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Abstract: The modulus of a polynomial-like (PL) map is an important invariant that
controls distortion of the straightening map and, hence, geometry of the corresponding
PL Julia set. Lower bounds on the modulus, called complex a priori bounds, are known
in a great variety of contexts. For any rational function we complement this by an upper
bound for moduli of PL maps in the satellite case that depends only on the relative
period and the degree of the PL map. This rules out a priori bounds in the satellite case
with unbounded relative periods. We also apply our tools to obtain lower bounds for
hyperbolic lengths of geodesics in the infinitely renormalizable case, and to show that
moduli of annuli must converge to 0 for a sequence of arbitrary renormalizations, under
several conditions all of which are shown to be necessary.

1. Introduction

Since Sullivan’s work on Feigenbaum’s universality [30], complex a priori bounds for
polynomial-like renormalizations play a key role in polynomial dynamics. Such bounds,
often hard to prove, are established and crucially used for various classes of polynomials
(see, e.g., [3,8,9,11–16,21,22,24,27,30]). They imply that the Julia set J ( f ) is locally
connected and, in a lot of cases, rigidity of the corresponding maps in the considered
family (if the latter is the quadratic family, this means the MLC conjecture at the corre-
sponding parameters). Thus, bounds are an important tool in complex dynamics.

On the other hand, counterexamples by Douady and Hubbard of satellite infinitely
renormalizable quadratic polynomials with non-locally connected Julia sets show that
the bounds do not always hold (see [26,29] for qualitative versions and [17–19] and
[2] for quantitative ones). These and similar examples of satellite renormalizations with
“no bounds” are based on the polynomial-like (PL) connected Julia sets keeping definite
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size, deal with polynomials, and require a sequence of consecutive satellite renormal-
izations with fast convergence to zero of the rotation numbers at the α-fixed points of
renormalizations ([18,19], see also [2]). In particular, in all those examples the relative
periods of the renormalizations (i.e., the denominators of the rotation numbers) converge
to infinity very fast. The authors are not aware of other cases where the “no bounds”
condition have been established. So it was unclear how general the phenomenon was,
and no explicit upper bounds were previously known.

Motivated by the desire to clarify the mechanism behind the “no bound” phenomenon,
we study renormalizations ofany rational function. Given a PL map P : U → V (see [5])
with connected filled Julia set K ∗, call U \ K ∗ a root annulus, and V \U a fundamental
annulus (of K ∗). Notice that complex a priori bounds mean lower bounds on the modulus
of a fundamental annulus. Let f be a rational function such that f q : U → V is a PL map
of degree d∗ with connected Julia set K ∗. The cycle K = {K ∗, f (K ∗), . . . , f q−1(K ∗)}
is called the PL cycle of f . Suppose that a point α ∈ K ∗ of period q/s < q is the only
intersection point of K ∗ and

⋃
0<i<q f i (K ∗); then s is called the relative period of K,

and the orbit of α is called the base cycle of K. See Definitions 2.3–2.4 for more details.
The Main Theorem is proven in Sect. 2.2.

MainTheorem. Let f be a rational function of degree d � 2 with a PL cycle K of
relative period s � 2. Then, for any PL f q : U → V of degree d∗ of any filled PL Julia
set K ∗ ∈ K,

mod(V \U ) � (d∗ − 1)mod(U\K ∗) <
d∗(d∗ − 1)π

ln(4(s + 1))
� 22d−2(22d−2 − 1)π

ln(4(s + 1))
,

and, if f is a polynomial, then

mod(V \U ) � (d∗ − 1)mod(U\K ∗) <
d∗(d∗ − 1)π

ln(4(s + 1))
� 2d−1(2d−1 − 1)π

ln(4(s + 1))
.

Observe, that an upper bound on mod(V \ U ) would not automatically imply an
upper bound on mod(U \ K ∗).

As an example of how the Main Theorem can be used, consider the family of infinitely
renormalizable polynomials fc(z) = z2 + c such that all renormalizations are satellite.
To each such fc one associates a sequence of relative rotation numbers of consecutive
renormalizations. Then, by the Main Theorem, for a generic subset of the space of all
such sequences the associated polynomials admit no a priori bounds. Here, “generic”
refers to Baire category, that is, the corresponding subset is a countable intersection of
open dense subsets of (Q/Z)N.

In this context we want to also mention a recent preprint [7] (see also references
therein) that generalizes [11] to the satellite case and completes the proof of the fact that
a priori bounds hold forall infinitely renormalizable quadratic polynomials fc(z) = z2+c
with bounded combinatorics (i.e., such that for some number p the period of the next
renormalization is less than p times the period of the previous renormalization). Together
with the Main Theorem this provides a criterion for the existence of a priori bounds in the
case of infinitely renormalizable quadratic polynomials with satellite renormalizations.

Another application of our tools deals with geometry of the postcritical set in the
infinitely renormalizable case. Write P1 for the projective line over the field C of complex
numbers, i.e., for the Riemann sphere. For a compactum Y ⊂ P1 such that X = P1 \ Y
is a hyperbolic Riemann surface, let �X (γ ) be the hyperbolic length of a Jordan curve
γ ⊂ X in X . Given a geodesic γ in a hyperbolic Riemann surface X , say that an annulus
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A in X is homotopic to γ if a simple closed curve in A that is a deformation retract of
A is homotopic to γ in X . Bounded geometry of a postcritical infinitely renormalizable
set Y (with respect to a given sequence of renormalizations) means that for some L > 1,
each level of renormalization, each PL Julia set K ∗ of this level, and any simple closed
geodesic in X = P1 \ Y isotopic in X to the boundary of a tight Jordan neighborhood
of K ∗, we have �X (γ ) ∈ [1/L , L].

Recently, D. Cheraghi [virtual workshop “Many faces of renormalization”, Simons
Center for Geometry and Physics, 2021] and M. Pedramfar [Workshop “On geometric
complexity of Julia sets”, 2018, B

↪
edlewo, Poland] announced their joint results on the

geometry and topology of a postcritical infinitely renormalizable setPC f for a quadratic
polynomial f (z) where all renormalizations are satellite. Then, a (combinatorial) ratio-
nal rotation number k/s ∈ (−1/2, 1/2] is associated with a PL cycle, describing how its
PL Julia sets rotate about their base points. The results of D. Cheraghi and M. Pedramfar
concern the cases when all such rotation numbers are of high type (see [10]) and state, in
particular, that the postcritical set PC f of such a polynomial f has bounded geometry if
and only if the set of rotation numbers is bounded away from 0. Recall that for a rational
function f , PC f is the closure of the union of forward orbits of all critical values of f .

Our results complement these. However, unlike in the definition of bounded geometry,
we require that a simple geodesic γ goes not only around the chunk of a postcritical
infinitely renormalizable set PC f contained in a PL Julia set K ∗ but also around {α} =
B ∩ K ∗ (recall that B is the corresponding base cycle of K). Corollary A follows from
the more general, but also more technical, Theorem 3.5.

CorollaryA. Consider a polynomial f with a satellite PL cycle K of relative period
s > 1 that takes part in the formation of an infinitely-renormalizable set S (see Def. 3.1).
Suppose that all (finite) critical points of f belong to S, and set X = P1 \ (B ∪ PC f ).
Let γ be a simple closed geodesic in X isotopic in X to the outer boundary of some
fundamental annulus of a PL Julia set K ∗ ∈ K. Then

�X (γ ) � ln

(
4 ln(s + 1)

(d∗)2π

)

.

Thus, if all critical points of a rational function f belong to an infinitely renormal-
izable set then adding the base cycle to the postcritical set makes the situation with the
length of simple closed geodesics universally opposite to that described by Cheraghi and
Pedramfar. Notice that in our setting the assumptions on f are less restrictive. Corollary
A is proven in Sect. 3.

The Main Theorem shows that for rational functions fi of degree d with satellite PL
cycles of relative periods si → ∞, the moduli of root annuli tend (uniformly in si ) to
zero. As we show in Theorem B in Sect. 4, this conclusion holds not only in the satellite
case. Moreover, no conditions in Theorem B can be dropped (see Proposition 4.2 and
the short discussion before it).

TheoremB. Let { fn} be a sequence of degree d � 2 rational functions that converges
to a rational function f of degree d. Assume that for each n there is a renormalization
f qnn : Un → Vn of period qn with connected PL Julia set Kn, and Kn → K in the
Hausdorff metric. Suppose that the following holds:

(1) there are at least two points in K ,
(2) the sequence qn tends to infinity,
(3) no parabolic periodic domain of f contains K (e.g., if f has no parabolic points).
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Then mod(Un \ Kn) → 0.

Let us comment briefly on our methods. The proof of the Main Theorem uses the
solution of Teichmueller’s extremal problem and is otherwise elementary. This allows
us to prove a completely general (depending only on the degree and the relative period)
upper bound for a single satellite renormalization.

Corollary A follows from the more technical Lemma 3.4 and Theorem 3.5 that extend
some estimates used in the proof of the Main Theorem and rely upon results of [23]
relating hyperbolic lengths of closed geodesics and moduli of the associated annuli.

Finally, unlike the Main Theorem, Theorem B deals with arbitrary renormalizations
and contains restrictive conditions that guarantee convergence to zero of moduli of
the corresponding annuli. The proof of the fact that these conditions are necessary (see
Proposition 4.2) is based on the existence of universal complex bounds for real unimodal
maps [9,16,22] and the “parabolic implosion” technique involving Lavaurs’ map (see,
e.g., [32]). Our results are applicable to the case, when a fundamental annulus of a PL
map under consideration contains critical values of f .

2. Proof of the Main Theorem

Let P1 be the Riemann sphere. For a compact subset X ⊂ C, let diame(X) be its
Euclidian diameter. For a finite set P ⊂ C, let δ(P) be the shortest Euclidian distance
between two distinct points of P . Write C f for the set of critical points of the map f .

2.1. The Teichmueller extremal problem. Section 2.1 describes classical geometric in-
equalities arising from extremal problems of conformal geometry (see, e.g., [1], Sections
4.11 – 4.12, for details). Recall the Teichmueller extremal problem: find the maximal
value of mod(U \ Z), where an open Jordan domain U ⊂ C and a full continuum Z are
such that 0, −1 ∈ Z whileU does not contain the disk {z ∈ C | |z| � ε}. In other words,
the distance between the complement of U and 0 is less than or equal to ε. It reads that
the maximal m = mod(U \ Z) is attained when Z = [−1, 0] while U = C \ [ε,∞).
For this optimal choice of U and Z , write τ−1(ε) for the modulus of U \ Z . Here τ−1

is an increasing function defined on R>0, that
can be expressed in terms of elliptic integrals. Let τ be the inverse function of τ−1;

then
τ(m) > 16e−π/2m .

This inequality is asymptotically sharp for small values of m and ε.
Based upon the above, one can restate the Teichmueller extremal problem as follows:

if U and Z are as above, and m = mod(U \ Z), then the disk {z ∈ C||z| < τ(m)} is
contained in U .

Lemma 2.1. If Z ⊂ C is a full continuum and V ⊃ Z is an open Jordan domain, then
the minimal distance between a point x ∈ Z and a point y ∈ C \ V is greater than
1
2τ(mod(V \ Z)) · diame(Z).

Figure 1 illustrates the proof of Lemma 2.1.

Proof. Note that, in any compact metric space, the distance from any point to the point
farthest from it is at least half the diameter. In particular, the distance from any point
x ∈ Z to the point z ∈ Z farthest from x is at least diame(Z)/2.
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Fig. 1. This figure illustrates the proof of Lemma 2.1 and uses the notation from the lemma

To prove the lemma let x = 0. By the above, we can scale Z by the factor γ �
2/diame(Z) so that the point z ∈ Z of maximal |z| maps to −1. Choose y ∈ C \ V so
that |y| is minimal over C \ V . By the restatement of the Teichmüller extremal problem,
|y| � τ(mod(V \ Z)). Scaling everything back, we see that

|y|
γ

� τ(mod(V \ Z))

γ
� τ(mod(V \ Z)) · diame(Z)

2
,

as claimed. 
�
Recall that δ(P) is the shortest Euclidian distance between two distinct points of a

finite set P . Lemma 2.2 estimates δ(P) for finite subsets P ⊂ C.

Lemma 2.2. Let P ⊂ C be a set of t > 1 points. Then δ(P) < 2√
t
diame(P).

Proof. Since 1 < 2√
t

for t � 3 we may assume that t � 4. We may also assume that

diame(P) = 1. Since the open disks of radius δ/2 centered at all points ofP are pairwise
disjoint and contained in a convex set of diameter 1 + δ, the total area tπδ2/4 of these
disks is less than π(1 + δ)2/4, the maximal area of a planar set of diameter 1 + δ (see p.

239, ex. 610a of [31]). Thus, tδ2

4 <
(1+δ)2

4 which implies that δ <
1+

√
t

t−1 � 2√
t

where the
last inequality is based on the fact that t � 4. 
�

The next theorem is instrumental for the proof of the Main Theorem.

StaticTheorem. Let P = {α, z1, . . . , zt } ⊂ P1, t � 3. Then there are distinct points
zr , zl such that any annulus A ⊂ P1 separating {α, zr } from P \ {α, zr } or {α, zl}
from P \ {α, zl} satisfies mod(A) < π

ln(4t) . Thus, for any choice of w ∈ P , there exists

zk ∈ P, zk = w such that, for any annulus A ⊂ P1 separating {α, zk} from P \ {α, zk},
we have mod(A) < π

ln(4t) .

Figure 2 illustrates the proof of the Static Theorem.

Proof. Using a suitable Moebius transformation and the conformal invariance of the
modulus we assume that α = ∞ and show that there are two points zr = zl ∈ P such
that for z′ = zr or z′ = zl and for every annulus A in C separating {z′,∞} from P \ {z′}
we have mod(A) < π

ln(4t) . We may assume that diame(P \ {∞}) = 1.
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Fig. 2. This figure illustrates the proof of the Static Theorem and uses the notation from the theorem. Observe
that after we apply the suitable Moebius transformation which maps α to infinity, the images of points z3 = zl
and z5 = zr become the closest among images of all points of the set P

Let zr , zl ∈ P such that |zr − zl | = δ(P \ {∞}) and show that they are the desired
points (it suffices to prove it for zr ). Consider an annulus A separating {zr ,∞} from
P \ {zr ,∞}. Then zl ∈ P \ {∞, zr } ⊂ Z where Z is the bounded complementary
component of A. Hence diame(Z) � diame(P \{∞, zr }) � 1

2 as otherwise |zr −zl | < 1
2

by the choice of zr , zl and the Euclidian distance between any two points of P \ {∞} is
less than 1 = diame(P \ ∞) which is absurd. By Lemma 2.1,

τ(mod(A)) · 1/2

2
� τ(mod(A)) · diame(Z)

2
� |zr − zl | � 2√

t

and so τ(mod(A)) � 8√
t
; since 16e−π/2mod(A) < τ(mod(A)), then mod(A) < π

ln(4t) as
claimed. If now w is given (as in the assumptions of the theorem) we can choose zi to
be one of the points zr , zl not equal to w; clearly, zi will have the desired property. 
�

2.2. Moduli of annuli. We need some basic notation and definitions first.

Definition 2.3 (Renormalization and related concepts). A rational function f : P1 →
P1 is renormalizable if there are an integer q > 0 and Jordan domains U � V such
that f q : U → V is a degree d∗ polynomial-like (PL) map with connected Julia set K ∗
(recall that K ∗ is the set of all points z ∈ U whose f q -orbits are contained in U ). The
annulus A = V \U is called a fundamental annulus of K ∗, and the annulus U \ K ∗ is
called a root annulus (of K ∗). The collection of sets

K = {K ∗, f (K ∗), . . . , f q−1(K ∗)}
is called a PL cycle; we always assume that f i (K ∗) = f j (K ∗) for all 0 � i = j < q.
Note that each f i (K ∗), i � 0, is a connected filled Julia set of a PL map f q : Ui → Vi
for some Jordan domains Ui and Vi . These sets, denoted K ∗, are called members of K
or PL sets.

Definition 2.4 (Satellite PL cycles). For a rational function f , let K be a PL cycle of
period q and write K+ for the union of all members of K. Consider a repelling f -cycle
{α0, . . . , αr−1} = B of period r < q in K+, and suppose that K+ has r connected
components, each consisting of s members of K with a point of B in common. We
assume that different members of K can intersect at most in a single point of B. If points
of B are non-separating points for members of K, that is, if K ∗ \ B are connected for
all K ∗ ∈ K, then K and is said to be satellite with base period r and relative period
s = q

r > 1. Otherwise, i.e., when points of B separate PL sets from K, one talks of a
cross renormalization. The cycle B is called the base cycle (of K).
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The notation in Definitions 2.3 and 2.4 is used throughout. Note that the base cycle
B can be recovered from K: namely, B is the union of K ∗

i ∩ K ∗
j for all pairs of distinct

K ∗
i , K ∗

j ∈ K. Recall that C f q stands for the set of critical points of f q .

Lemma 2.5. Let f be a rational function with a satellite PL cycle K and s � 2. Fix
α ∈ B and let {K ∗

i = f r(i−1)(K ∗
1 )}si=1 be all elements of K attached to α. Suppose that

for each i ∈ {1, . . . , s}, there is a propermap f q : Ui → Vi of degree d∗ = deg( f q |K ∗
1
),

where Ui , Vi are Jordan domains containing K ∗
i . Then the following holds.

(1) For each j the set U j \ K ∗
j contains no critical points of f

q .
(2) No point of C f q ∩ K ∗

j ⊂ Uj belongs to Ui for i = j .

(3) There exists a critical pointw of f 2 (and, hence, of f q ) that does not belong to
⋃

Ui .
(4) If, for each i = 1, . . . , s, there is a continuum Zi ⊂ Ui such that (C f q ∩K ∗

i )∪{α} ⊂
Zi then there exists j with

mod(Uj \ Z j ) <
π

ln(4(s + 1))
.

Observe that the inclusion Ui ⊂ Vi is not assumed. Lemma 2.5 is also applicable to
cross renormalization. A typical situation in which we apply the lemma is when a Jordan
domain V of a PL map f q : U → V is pulled back to create pairs of Jordan domains
Ui , Vi .

Proof. (1) This claim follows from the fact that maps f q : Ui → Vi are of degree
d∗ = deg( f q |K ∗

1
). By the Riemann–Hurwitz formula, extra critical points in Ui would

make the degree of f q : Ui → Vi bigger.
(2) This follows from (1) and the setup.
(3) By (2), it suffices to prove that there must exist a critical point w of f 2 that does

not belong to K+. Indeed, assume the contrary, i.e., C f 2 = C f ∪ f −1(C f ) ⊂ K+. Let
the degree of f be equal to d � 2. First, note that a critical point of any iterate f i can
belong to at most one element of K because any two members of K can intersect each
other only at a point of the repelling cycle B. Recall also that f permutes all q elements
of K. Now, choose c0 ∈ C f . It belongs to some X0 ∈ K. Hence, the full preimage
f −1(c0) is contained in some other X−1 ∈ K, and the degree of the map f : X−1 → X0
is d. (Otherwise, there are two distinct members of K that map onto X0 under f ; a
contradiction with K being a cycle).

As d > 1 and since X−1, X0 are connected Julia sets of some PL maps, there must
be another point c−1 ∈ C f ∩ X−1. Replace X0 by X−1 and c0 by c−1, repeat the
argument q − 1 times. Along the way, we obtain the sets X0, X−1, X−2, . . . , X−(q−1),
X−q ∈ K, where X−q = X0 and deg( f : X−i → X−i+1) = d for i = 1, 2, . . . , q.
Then deg( f q : X0 → X0) = dq = deg( f q : Ĉ → Ĉ); recall also that X0 is a filled PL
Julia set for f q . Thus, X0 as well as its boundary ∂X0 ⊂ J ( f ) are completely invariant
under f q . This implies ∂X0 = J ( f q) = J ( f ), which is absurd.

(4) Choose arbitrary points z j ∈ C f q ∩ K ∗
j ⊂ Uj . By (2), z j /∈ Ui for any i = j . By

(3), w /∈ Ui for any i . Set P = {α, z1, . . . , zs, w}. It follows that the annulus Ui \ Zi
separates {α, zi } from all z j with j = i and from w. Now (4) follows from Static
Theorem. 
�

Observe that the inequality in part (4) of Lemma 2.5 features s +1 in the denominator
thanks to (3). Without (3), we would have shown that mod(Uj \ Z j ) < π

ln(4s) . On the



141 Page 8 of 15 A. Blokh, G. Levin, L. Oversteegen, V. Timorin

other hand, having a lot of critical points of f q outside
⋃

Ui does not help one to improve
the inequality because of the nature of Static Theorem. Therefore, even though Lemma
2.5(3) actually implies that there are much more than one critical point of f q outside of⋃

Ui , this observation does not help one to improve the inequality from Lemma 2.5(4).
Fix an element K ∗ of a PL cycle K. Let V \U be a fundamental annulus of K ∗. Let

Ui , Vi be iterated pullbacks ofU and V containing K ∗
i = f i (K ∗), for i = 0, 1, ..., q−1.

Observe that the map f q : Ui → Vi is a PL map with PL set K ∗
i and Ui \ K ∗

i is a root
annulus of K ∗

i (here i = 0, . . . , q − 1).

Lemma 2.6. Let K ∗ be a satellite PL set for a degree d rational function f . Then
d∗ � 22d−2, and for each i = 0, . . . , q − 1,

mod(U \ K ∗)
d∗ � mod(Ui \ K ∗

i ) � mod(U \ K ∗).

If f is a polynomial of degree d then d∗ � 2d−1.

Proof. As before, we write s for the relative period of K ∗. Indeed, d∗ is the product of
d∗
i = deg( f : f i (K ∗) → f i+1(K ∗)) over i = 0, . . . , q − 1. The function f has 2d − 2

critical points, counting multiplicities. Positive integers d∗
i satisfy the inequality

(d∗
0 − 1) + · · · + (d∗

q−1 − 1) � 2d − 2.

Using that 1 + x � 2x for any integer x � 0, we deduce that

d∗
0 . . . d∗

q−1 � 2(d∗
0 −1)+···+(d∗

q−1−1) � 22d−2.

The latter inequality is sharp: equality is attained when 2d − 2 numbers d∗
i are equal to

2, and all remaining d∗
j are equal to 1. The case of a polynomial is similar. 
�

Proof of the Main Theorem. Let f be a rational function of degree d � 2 with a satellite
PL cycleK of relative period s � 2. For any root annulus A of a filled PL Julia set K ∗ ∈ K
consider its pullback root annuli of pullbacks of K ∗ containing the same base point as
K ∗ itself. These root annuli together with the corresponding pullbacks of K ∗ satisfy the
assumptions of Lemma 2.5 which implies that there is one of them of modulus which is
less than or equal to π

ln(4(s+1))
. Then the inequalities on the moduli of A = U \ K ∗ and

V \U claimed in the statement of the Main Theorem follow respectively from Lemma
2.6 and the Groetsch inequality (the latter implies that mod(V \ U ) � (d∗ − 1)mod
(U \ K ∗)). 
�

3. Geometry of Infinitely Renormalizable Sets

Let us now consider the geometry of infinitely-renormalizable sets. Given a rational
function f , denote by PC f the closure of the union of forward orbits of all critical
values of f and call it the postcritical set (of f ).

Definition 3.1 (Infinitely renormalizable sets). If a sequence of PL cycles Kn of f is
such that K+

n+1 ⊂ K+
n , and the period of Kn+1 is greater than the period of Kn , then

the set S = ⋂
n K+

n is called an infinitely renormalizable set for f . Consider all critical
points of f that belong to S; then the union of the closures of the orbits of their images
is called a postcritical infinitely renormalizable set.
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Let us now prove a couple of topological lemmas.

Lemma 3.2. Let W0 and W1 be Jordan domains and let f be a branch covering map
of P1 to itself such that f : W0 → W1 is a degree k branched covering. Consider a
Jordan curve � isotopic to ∂W1 rel. f (C f ) and let V be the Jordan domain enclosed by
� that contains f (C f ∩ W0). Then the f -pullback U of V that contains C f ∩ W0 is a
Jordan domain that maps onto V as a branched covering map of degree k with critical
set C f ∩U = C f ∩ W0.

Observe that � does not have to lie in W 1, and C f is the set of all critical points of
f , not only those contained in W0.

Proof. One can assume that the isotopy connecting ∂W1 with � consists of Jordan
curves �t parameterized by t ∈ [0, 1]. The curve �t never crosses the critical values of
f . Therefore, the pullbacks of �t also form an isotopy γt parameterized by t ∈ [0, 1]
such that γ0 = ∂W0 and γ1 ⊂ f −1(�). All γt enclose the same set of critical points,
and all are Jordan curves. In particular, this is true for γ1, which proves the desired. 
�

The next lemma is a consequence of well-known facts.

Lemma 3.3. Let U and V be Jordan domains and let f : U → V be a degree k
branched covering. Consider a full continuum Z ⊂ V such that f (C f ) ⊂ Z. Then the
full preimage of Z under f is a full continuum containing C f .

Proof. Set Z ′ = f −1(Z). The set V \ Z is a topological annulus, and f : U \ Z ′ →
V \ Z is a degree k unbranched covering of this annulus. All covering spaces of V \ Z
are classified by subgroups of π1(V \ Z) = Z, and, in particular, such a covering is
determined (up to covering equivalence) by its degree. It follows that U \ Z ′ is also an
annulus, hence Z ′ is a full continuum. 
�

Now we use these lemmas to study moduli of annuli whose outer boundaries are
defined through an isotopy.

Lemma 3.4. Let f be a rational function with a satellite PL cycle K of degree d∗ and
relative period s � 2, let K ∗ ∈ K, and let V \U be a fundamental annulus withU ⊃ K ∗.
Denote the point B ∩ K ∗ by α. Set F = {α} ∪ f 2q(C f 2q ). Let �t be an isotopy rel. F
that transforms the Jordan curve ∂V = �0 to a Jordan curve �1 that encloses a Jordan
domain W. Let Z ⊂ W be a full continuum containing {α} ∪ f 2q(C f 2q ∩ K ∗). Then

mod(W \ Z) <
(d∗)2π

ln(4(s + 1))
.

Observe that {α}∪ f 2q(C f 2q ∩K ∗) ⊂ W by the assumption on the isotopy. However,
both U and W may contain other elements of F . Also, W is an arbitrary Jordan domain
that can be obtained as described in the Lemma; it does not have to be the range of a PL
map. Finally, the result is also applicable to cross renormalization.

Proof. We may assume that r = 1 and, hence, s = q. Denote by Wi the f i -pullback of
W containing α (here 1 � i � 2q). By Lemma 3.2, the sets Wi , 1 � i � 2q are Jordan
domains. We claim that the critical points of f 2q |W2q belong to K ∗. Indeed, the f 2q -
pullback V2q of V containing α contains only critical points of f 2q that belong to K ∗.
If there exists a critical point β of f 2q |W2q that does not belong to K ∗ then f 2q(β) ∈ �t
for some t ∈ [0, 1], a contradiction with the properties of �t (which is an isotopy rel.
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F). So, the critical points of f 2q |W2q belong to K ∗. Observe that the f q -pullback of V
containing α coincides with U . Moreover, the conditions on the isotopy will allow us to
apply Lemma 2.5.

Now, since Z is a full continuum containing {α} ∪ f 2q(C f 2q ∩ K ∗), then Lemma
3.3 implies that the f i -pullbacks of Z contained in the sets Wi , are full continua (here
1 � i � 2q), and the annuli Wi \ Zi are f i -pullbacks of the annulus W \ Z . Finally, let
K ∗
i ∈ K be the f i -pullbacks of K ∗ (here and in what follows K ∗

i should be understood
with i taken modulo s = q).

We will now consider Jordan domains Wq+1, Wq+2, . . . , W2q that contain full con-
tinua Zq+1, Zq+2, . . . , Z2q , respectively. By the previous paragraph and by Lemma 3.3,
the map f q : Wq+i → Wi is a branch covering map of degree d∗ for any i, 1 � i � q,
and all points of C f q ∩ K ∗

q+i belong to Zq+i . Applying Lemma 2.5 to this collection of
Jordan domains and full continua, we find i , 1 � i � q with

mod(Wq+i \ Zq+i ) <
π

ln(4(s + 1))
.

On the other hand, the map f q+i |Wq+i is of degree at most (d∗)2. Properties of moduli
of annuli then imply that

mod(W \ Z) <
(d∗)2π

ln(4(s + 1))

as desired. 
�
Consider a simple closed geodesic γ in a hyperbolic Riemann surface X . By [23],

there always exists an annulus A ⊂ X homotopic to γ , such that
1

�(γ )/2 · e�(γ )/2
� 2

�(γ )
arcsin

(
e−�(γ )/2

)
� mod(A) � π

�(γ )
. (�|m)

Theorem 3.5. Let f be a rational function with a satellite PL cycle K of degree d∗
and relative period s > 1. Let K ∗ ∈ K, denote the point B ∩ K ∗ by α, and set F =
{α}∪ f 2q(C f 2q ). Suppose that T ⊃ F is a closed set. Let X̃T = P1 \ T . If γ is a Jordan
curve in X̃T isotopic to the outer boundary of a fundamental annulus around K ∗ rel. T
then its hyperbolic length �X̃T

(γ ) in X̃T satisfies the inequality

2

e�X̃T
(γ )/2 · �X̃T

(γ )
� (d∗)2π

ln(4(s + 1))
⇒ �X̃T

(γ ) � ln

(
4 ln(s + 1)

(d∗)2π

)

.

Proof. Notice that if 1
xex < C for some C then 1

e2x < 1
xex < C and, hence, x >

ln 1
C

2 ;
thus, the second inequality is indeed a formal consequence of the first.

The theorem follows from Lemma 3.4, inequality (�|m) displayed before Theorem
3.5, and a simple inequality discussed in the first paragraph of the proof. Note: in the
estimates, we use the annuli A between K ∗ and Jordan curves homotopic to γ in X̃T .
These annuli may have nonempty intersections withT . In this case, an annulus homotopic
to γ in X̃T is necessarily smaller than a suitable A, which makes its modulus even smaller
and the corresponding hyperbolic length �X̃T

(γ ) even larger. 
�
We are ready to prove Corollary A.

Proof of Corollary A. Consider a polynomial f with a satellite PL cycle K of relative
period s > 1 which is a part of an infinitely-renormalizable set S. Recall that B is
the base cycle of K. Suppose that all (finite) critical points of f belong to S, and set
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X = P1 \ (B ∪PC f ). Let γ be a simple closed geodesic in X isotopic in X to the outer
boundary of a fundamental annulus of a PL Julia set K ∗ ∈ K+. Theorem 3.5 implies
now the desired inequality. This proves Corollary A. 
�

Theorem 3.5 as well as Corollary A are also applicable to cross renormalization.

4. Theorem B and a Counterexample

Proof of Theorem B. Clearly, it is enough to prove that we have mod(Vn \ Kn) → 0.
By way of contradiction, assume that mod(Vn \ Kn) stay away from 0 for an infinite
subsequence of numbers n. Pulling Vn and Un back under f qnn and then renaming Vn
by Wn , Un by Vn , and the pullback by Un , we may assume that there are also Jordan
domains Wn with f qnn : Vn → Wn being PL-maps. By Lemma 2.1, a neighborhood of
K is contained in all sets Un . Passing to a subsequence, assume that there is a domain
U such that for all n we have Kn ⊂ U � Un , and mod(U \ Kn) � m for some m > 0.

Lemma 4.1. The set U is contained in the Fatou set of f .

Proof. The exceptional set of f is the maximal finite subset E f ⊂ P1 with the property
f −1(E) ⊂ E . By [25, Lemma 4.9], E f consists of one or two points. Moreover, if
E f is nonempty, then f 2 is Moebius conjugate to a polynomial. Assume, by way of
contradiction, that U ∩ J ( f ) = ∅. Then, by [25] (see Corollary 14.2 and the following
remark), the complement of f j (U ) is a subset of an arbitrarily small neighborhood of E f ,
for all sufficiently large j . Since qn → ∞, we may assume that q1 is already sufficiently
large, so that f q1(U ) ∪ O(E f ) = P1 for a small neighborhood O(E f ) of E f (if E f

is empty, then f q1(U ) = P1). We may also assume that q1 < q2 < · · · < qn < . . . .
Consider two cases.

(1) E f = ∅; then f q1(U ) = P1, and since f q1
n → f q1 as n → ∞, by compactness

of P1 it follows that f qnn (U ) = P1 for large n, a contradiction with f qnn (U ) � Vn .
(2) E f = ∅; then we may assume that f is a polynomial, possibly replacing f with

f 2 and fn with f 2
n . In this case f q1(U ) is the whole of C except, perhaps, for a small

neighborhood of ∞ and Vn ⊃ f q1
n (U ) ⊃ J ( fn) for large n. This is a contradiction as

f q1
n (Kn) is a proper subset of J ( fn) and no points of J ( fn) escape Vn under iterates of
fn . 
�

It follows that U ⊂  where  is a Fatou component of f . The set  cannot be
a component of the basin of an attracting cycle of f as otherwise, for large n, the PL
set Kn ⊂ U would be in the basin of an attracting cycle of fn , a contradiction. By
assumption 3 of the theorem,  is not in the basin of a parabolic cycle of f as well.
Thus  is eventually mapped to a periodic rotation domain (Siegel disk or Herman ring)
under f . It is safe to assume that  is itself a periodic rotation domain of period p.

As mod(U \ Kn) � m, there is δ > 0 such that dist(∂U, Kn) > δ for all n. Now,
since f p :  →  is conjugate to an irrational rotation, one can fix s > 0 such that, for
each z ∈ U we have dist(z, f sp(z)) < δ/2. As fn → f , it follows that for every n large
enough, f spn (Kn) ⊂ U ⊂ Un and f spn (Kn) = Kn . The sets Kn and K ′

n = f spn (Kn)

are in the same PL cycle and K ′
n \ Kn is a nonempty set of points which do not escape

U ⊂ Un under iterates of fn , a contradiction again. 
�
All conditions (1) – (3) are essential for the conclusion of Theorem B. Namely, it

is clear that the conclusion breaks down without condition (2). As for conditions (1)
and (3), counterexamples can be found in the real unimodal family fc(z) = zd + c,
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with c ∈ R, for every even positive d. Indeed, in that case it is known that there is a
universal complex bound for a specific choice of domains for any renormalization of
fc of period s whenever f 2s

c has no attracting or neutral fixed point, see Theorem A
of [16] (complemented by the following paragraph), see also [9,22]. Thus it is enough
to find corresponding examples of real fc with periodic intervals. In particular, taking
fn = f where f is an infinitely renormalizable real quadratic map f , we see that the
conclusion of Theorem B breaks down without condition (1). As for (3), the following
counterexample shows that this assumption is also necessary.

Proposition 4.2. One can choose a sequence fan (z) = z2 + an of real quadratic poly-
nomials with connected Julia sets as follows. For each n there is a renormalization
f qnan : Un → Vn of period qn with a single critical point at 0, connected PL set Kn, such
that Kn → K in the Hausdorff metric where K is non-degenerate, qn → ∞ while, for
some δ > 0, the modulus of each fundamental annulus Vn \Un is bigger than δ.

Proof. It is enough to choose a sequence an ∈ [−2, 0] such that:

(i) the sequence an is decreasing, and an ↘ a;
(i i) the map fa has a parabolic 3-cycle of multiplier 1;

(i i i) there is a symmetric w.r.t. 0 and fan -periodic interval Ln of period qn such that
f qnan : Ln → Ln is a unimodal map;

(iv) maps f 2qn
an have no attracting/parabolic fixed points;

(v) periods qn tend to infinity;
(vi) diameters of Ln stay away from 0.

Indeed, then, by applying the above universal complex bounds, for the sequence fan and
a special choice of renormalizations f qnan : Un → Vn where Ln ⊂ Un � Vn , there exists
δ > 0 such that mod(Vn \Un) > δ.

The sequence (an) can be defined using Lavaurs maps. Here is a detailed construction
motivated by [20]. Start with a map fa satisfying (i i). Set F = f 3

a , and let x0 < 0 be the
point of the parabolic 3-cycle of f that contains 0 in its immediate basin of attraction.
Locally near the point x0, we have F(z) = z + A(z − x0)

2 + B(z − x0)
3 + ... where

A < 0. Let [c−2, 0] be the maximal interval containing x0 on which F is increasing.
Here c−2 < 0, f 2

a (c−2) = 0 and F(c−2) = c1 := fa(0) where c1 < c−2. The
interval (c1, c−2) contains a point c−1 such that fa(c−1) = 0 so that f 2

a is decreasing
on [c1, c−1] and increasing on [c−1, 0]. Thus we have the following order of points:
c1 < c−1 < c−2 < x0. Consider the fundamental interval I− = [F(0), 0] of the
immediate attracting basin of x0. This means that the sets Fn(I−) for n � 0 have
disjoint interiors, and their union covers the interval (x0, 0] all of whose points converge
to x0 under forward iterations of F . Also, consider the interval I+ = [c1, c−2]. This is
a fundamental interval for the backward iteration of F−1 : [c1, x0] → [c−2, x0] which,
from now on, denote the inverse branch of strictly increasing F : [c−2, x0] → [c1, x0].

Now, consider attracting (ϕ−) and repelling (ϕ+) Fatou coordinates of F near x0,
see, e.g., [25,28]. Recall briefly the definition. There are two topological disks D± in a
small neighborhood of x0 and the point x0 at their boundaries such that F(D−) ⊂ D−,
D+ ⊂ F(D+), while ϕ−, ϕ+ map D−, F(D+) conformally on a right, respectively, left
half-plane conjugating F to T1 where Tσ : z �→ z + σ denotes the translation by σ . That
is,

ϕ−(F(z)) = T1(ϕ−(z)) (4.1)

for z ∈ D− and, correspondingly,

ϕ+(F(z)) = T1(ϕ+(z)) (4.2)
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for z ∈ D+. By symmetry (a being real), we may assume that D± are symmetric w.r.t.
R and ϕ±(z̄) = ϕ±(z).

Then ϕ− extends by (4.1) to an orientation reversing homeomorphism ϕ− : (x0, 0] →
[ϕ(0), +∞) and ϕ+ extends by (4.2) to an orientation reversing homeomorphism ϕ+ :
[c1, x0) → (−∞, ϕ+(c1)]. So, ϕ−(I−) = [ϕ−(0), ϕ−(F(0))] with ϕ−(F(0)) = ϕ−(0)+
1 and ϕ+(I+) = [ϕ+(c−2), ϕ+(c1)] with ϕ+(c1)) = ϕ+(c−2) + 1. Notice that the Fatou
coordinates ϕ± are unique up to post-composition by a real translation. This allows
us to fix the choice of ϕ± in such a way that X := ϕ−(0) = ϕ+(c−2) which means
that ϕ−((x0, 0]) = [X, +∞) while ϕ+([c1, x0)) = (−∞, X + 1]. Hence, ϕ−(I−) =
ϕ+(I+) = [X, X + 1] and the following map is a well-defined orientation preserving
homeomorphism: g0 := ϕ−1

+ ◦ ϕ− : I− → I+. More generally, let

gσ = ϕ−1
+ ◦ Tσ ◦ ϕ− (4.3)

be the Lavaurs map. If σ � 0 then Tσ ◦ ϕ−(I−) = [X + σ, X + 1 + σ ] ⊂ ϕ+([c1, x0)),
i.e., for each σ � 0, the map gσ : I− → [c1, x0) is a well-defined orientation preserv-
ing homeomorphism onto its image [gσ (F(0))), gσ (0)] where gσ (F(0)) = F(gσ (0)).
When σ monotonically moves from 0 to the left, the endpoints gσ (F(0)), gσ (0) of the
image gσ (I−) move monotonically to the right. There is a unique σ0 < 0 such that
gσ0(F(0)) = c−1. For every σ ∈ [σ0, 0], there exists a unique solution qσ ∈ I− of the
equation gσ (x) = c−1, so that gσ ([qσ , 0]) = [c−1, gσ (0)]. Note that qσ increases from
q0 to qσ0 as σ decreases from 0 to σ0.

Let Gσ = f 2
a ◦ gσ . As f 2

a is increasing on [c−1, 0], for every σ ∈ [σ0, 0], the map
Gσ : [qσ , 0] → [c1, f 2

a (gσ (0))] is an orientation preserving homeomorphism. The
map gσ extends immediately by symmetry to an even map on [F(0),−F(0)] (which
is again denoted by gσ ). Therefore, we get a unimodal map Gσ on [qσ ,−qσ ], for each
σ ∈ [σ0, 0].

The following holds: (a) Gσ is increasing on [qσ , 0] and is an even function on
[qσ ,−qσ ], for σ0 � σ � 0, (b) Gσ (qσ ) = c1 < qσ < 0 for σ0 � σ � 0, (c) G0(0) = 0
and Gσ0(0) = −c−2 > −F(0) > −qσ0 > 0, (d) Gσ (0) decreases from Gσ0(0) > 0 to
G0(0) = 0 as σ increases from σ0 to 0.

Indeed, (a) – (b) hold by the construction and G0(0) = f 2
a (c−2) = 0. Now, Gσ0(0) =

f 2
a (F−1(c−1)) is a point of f −1

a ({c−1}) where c−1 < 0 and fa(c−1) = 0. On the
other hand, c1 < c−1 < c−2 < F−1(c−1) < 0 and f 2

a increases on [c−1, 0], hence,
0 < Gσ0(0). There is just one positive point of f −1

a ({c−1}), which is −c−2. To finish
with (c), it remains to note that c−2 < x0 < F(0) < qσ0 . Finally, (d) follows from (c).

Now, (4.1) allows us to extend ϕ− from D− to an analytic function in the component
� attached to x0 of the basin of attraction of the parabolic 3-cycle of fa while the inverse
map ϕ−1

+ extends by (4.2) from ϕ+(F(D+)) to an entire function. Hence, gσ extends to
an analytic function to �. The main purpose of introducing gσ (and our use of it) is
the following theorem due to Douady and Lavaurs [6] stated (in the particular case of
3-cycle) as follows: for every σ ∈ R there exists a sequence an ↘ a and an increasing
sequence of positive integers Nn such that gσ (z) = limn→∞ f 3Nn

an (z) uniformly on
compact subsets of �.

As [F(0),−F(0)] ⊂ � and fa has a negative Schwarzian derivative S fa < 0 on R

this theorem implies, in particular, that Sgσ � 0 on [F(0),−F(0)]. (This also follows
directly from the fact that g−1

σ extends from the real interval to a univalent function of the
upper half plane into itself, see [20].) AsGσ = f 2

a ◦gσ and S f 2
a < 0 on R, then SGσ < 0

on [F(0),−F(0)]. Now, Gσ has on [F(0),−F(0)] precisely 3 critical points: 0 and two
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symmetric critical points at ±qσ . Along with relations Gσ (qσ ) < qσ < 0 < Gσ (0) for
σ0 � σ < 0, G0(0) = 0, and general properties of maps with the negative Schwarzian
[4] we obtain that, for each σ ∈ [σ0, 0] the map Gσ has a unique (orientation preserving)
fixed point βσ ∈ (qσ , 0). Moreover, it is repelling. So we have a unimodal restriction of
Gσ to Lσ := [βσ ,−βσ ]. Now, as β0 < 0 = G0(0) < −β0 while −βσ0 < Gσ0(0), by
continuity, there is a Chebyshev parameter σCh ∈ (σ0, 0), i.e., such that G2

σCh
(0) = βCh .

Let us fix any σ∗ ∈ (σCh, 0) such that G∗ := Gσ∗ : L∗ → L∗ where L∗ = Lσ∗ has no
attracting or neutral fixed point or 2-cycle. For example, any σ∗ close enough σCh would
work. Notice that L∗ ⊂ [F(0),−F(0)]. By the earlier stated theorem of Douady and
Lavaurs, there exists a sequence an ↘ a and an increasing sequence of positive integers
Nn such that gσ∗(z) = limn→∞ f 3Nn

an (z) uniformly in some complex neighborhood of
[F(0),−F(0)]. Let qn = 3Nn + 2. Then, for each large enough n, the map fan has a
symmetric periodic interval Ln � 0 of period qn and Ln → L∗ as n → ∞. Besides,
f 2qn
an has no attracting or neutral fixed point on Ln . It follows that the sequence (an) is

as required. Notice that in the above example the number of components of the orbit of
Kn of size at least k asymptotically, as n → ∞, is Ck−1/2 with some C > 0. 
�
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8. Graczyk, J., Świa̧tek, G.: Generic hyperbolicity in the logistic family. Ann. Math. 146, 1–52 (1997)
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