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2011-2012 UAB MATH TALENT SEARCH

This is a two hour contest. Answers are to be written in the spaces
provided on the test sheet. There will be no credit if the answer is
incorrect. You MUST justify your answers in order to get full credit;
otherwise, partial credit or no credit will be awarded according to the
decision made by the judges. Your work (including full justifications)
should be shown on the extra paper which is attached. The problems
are listed in increasing order of difficulty.

PROBLEM 1 (10 pts) On the side AD of a parallelogram ABCD a
point P is chosen so that AP:AD=1:n. Let Q be the point of intersec-
tion of AC and BP. Express in terms of n the ratio AQ:AC.

YOUR ANSWER:

PROBLEM 2 (30 pts) A square floor is tiled with congruent square
tiles. The tiles on the two diagonals are yellow. The rest of the tiles
are white. If there are x yellow tiles, give the formulas for the overall
number of tiles on the floor depending on whether x is odd or even.

YOUR ANSWER IF x IS ODD:

YOUR ANSWER IF x IS EVEN:

PROBLEM 3 (60 pts) A box is filled with big and small balls which
are either green or yellow. It is known that among all balls the pro-
portion of big balls is α (0 ≤ α ≤ 1). It is also known that among
the small balls the proportion of small yellow balls is β (0 ≤ β ≤ 1).
Express in terms of α and β the proportion of small green balls among
all balls.

YOUR ANSWER:
over, please
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PROBLEM 4 (120 pts) An increasing sequence of natural numbers
b1, b2, . . . is such that bn+2 = bn + bn+1 for all n ≥ 1. It is known that
b7 = 120. Find b8.

YOUR ANSWER:

PROBLEM 5 (210 pts) Consider all numbers an = 19 · 8n + 17, n =
0, 1, . . . . For each such number let pn be its smallest prime factor.
What is the maximal value of pn?

YOUR ANSWER:

PROBLEM 6 (300 pts) Find all triples of natural numbers x ≤ y ≤ z
such that the product of any two of them plus one is a multiple of the
third one.

YOUR ANSWER:
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2011-2012 UAB MTS: SOLUTIONS

PROBLEM 1 (10 pts) On the side AD of a parallelogram ABCD a
point P is chosen so that AP:AD=1:n. Let Q be the point of intersec-
tion of AC and BP. Express in terms of n the ratio AQ:AC.

Solution: Draw through the point C a straight line parallel to BP.
Denote the point of intersection of this line and the straight line con-
taining AD by X. Then the triangle ABP equals the triangle CDX.
Hence DX=AP and it follows that AP:AX=1:(n+1). On the other
hand, the fact that CX is parallel to BP implies that AQ:AC=AP:AX.
Therefore AQ:AC=1:(n+1).

So the answer is 1:(n+1). �

PROBLEM 2 (30 pts) A square floor is tiled with congruent square
tiles. The tiles on the two diagonals are yellow. The rest of the tiles
are white. If there are x yellow tiles, give the formulas for the overall
number of tiles on the floor depending on whether x is odd or even.

Solution: Consider first the case when the side of the floor is n × n
with n = 2m being even. In this case two diagonals of the floor are
disjoint, and each diagonal consists of n tiles. Hence overall there are
2n = x yellow tiles. This implies that n = x/2 and hence the overall
number of tiles is n2 = x2/4. This formula applies if x is even.

Assume now that n = 2m+ 1 is odd. Then there exists a unique cen-
tral tile located at the geometric center of the floor. This tile is shared
by both diagonals of the floor. Hence in this case x = 4m + 1 (each
diagonal has two segments of m tiles each and the central tile). We
conclude that in terms of x the length of the side of the floor can be
expressed as n = 2m+1 = (x+1)/2. Hence the overall number of tiles
in this case is given by (x+ 1)2/4.

So the answer is (x+ 1)2/4 if x is odd and x2/4 if x is even. �

PROBLEM 3 (60 pts) A box is filled with big and small balls which
are either green or yellow. It is known that among all balls the pro-
portion of big balls is α (0 ≤ α ≤ 1). It is also known that among
the small balls the proportion of small yellow balls is β (0 ≤ β ≤ 1).
Express in terms of α and β the proportion of small green balls among
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all balls.

Solution: Denote the number of balls of any specific kind by the pair
of first letters of the properties of the balls. Thus, for example, bg is
the number of big green balls, and the other numbers are by, sg and sy.
Moreover, we may assume that all these numbers are expressed relative
to the overall number of balls which implies that bg+ by+ sg+ sy = 1.
We are given that bg + by = α; hence sg + sy = 1 − bg − by = 1 − α.
We are also given that sy

sg+sy
= β; hence sg

sg+sy
= 1− β.

Thus, the number of small green balls relative to the number of all
balls is (1− α)(1− β). �

PROBLEM 4 (120 pts) An increasing sequence of natural numbers
b1, b2, . . . is such that bn+2 = bn + bn+1 for all n ≥ 1. It is known that
b7 = 120. Find b8.

Solution: Set b1 = x, b2 = y. It is given that x ≤ y. Moreover,
b3 = x + y, b4 = x + 2y, b5 = 2x + 3y, b6 = 3x + 5y, b7 = 5x + 8y,
b8 = 8x + 13y. Thus, b7 = 5x + 8y = 120. Since 5x = 8(15 − y), we
see that x is a multiple of 8. Similarly, y is a multiple of 5. Set y = 5k
and x = 8j. Then b7 = 40j + 40k = 120 and j + k = 3. Also, x must
be less than y. Hence j = 1 and k = 2 which implies that x = 8 and
y = 10. We conclude that b8 = 8x+ 13y = 194.

So the answer is 194. �

PROBLEM 5 (210 pts) Consider all numbers an = 19 · 8n + 17, n =
0, 1, . . . . For each such number let pn be its smallest prime factor.
What is the maximal value of pn?

Solution: We will use the following standard notation: if a and b have
the same remainder when divided by m we will write d ≡ b mod m.
It is easy to check that x ≡ y mod m is equivalent to the fact that
x − y ≡ 0 mod m, i.e. that x − y is a multiple of m. Let us show
that if P (x) = anx

n + an−1x
n−1 + · · · + a1x + a0 is a polynomial with

integer coefficients, then x ≡ y mod m implies that P (x) ≡ P (y)
mod m. Indeed, it is easy to check that xk − yk = (x − y)Qk(x, y)
where Qk(x, y) = xk−1 + xk−2y + xk−3y2 + · · · + yk−1 (e.g., Q1(x, y) =
1, Q2(x, y) = x+ y,Q3(x, y) = x2 + xy + y2 etc). Hence

P (x)− P (y) = an(x
n − yn) + · · ·+ a1(x− y) =
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= (x− y)[anQn(x, y) + · · ·+ a2Q2(x, y) + a1Q1(x, y)]

which implies that if x − y is a factor of P (x) − P (y). If x − y is a
multiple of m, then so is P (x)− P (y) as desired.

Now let us go back to our problem and consider several cases depend-
ing on the parity of n.

(1) Suppose that n = 2k is even. Then 8n ≡ (−1)n ≡ 1 mod 3. Hence
an ≡ 19 · 1 + 17 ≡ 0 mod 3. Hence in this case the minimal prime
factor of an, denoted above by pn, is less than of equal to 3.

(2) Suppose that n = 2k + 1. Then an = 19 · 8 · 64k + 17 = 152 · 64k.
Consider two subcases.

(2a) Suppose that k = 2m + 1. Then an ≡ 152 · (−1)2m+1 + 17
mod 5 ≡ −135 ≡ 0 mod 5. Thus, in this case the number pn is less
than or equal to 5.

(2b) suppose that k = 2m. Thenan ≡ 152 · (−1)2m + 17 mod 13 ≡
169 ≡ 0 mod 13. Thus, in this case the number pn is less than or
equal to 13.

This analysis shows that pn ≤ 13 for any n. Now, a1 = 19 ·8+17 = 169
which implies that p1 = 13. We conclude that the maximal value of pn
is assumed if n = 1 and is equal to 13.

So the answer is 13. �

PROBLEM 6 (300 pts) Find all triples of natural numbers x ≤ y ≤ z
such that the product of any two of them plus one is a multiple of the
third one.

Solution: We are given that xy+1 is a multiple of z, xz+1 is a multiple
of y and yz + 1 is a multiple of x. Hence a = (xy + 1)(xz + 1)(yz + 1)
is a multiple of xyz. Expanding parentheses we have that

a = x2y2z2 + xyz2 + xy2z + yz + x2yz + xz + xy + 1

is a multiple of xyz. If we now subtract x2y2z2+xyz2+xy2z+x2yz from
a, we will get xy+xz+yz+1 which is still a multiple of xyz. Dividing
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both sides by xyz we see that the sum s = s(x, y, z) = 1
x
+ 1

y
+ 1

z
+ 1

xyz
≥ 1

is an integer.
This shows that numbers x, y, z cannot be all big because then s will

be smaller than 1. Indeed, assume that 4 ≤ x (recall that x ≤ y ≤ z).
Then we have that s(x, y, z) ≤ s(4, 4, 4) = 49

64
< 1, a contradiction.

Hence either x = 1, or x = 2, or x = 3. Consider these three cases.
(1) x = 1. Then xy+1 = y+1 = kzz for some integer kz ≥ 1 so that

y+1 ≥ z. Since we assume that x ≤ y ≤ z, we see that y ≤ z ≤ y+1.
Hence either z = y, z = y + 1. Suppose that y = z. Then since y + 1
is a multiple of z = y we conclude that y = z = 1. Suppose that
z = y + 1. Then since z + 1 = y + 2 is a multiple of y we conclude
that y = 1 and z = 2. These yields two triples solving the problem: 1)
x = 1, y = 1, z = 1, and 2) x = 1, y = 1, z =.

(1) x = 2. Then since yz+1 is a multiple of x = we have that y and
z are odd. We have s(2, 3, 3) = 11

9
is not an integer; s(2, 3, 5) = 16

15
is

not an integer; s(2, 3, 7) = 1 is an integer. To verify the conditions of
the problem, we see that 2 · 3 + 1 = 7 is a multiple of 7, 2 · 7 + 1 = 15
is a multiple of 3 and 3 · 7+1 = 22 is a multiple of 2. Thus, x = 2, y =
3, z = 7 solves the problem.

Let us show that there are no other solutionis. Indeed, clearly
s(2, 3, 9) < 1, hence we now need to consider the case when x = 2
and y = 5. Then we have s(2, 5, 5) = 23

25
< 1; since for all other choices

of y and z the value of s(x, y, z) only decreases and hence cannot be
integer, this completes considering case (1).

(2) x = 3. Then yz+1 must be a multiple of 3. Hence neither y nor z
can be equal to 3. Moreover, y = z = 4 is impossible for the same rea-
son. The first case which needs to be considered is when y = 4, y = 5
as then yz + 1 = 4 · 5 + 1 = 21 is a multiple of 3. However in this
case we have s(3, 4, 5) = 47

60
< 1. Since for all other choices of y and z

the value of s(x, y, z) only decreases and hence cannot be integer, this
completes considering case (2).

So, the answers are as follows: 1){x = 1,y = 1, z = 1}, 2){x = 1,y = 1,
z = 2}, 3){x = 2,y = 3, z = 7}. �


