graph of the function y = f(x) below find:

1.
$$\lim_{x \to 1^{-}} f(x) =$$

2.
$$\lim_{x \to 1^+} f(x) =$$

$$3. \lim_{x \to 1} f(x) =$$

4.
$$\lim_{x \to 3^{-}} f(x) =$$

5.
$$\lim_{x \to 3^+} f(x) =$$

$$6. \lim_{x \to 3} f(x) =$$

$$7. \lim_{x \to \infty} f(x) =$$

$$8. \lim_{x \to -\infty} f(x) =$$

- 9. State all intervals on which f(x) is continuous.
- 10. State all intervals where f(x) is differentiable.

Problem 3 (12 points)

Evaluate the following limits: a) $\lim_{x \to \infty} x^3 + x$

a)
$$\lim_{x \to \infty} x^3 + x$$

b)
$$\lim_{x \to \infty} x^3 - x$$

c)
$$\lim_{x \to \infty} \frac{\tan(x)}{x}$$

Problem 4 (10 points)

Define a function

$$f(x) = \begin{cases} \frac{-x^3 + 5x^2}{x - 5}, & x \neq 5, \\ k, & x = 5, \end{cases}$$

- a) (8 points) Find a value of k so that f(x) is a continuous function for all real numbers x.
- **b)** (2 points) For the value of k you found, is f(x) differentiable at x = 5? Briefly explain.