MA 125 CT, CALCULUS I

Test 3, November 10, 2016

Name (Print last name first):

Show all your work and justify your answer!

No partial credit will be given for the answer only!

PART I

You must simplify your answer when possible. All problems in Part I are 8 points each.

1. Evaluate
$$\int \sqrt{x}(x^3+1) dx$$
.

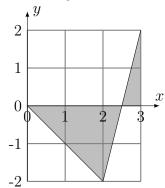
2. Evaluate
$$\int \frac{x^3 + 1}{x^6} dx.$$

3. Evaluate $\int_0^1 x^2 \sin(2x^3 + 1) \, dx$

4. Evaluate $\int_{-17}^{17} \frac{x}{x^6 + 2x^2 + 1} dx$.

5. Use the Fundamental Theorem of Calculus to give an example of an anti-derivative of the function $f(x) = \sin(x^2 + 1)$

6. Use a Riemann sum with n=4 terms and the midpoint rule to approximate the value of $\int_1^2 \frac{1}{x} dx$.


7. Find the average value of the function $f(x) = 3x^2 - 2x$ on [0, 1].

PART II

1. **[14 points]** Evaluate
$$\int \frac{(x+2)^2}{(1-x)^{27}} dx$$

- 2. [16 points] Suppose the graph of a function y = f(x) is shown in the plot below.
 - (i) Find the value of its integral:
- $\int_0^3 f(x) \, dx$
- (ii) Let $g(x) = \int_0^x f(t) dt$. What is the derivative g'(1)?
- (iii) State the intervals where g(x) is increasing and where it is decreasing. [As always you must explain your answer!]

The area of a triangle is $\frac{1}{2} \cdot \mathsf{base} \cdot \mathsf{height}$

- 3. [14 points] If the velocity of a particle is given by $v(t) = t^2 t$ and the position S(0) = 3.
 - (a) Find a formula for the position S(t) at time t.
 - (b) Find the displacement of the particle on [0,2].
 - (c) Find the total distance traveled by the particle on [0,2].

Scratch paper