MA 125, CALCULUS I

Test 4, November 18, 2015

Name (Print last name first):

Show all your work and justify your answer!

No partial credit will be given for the answer only!

PART I

You must simplify your answer when possible.

All problems in Part I are 8 points each.

1. If $f(x) = \ln(\sec(x))$, find the derivative f'(x). Recall that $\sec(x) = \frac{1}{\cos(x)}$.

2. Find the anti-derivative F(x) of the function $f(x) = \tan(x)$. Recall that $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

3. Find the derivative of $f(x) = e^{\sin(x)}$.

4. Evaluate
$$\int \frac{x^3 + 1}{x^4 + 4x} dx$$

5. Solve $e^{3x+2} = 9$.

6. Solve $\ln(2x+1) = -2$.

7. Use Newton's method to approximate the value of $\sqrt{101}$. Start with $x_1 = 10$ and only compute the second approximate value x_2 .

8. Set $f(x) = x^5 + 2x + 1$. Show that f(x) is one-to-one by studying monotonicity of f. Next compute the derivative $(f^{-1})'(1)$

PART II

1. [8 points] Evaluate the integral

.

$$\int \frac{e^{\tan(x)}}{\cos^2(x)} dx$$

- 2. [12 points]Given the graph of y = f(x) below read off the graph the following: (1) the value of y = f(1.5)
 - (2) the value of $x = f^{-1}(1.5)$

(3) Estimate the derivative f'(2). (Hint: draw the tangent line and estimate its slope).

(4) Estimate the derivative of $(f^{-1})'$ at x = 1.5. (Hint: draw the tangent line and estimate its slope). Indicate in the graph how you found your values!

- 3. [16 points] Graph the function f(x) = x² ln(x) for x > 0. Indicate in the graph:
 (a) x- and y-intercepts
 - (b) Horizontal and Vertical asymptotes (if any). [Do $\lim_{x\to 0^+} x^2 \ln(x)$ numerically by computing values at $x = \frac{1}{10}$ and $x = \frac{1}{100}$.]
 - (c) Critical points, increasing, and decreasing.
 - (d) Local/Abs Max/Min, if any.

