JULIA SETS OF EXPANDING POLYMODIALS

ALEXANDER BLOKH, CHRIS CLEVELAND AND MICHAL MISIUREWICZ

July 1, 2003

ABSTRACT. We continue studying branched covering maps of the plane with expand-
ing properties, which we call expanding polymodials. They are analogous to piecewise
expanding interval maps and have properties similar to those of complex polynomials
(in particular, the Julia set and a lot of other notions from complex dynamics can be
defined for expanding polymodials). In this paper we include the case when the Julia
set is disconnected, study its topological properties and its Hausdorff dimension.

1. INTRODUCTION

A number of papers and even books (see [ALM] or [BC]) are devoted to one-
dimensional dynamics, i.e. to studying continuous maps of one-dimensional (bran-
ched) manifolds (interval, circle, trees, graphs). However, with the exception of
these maps, the dynamics of arbitrary continuous maps of manifolds is not ex-
tensively studied. This is quite understandable, because continuity puts little re-
striction on maps of spaces of dimension higher than 1, and to be able to achieve
substantial results such restrictions should be introduced. These restrictions could
be of smooth or topological nature, or both. The topological restrictions so far have
been almost exclusively represented by the assumption that the map is a homeo-
morphism, or at least a local embedding. In other words, there are few studies of
the dynamics of maps of manifolds with singular points (i.e. points at which the
map is not a local homeomorphism) in dimension higher than 1, e.g. on the plane.

Of topological classes of such maps of the plane, branched covering maps are
perhaps the most likely choice for attempts to develop a consistent theory of their
dynamics. In fact, one class of such maps is studied in great detail for a lot of
time by now. Of course we mean complex maps such as polynomials and rational
functions. Clearly, it is only possible to study them, because on top of being
branched covering maps they have an extremely powerful machinery of holomorphic
functions behind them. A reasonable question then is whether other properties can
serve as a replacement for the analytic properties of rational functions.
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The analogy with interval maps is instructive here. Namely, two most widely
studied classes of continuous interval maps are smooth maps (loosely, they are
similar to complex polynomials) and piecewise expanding maps. Thus, one can hope
to define maps of the plane which would be similar to piecewise expanding interval
maps and develop dynamics for them. In the paper [BCM] we suggest one such
class, namely the expanding polymodials. Essentially, they are branched covering
maps, which are locally expanding at all regular points and locally expanding within
wedges at singular points. This paper is continuation of [BCM], where the main
focus was on studying expanding polymodials for which the Julia set (which can
be defined for them) is connected. Here however we concentrate on the case when
the Julia set is disconnected, including its topological properties and estimates of
its Hausdorff dimension.

Let us describe shortly what we do in this paper. In Section 2 we recall the
definition of expanding polymodials and their basic properties from [BCM]. In Sec-
tion 3 we introduce so-called extrees similar to geometric coding trees (see, e.g., [P],
[PUZ], [PS]). In Section 4 we study topological entropy and invariant measures for
arbitrary expanding polymodials. In Section 5 we study topological properties of
the Julia set and show that if f is an expanding polymodial then there exists a den-
drite containing its Julia set J(f). This study is continued in Section 6 where we
consider in detail non-trivial components of J(f) and prove that such a component
is always (pre)periodic and contains a singular point of f in its orbit. In Section 7
we provide estimates for the Hausdorff dimension of the Julia set (independently
of whether it is connected or not). To do this, we have to impose some additional
regularity assumptions on the map.

2. DEFINITION AND BASIC PROPERTIES

Let us recall the definition of expanding polymodials and their basic properties
from [BCM].

By D, (z) we will denote the closed disk of radius r centered at z. We say that
a set A is fully invariant for f if f~1(A) = A.

A map f: C — Cis an expanding polymodial if there is a finite set S = S(f) C C
and a constant o = «(f) > 1 such that:

(a) f is continuous, not one-to-one, and orientation preserving (meaning orien-
tation preserving on every open set on which it is a homeomorphism on its
image),

(b) every point of C\ S has an open neighborhood U such that if z,w € U then
| (2) = f(w)] = oz — w],

(c) every ¢ € S has an open neighborhood U such that the closure of U can
be covered by finitely many closed sets U; such that if z,w € U; then
|/ (2) = f(w)] = oz = w],

(d) there is no nonempty fully invariant set contained in S.

We will always assume that S is the smallest set with property (b) and we will
call its elements singular points. All other points will be regular. The images of
singular points are singular values, all other points are reqular values.

The simplest examples of quadratic expanding polymodials are complex tent



maps (or shortly c-tent maps), given by the formula
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f(z)—c%le

where c¢ is a complex number of absolute value larger than 1.
In [BCM] we introduce some basic notions and prove the following basic results
about expanding polymodials.

Theorem 2.1. An expanding polymodial can be extended to a map from the Rie-
mann sphere to itself. Then it is an orientation preserving branched covering of
degree larger than 1.

Lemma 2.2. The composition of two expanding polymodials, f and g, is an ex-
panding polymodial, provided there is no fully invariant set contained in S(f o g).
In particular, an iterate of an expanding polymodial is an expanding polymodial.

For a curve § we will refer to a curve 0’ such that § = f o d’, as a lifting of 0.

Lemma 2.3. Let f be an expanding polymodial and o« = a(f). Let 7 : [a,b] — C
be a curve of length M. Then the following holds.

(1) For every lifting 5 of 7y, the length of B is at most M /.
(2) If f(2) = v(a) then there is a lifting B of v such that z = [(a).

It follows that if z,w € C, and n is a positive integer, then there exists a point

¢ € C such that f*(¢) = w and |fi(2) — f4(O)] < |f™(2) — w|/a™* for 0 <i < n.

Lemma 2.4. For any expanding polymodial f, if r is sufficiently large then the set
f~YD,(0)) is contained in the interior of D,(0).

The Julia set J(f) of an expanding polymodial f is the set of those points of C
whose trajectories are bounded.

Theorem 2.5. Let f be an expanding polynomial. Then:

(1) J(f) is compact, fully invariant, nonempty, has empty interior and has no
1solated points;

(2) J(f) is connected if and only if it contains all singular points of f;

(3) periodic points are dense in J(f);

(4) the complement of J(f) is connected;

(5) for any z € J(f) and e,r > 0 there is N such that if n > N then D, (0) C

J™(De(2))-

2

3. EXTERNAL TREES

Parallel to exrays (external rays) introduced in [BCM], we introduce here a
similar tool, geometric coding trees (see, e.g., [P], [PUZ], [PS]). In order to unify
terminology, we will rather call them extrees. They work more or less like exrays,
with several modifications. One extree replaces not one exray, but a system of
exrays. They work equally well in the cases of connected and disconnected Julia
set. For a system of exrays, if J(f) is connected then f restricted to its Julia set is
a factor of the map z — 2% of the unit circle onto itself. With the extree, this map



is replaced by the full one-sided d-shift. However, on the Cantor set which is the
phase space of this shift there is an order, preserved by the shift.

An additional advantage of extrees, as compared to the systems of exrays, is
that it is easier to make the whole (open and infinite) tree embedded into C than
to make exrays embedded and disjoint. We will start with lemmas that prepare
this embedding. As always, we assume that f is a expanding polymodial of degree
d. Similarly as in [BCM], we can take a circle C' centered at 0, that bounds an
open disk D such that J(f)US(f) C f~1(D) C D (such D exists by Lemma 2.4).
We denote by B the interior of D\ f~1(D). When we speak about curves, we will
mean sometimes their parameterizations, and sometimes subsets of C.

The first lemma is well known, but for completeness we include its simple proof.

Lemma 3.1. IfU is an open connected subset of C then every two points of U can
be connected by a rectifiable curve.

Proof. Let z € U and let V be the set of those points of U that can be connected
to z by a rectifiable curve. Then clearly both V and U \ V' are open. Since U is
connected and z € V,weget V=U. nm

Lemma 3.2. Let 2 € C and let f~'(2) = {21,...,24}. Then there exist disjoint
(except for the common endpoint z) rectifiable simple curves v1,...,Yq contained
in B (except for the endpoints), such that vy; joins z with z; for j=1,...,d.

Proof. Take e > 0 and let 5(t) = (1+1t)z for t € [0,¢]. If € is sufficiently small, then

the preimage of the curve S under f consists of disjoint rectifiable curves f1,..., B4
contained in B (except for their endpoints z1,...,2q), such that §; joins z; with
some point w; € B for j =1,...,d.

The point z can be joined by a straight line segment 3] contained in B (except

for the endpoint z) with some point wj € B. By Lemma 3.1, there is a rectifiable
curve 7, joining w; with w}, and contained in B \ U';Z2 Bj. The concatenation of
the curves g, B and f; joins z with z;. It is rectifiable, and in order to make it
simple we use the standard procedure of cutting off the loops. In such a way we
get a desired curve ;.

Now we repeat the above construction with the index 1 replaced by 2 and the
set B\ U?:z B; replaced by B \ (ngg Bj Ufyl). In such a way we get 72. We
continue, and in order to construct v, we replace B\ U';Z2 B; in the construction

by the component of B\ (U?:,Hl B; U U;:ll fyj) containing wg. Therefore the

curves 71, . .., vq are also pairwise disjoint (except for the common endpoint z). m

Let us call a point z € C fully regular if there are no k,n > 0 such that f*(z) €
f™(S(f)). There are only countably many points that are not fully regular.

Take a fully regular point z that is not in the Julia set. Moreover, we assume
that |z| is so large, that z belongs to a circle C' satisfying our assumptions. Us-
ing Lemma 3.2, we join z with its preimages by disjoint (except for the common
endpoint z) rectifiable simple curves contained in B (except for the endpoints). It
may happen that some of those curves pass through points that are on the forward
trajectories of the singular points. Then we have to modify such a curve in such
a way that it does not pass through those “bad” points. This can be done in a



simple way, since there are finitely many singular points and every trajectory can
pass through B only once. Therefore we can do it while preserving all properties
of those curves, listed above. We call those (modified) curves edges of the first
generation. The preimage under f™ of an edge of the first generation is the union
of d™ disjoint curves (except for some curves having common endpoints), which we
call edges of the (n + 1)-st generation. The union of the edges of all generations is
our extree.

If k # n then f~%(B) is disjoint from f~"(B), so the edges of different gener-
ations may intersect only at the endpoints and only if the numbers of generations
differ by 1. The valence of those points of intersection (which are the inverse im-
ages of z under the iterates of f; we call those points the wvertices of the extree)
is d + 1. We have one incoming edge of generation n and d outcoming edges of
generation n+ 1. Moreover, the cyclic order of the germs of those edges is the same
as of their images. We can speak just about the order of the outcoming germs in
the neighborhood of a vertex minus the germ of the incoming edge (as always, we
use the counterclockwise direction, so if we visualize the incoming germ as coming
from above and outcoming ones below the vertex, the order will be from the left
to the right). The map f™ sends this vertex to z and is an orientation preserving
homeomorphism in a neighborhood of the vertex. The image of the incoming edge
comes from the complement of D; the images of the outcoming edges go into D,
and their order is preserved by f™. Note that we do not count z as a vertex, we
will call it the root of the extree instead. Additionally we define the generation of
a vertex w as the number n such that f™(w) = z.

The readers that dislike the fact that we visualize the extree (at least locally) as
growing downwards instead of upwards, can think of it as growing at the Antipodes.
In fact, the situation is more complicated and our extrees grow in all directions.
Figure 3.1 shows an extree for the c-tent map with ¢ = 1 + 4 (the singular point
does not belong to the Julia set in this example).

FIGURE 3.1. An extree

Let us call the curves (open at one endpoint) obtained by taking one edge from
each generation and concatenating them, the branches of the extree. Of course in
order to get a curve (which, by the definition, is continuous), the chosen branches



from the generations n and n + 1 have to have a common vertex. By the same
argument as for the exrays (see [BCM]), the branches have to land, that is we can
add the missing endpoint of a branch. Moreover, they land uniformly, that is the
distance between any point of the edge of generation n in a branch and the endpoint
of this branch can be bounded from above by a constant independent of the branch,
and those constants converge (exponentially) to 0 as n goes to infinity. We will call
the extree together with the endpoints a closed extree.

In view of what we already said, we can think about an extree not only as a subset,
of C, but also as a continuous map of the abstract d-tree Ty into C. This abstract
d-tree is a subset of the unit square [0,1]%. Let Ky be the Cantor set obtained by
starting from the interval [0, 1] (the interval of the 0-th generation) and in each step
dividing each interval into 2d — 1 intervals of equal length and removing every other
one (that is, d —1 of them) in order to get d closed pairwise disjoint intervals of the
next generation. If z is the midpoint of an interval I of the n-th generation and
x1,...,2Tq are the midpoints of the intervals of the (n 4 1)-st generation contained
in I then the segments with endpoints (z,27™) and (z;,27"~!) are edges of Ty of
the n-th generation (for every I,j). The union of the edges of all generations is Ty
(see Figure 3.2). The closure Ty of T is equal to T; U K4 (more precisely, Kq x {0}
rather than K4, but we will not distinguish between these two sets). We will call
it the closed abstract d-tree. There is a natural ordering (from left to right) of the
edges of a given generation.

T

FIGURE 3.2. The abstract 3-tree

We can define a map ¢4 from the union of the edges of generation at least 2 of
Ty onto Tz, by mapping first d” edges of generation n + 1 affinely onto all edges of
generation n, with the order preserved, then similarly next d" edges, etc. Now we
can think of the edges of the n-th generation as components of the inverse images
under apz_l of the edges of the first generation. Thus, if we fix a homeomorphism
¢ (preserving order) from the union of the edges of the first generation for Ty onto
the similar union for an extree T', we can extend it to a homeomorphism ¢ : Ty — T
that preserves order of the edges in every generation and such that f oy =1 op,.

By continuity and exponential convergence, we can extend v to a continuous
map between the closed trees. It does not have to be a homeomorphism. However,
it maps K4 onto the set of landing points of . We can also extend ¢4 to the whole



T,. Note that restricted to K, it will be conjugate to the full d-shift. Moreover,
vd|k, preserves order on K, intersected with each interval of first generation. By
continuity, we have f o1 =1 o ¢4 on the whole T, and in particular on K.

Let us look closer at the map ¢|k,. We will call it a Cantor limit map and
denote by L¢.

Let us draw some analogies between the systems of exrays and extrees. The

proof of the following lemma is partially different than the proof of an analogous
lemma from [BCM].

Lemma 3.3. The set Lo(Ky) is equal to J(f).

Proof. The proof that Lo(Kg) C J(f) is the same as for exrays. Let us prove that
J(f) C Lo(Kg). Take a point z € J(f) and its neighborhood U. By Theorem 2.5
(5), there is n such that the root of the extree T' belongs to f™(U). Therefore z
belongs to the closure of T'. Since the map v : Ty — T is continuous and T} is
compact, we get z € (Ty). However, (Ty) = T C C\ J(f), so z € Y(Ky) =
LC (Kd) |

One disadvantage of extrees compared to systems of exrays is that the limit
Cantor map is not unique up to compositions with simple maps. If we deform the
edges of the first generation in such a way that they move through f™(w) for some
w € S(f) and n > 0, then there is a discontinuous change in the Cantor limit map.
Moreover, the change in the order in which the points of f~1(z) are joined with the
root z of the extree causes a change in the Cantor limit map. The latter change
corresponds to the multiplication by a (d — 1)-st root of 1 for the systems of exrays,
but while this multiplication is continuous on the circle, the analogous map of K
is discontinuous.

Observe that we can consider the Cantor set K; to be a subset of a circle rather
than an interval (we enlarge the interval and glue together its endpoints, leaving a
gap in the Cantor set there). Let us look at the lamination defined on the set Ky
analogously to the way we defined laminations on the circle in [BCM]. In order to
visualize it, we consider K, to be a subset of S, as in the preceding paragraph. The
proof that there are no linked leaves is the same simple argument as in [BCM] (or
as for complex polynomials), since once two branches separate, they stay disjoint.
Thus, we really have a lamination, although it is defined only on K,;. Moreover,
this lamination is fully invariant under the shift on K4. To distinguish it from the
laminations considered in [BCM], we will call it a Cantor lamination.

Now, in the same way as for usual laminations, we see that there are at most
countably many lamination gaps (they should not be confused with the gaps in the
Cantor set). Thus, we get the following result.

Lemma 3.4. For L, the preimages of all but countably many points have cardi-
nality at most 2.
4. INVARIANT MEASURES AND ENTROPY

Let us note that by Lemma 2.4 and Theorem 2.5 J(f) is the set of nonwandering
points for a expanding polymodial f, so all probability invariant measures are
concentrated on J(f). If we consider f on the Riemann sphere, there is an additional



nonwandering point at infinity, but that modifies the whole picture only in a trivial
way. In any case, the topological entropy h(f) of f is equal to h(f](z))-

As for the complex polynomials, extrees provide a powerful tool for investigat-
ing invariant measures and entropy. In some respect the situation for expanding
polymodials is better, in another respect worse. We do not have to worry about
the branches that do not land. Moreover, it is easy to see that for every ergodic
invariant measure on K4 with full support the Cantor limit map is at most two-
to-one almost everywhere (by the way, similar arguments can be used for complex
polynomials if we know that all branches land). Indeed, if a measure is not at most
two-to-one almost everywhere, there is a gap (in the lamination sense, that is, the
inverse image under L¢ of a point, of cardinality larger than 2) of positive measure.
Since the gaps are disjoint and the measure is invariant ergodic, the measure must
be concentrated on the trajectory of a periodic gap. Since the measure has full
support, this trajectory constitutes the whole K;, and this contradicts Lemma 3.3
and Theorem 2.5.

On the other hand, there may be points of J(f) whose preimage under the
Cantor limit map are Cantor sets. Such phenomenon does not occur for complex
polynomials.

We will use the same notation as in the preceding section. Moreover, we will use
the standard notation of the form ¢, () for the image of a measure x under a map
¢ (that is, (p«(r))(A) = k(p~1(A)) for any Borel set A).

Let us consider the measure p for which the shift o : K; — K is the Bernoulli
(1/d,...,1/d) shift. We will call it the uniform measure. 1t is the weak-* limit of
the measures pu,, equidistributed on the set of all vertices of n-th generation of the
closed abstract tree T.

It is well known that if a map ¢ is at most n-to-1 almost everywhere then ¢,
preserves the measure entropy (see, e.g., [PaT], Lemma IV.6). Thus, we get the
following lemma.

Lemma 4.1. If k is an ergodic invariant probability measure on K4, its support is

K4 and v = Loy (k) then he(o) = h,(f).
A kind of converse also holds.

Lemma 4.2. Let v be an ergodic invariant probability measure on J(f) of positive
entropy for f. Then there is an ergodic invariant probability measure k on Ky such

that v = Loy (k) and hg(o) = hy(f).

Proof. Let B C K4 be the set of all points x € K4 such that © < y for every
y € K4 such that Lo(y) = Leo(z) (remember that Ky C [0,1]). Then the map
7 = (Lc|p) ™! is Borel and maps J(f) onto B in a one-to-one way. Therefore the
measure & = T, (v) is a probability measure on K4 and Lo« (k) = v. Now we get an
invariant measure % from & in a usual way, that is as the weak-* limit of a convergent

oo
subsequence of the sequence ((1 /n) Z;é af(f%)) . This measure is invariant for
n=1

o. Since Loy (k) = v, the measure v is invariant for f and fo Lo = Lo o o, we
have also Lo (c¥(#)) = v for all k. Therefore we get Lo, (k) = v.

Look at the ergodic decomposition of <. There is a measure £ on the set of all
ergodic invariant probability measures on K4 such that & is equal to the integral
of the identity function with respect to d¢. Then v is equal to the integral of Lo,



with respect to d§. However, v is ergodic, so the image under Lo, of £-almost every
measure is v. In particular, there exists an ergodic invariant probability measure
on Ky such that Loy (k) = v.

By Lemma 3.4, for Lo the preimages of all but countably many points have
cardinality at most 2. Since v has positive entropy, v(A) = 0 for every countable
set A. Thus, L¢ is at most 2-to-1 k-almost everywhere, so by the lemma from
[PaT] cited earlier, hy(o) = h,(f). =

Let us stress that in Lemma 4.1 we cannot replace the assumption that the
support of k is equal to the whole K; by an assumption on the entropy of x. In
the situation described later in Example 5.3 (a c-tent map with ¢ € (=2, —1) real
with 0 periodic), if the period of 0 is n then LEI(O) is mapped to itself by o™ in the
2-to-1 way. One can perform coding by looking whether the branches reach 0 from
the upper or lower half-plane, and see that ¢ restricted to LEI(O) is conjugated to
the full 2-shift. Therefore there is a lot of ergodic measures of positive entropy for
o whose images under Lo, are equal to the measure concentrated on the f-orbit of
0.

Set v = Loy (p). By Lemma 4.1, h,(f) = logd.

Theorem 4.3. The topological entropy of f is logd. The measure v is the unique
measure of maximal entropy for f.

Proof. Since f| (s is a factor of the full d-shift, the topological entropy of f is not
larger than the topological entropy of the d-shift, that is, logd. On the other hand,
by Lemma 4.1, h,(f) = h,(c) = logd, so by the Variational Principle h(f) = logd
and v is a measure of maximal entropy.

Suppose that £ is an ergodic measure of maximal entropy for f. By Lemma 4.2,
there exists an invariant measure k£ on Ky such that Loy (k) = € and hy (o) = logd.
Since p is the only measure of maximal entropy for o, we have k = y, and therefore
¢ = v. Thus, v is the only ergodic measure of maximal entropy for f, and therefore
the only (not necessarily ergodic) measure of maximal entropy for f. =

The measure v can be obtained, as always in such highly regular cases, as the
limit of measures on preimages of a point under higher and higher iterates of f (cf.
[L] for the rational case).

Theorem 4.4. Let z € C be a fully regular point. Let v,, be the probability measure

equidistributed on f~™(z). Then v is the weak-* limit of the sequence (V)5 ;.

Proof. Assume first that z ¢ J(f). Then there is k such that |f*(z)| is so large,
that there exists an extree T' with the root f¥(z). Let Ty be the abstract d-tree
and 1) : T; — T the map constructed in the preceding section. Denote z = ¢~1(z2).
Let p,, be the probability measure equidistributed on ¢ " (z), where ¢4 is also the
map from the preceding section. Clearly the measures p, converge in the weak-*
topology to p and . (py) = vy,. Therefore the measures v, converge in the weak-*
topology to v.

Now, if z € J(f), then we choose a fully regular point w ¢ J(f) with sufficiently
large modulus and construct an extree 1" with the root at w. The Cantor limit map
sends K4 onto the whole Julia set, so there is © € K4 such that Lo(xz) = z. Let
n, be the probability measure equidistributed on o~"(x). Clearly the measures p,



converge in the weak-* topology to u. In order to complete the proof as in the first
case, we have to show that Loy (p,) = v,. The only obstacle to this could be that
two elements of o~"(z) are mapped to the same point by Lo. However, that would
mean that two different branches of T' landing at z = Lo(x) are mapped to the
same branch by f™, so there is a singular point on the trajectory of Lo (x). Since
z is also on this trajectory and is fully regular, we get a contradiction. m

5. JULIA SETS AND DENDRITES
In this section we prove the following theorem.

Theorem 5.1. If f is an expanding polymodial then there exists a dendrite con-
taining its Julia set J(f).

As we mentioned in Section 1, it allows us to make a number of conclusions
concerning topological properties of J(f) and dynamical properties of f] ().

We will prove Theorem 5.1 by constructing the dendrite in steps. Recall that
by a preimage of a connected set we mean a component of the full inverse image of
the set.

Consider the following object. A set D C C is homeomorphic to a closed disk. In
its interior there are disjoint sets D1, ..., Dy, each of them also homeomorphic to a
closed disk. On the boundary of D we choose a point p and on the boundary of each
D; apoint p;. Then we connect p with each p; with simple curves y; (we treat them
as subsets of C). Those curves are disjoint, except the common endpoint p, and are
disjoint from the union of sets D;, again except the corresponding endpoints (see
Figure 1). We will call the sets D, D, ..., Dy bubbles and the set

a bubbler. The bubbler B has the outer boundary, which is the boundary of D, and
the inner boundary, which is the union of the boundaries of the bubbles D; and the
curves v;. We will refer to D as the base bubble of B, to Dy, ..., Dy as secondary
bubbles of B, to p,p1,...,pr as special points of D, D1, ..., Dy respectively, and to
Y1y ...y Yk a8 jotning curves of B.

A foliation of a bubbler will be called standard if each leaf has one end on the
inner boundary and the other end on the outer boundary, and the bubbler with this
foliation is homeomorphic to an open disk with the foliation by the horizontal seg-
ments (see Figure 5.2). A foliation will be called rectifiable if each leaf is rectifiable
and their lengths are commonly bounded.

Lemma 5.2. A bubbler with rectifiable boundary admits a rectifiable standard fo-
liation.

Proof. A disk foliated by horizontal segments is homeomorphic with the upper half-
plane H C C foliated by semicircles centered at 0. Denote the latter foliation by F.
Consider the Mobius map M given by the formula M (z) = (z —i)/(z +¢). Then
M(o0) =1, M(—-1) =4, M(0) = —1, M(1) = —i and M(i) = 0. Therefore M
maps H onto the unit disk D, and the image of the unit semicircle is the vertical



FIGURE 5.1. A bubbler

FIGURE 5.2. A standard foliation of a bubbler

diameter of D. Two special points of the boundary of H that are not endpoints of
any leaves of the foliation are 0 and oo, and their images under M are —1 and 1.



Let B be a bubbler with rectifiable boundary. This boundary is locally con-
nected, so if ¢ : D — B, where D is the unit disk, is a Riemann map, it can be
extended to the closure of D as a continuous map (we will call it also ¢). We may
choose ¢ in such a way that the lower half of the unit circle is mapped by ¢ to
the outer boundary of B, and the upper half is mapped to the inner boundary
of B (and the points —1 and 1 are both mapped into the special point p of D).
Then the image G of the foliation F under ¢ o M is a standard foliation of the
bubbler B. Any leaf of G is the image of the vertical diameter of D under the map
z+— o(M(t-M~1(z))) for some positive constant ¢. This map is a composition of a
Riemann map ¢ with a Mobius map preserving D, so it is also a Riemann map. By
Lemma 10.5 of [Po], the length of the image of a diameter of D under a Riemann
map is bounded by a universal constant times the length of the boundary of B.
Thus, the foliation G is rectifiable. m

Now we assume that f is an expanding polymodial. We are really interested
in the case when the trajectory of at least one singular point escapes to infinity,
however, we do not have to make this assumption. We start by taking a circle
C, centered at 0, of a very large radius. The radius should be so large that all
singular points and singular values of f are inside ', and the inverse image of C'
is inside C'. Moreover, we choose this radius in such a way that C' is disjoint from
the trajectories of all singular points of f. Let D be the closed disk bounded by C.

Now we construct our first bubbler, with the base bubble D. We start by choosing
a sufficiently large integer n. Since C' is disjoint from the trajectories of all singular
points, all components of f~™(D) will be homeomorphic to closed disks, bounded
by the components of f~™(C). The closures of those disks will be our secondary
bubbles. The number n should be so large that

(1) f~™(D) contains only those singular points of f that are in J(f),
(2) if two singular points of f are in the same bubble, they are in the same
component of J(f).

Note that we are talking about the singular points of f, not of f™. Clearly, (1) holds
if n is large enough. Since the intersection of the sets f~"(D) over all n is equal to
J(f), for sufficiently large n (2) also holds. Thus, we fix n so large that (1) and (2)
hold, and we get bubbles Dy, ..., D;. Now we pick special points p, p1, ..., pg on the
boundaries of the bubbles D, D, ..., Dy respectively, and join them by rectifiable
curves in such a way that we get a bubbler. We call this bubbler B. Observe that
the boundary C of D is a circle, and the boundaries of D1, ..., D are contained in
its inverse image under f™, so they are also rectifiable (see Lemma 2.3). Therefore
the boundary of B is rectifiable.

In the second step we construct k£ bubblers By, ..., B, whose base bubbles are
Dq,...,Dg. Fix m € {1,...,k}. Observe that f|p is a branched covering map
onto f(Dy,), the set f(D,,) is homeomorphic to a closed disk and contains some of
the sets Dy, ..., Dy in its interior. We have

k
YDy | =),
j=1

so for every j the components of f~*(D;) are homeomorphic to closed disks and
are contained in the union of the interiors of the bubbles Dq,..., Dy. We take



those components of f~1 (U?:l Dj) that are contained in the base bubble D,, as

secondary bubbles of B,,. Now we have to choose special points. For D,,, we already
have such point, namely p,,. If E is a secondary bubble of B,,, then f(E) = D;
for some j. We choose as the special point of E one of the preimages of p;. Then
we join special points by rectifiable curves in such a way that we get a bubbler (see
Figure 5.3). Again, the bubbler B, that we get, has rectifiable boundary.

FIGURE 5.3. Bubblers B and B;

According to Lemma 5.2, for bubblers B, By, ..., By there exist rectifiable stan-
dard foliations F, Fi, ..., Fy respectively. Since they come together nicely on the
boundaries of the bubbles D;, we get a rectifiable foliation of the union of the bub-
blers B, By,..., B and the boundaries of Dq,..., Dy. The leaves of the foliation
connect the points of C' with points of the interior boundaries of B, By, ..., By,
except that the leaves do not connect points of C' with points of the boundaries of
Dq,..., Dy, but rather “pass through” the latter boundaries.

The third step of the construction is to pull back the bubblers and the foliation
constructed in the second step. A preimage of a bubbler is not, necessarily a bubbler.
Therefore we have to define a prebubbler. The difference in the definition of a
bubbler and prebubbler is that we allow more than one special point (but finitely
many of them) on the boundary of a bubble, whether the base or secondary one.
Each joining curve joins a special point of the base bubble with a special point of
a secondary bubble. A special point of the base bubble may be an endpoint of
several joining curves, while a special point of a secondary bubble is an endpoint
of exactly one joining curve. Moreover, we require that the union of the secondary
bubbles and the joining curves (including their endpoints) is connected and simply



connected. Of course, a bubbler is a prebubbler. Figure 5.4 shows a prebubbler
mapped to a bubbler by a branched covering map of degree 2. Inside the central
secondary bubble of the prebubbler By, there is a singular point of f.

S O C
BL

FIGURE 5.4. A prebubbler mapped onto a bubbler

Another feature visible in Figure 5.4 is a piece of a joining curve [ from a
bubbler (or prebubbler) of the preceding generation. Here by the generation of a
bubble D’ we mean a number m such that f™*t"~1(D’) = D (in particular, the
bubbles D1, ..., Dy constructed in the second step of the construction are of the
first generation). We assume that the bubbler Br has been constructed in the
second step, so this piece comes from the first step. The prebubbler By, is its
preimage and the map has degree 2. Therefore there are 2 preimages of 8 ending
at this prebubbler. However, the base bubble of By, is a secondary bubble of the
bubbler constructed in the second step. Therefore the joining curve, whose piece is
visible there, is a curve constructed in the second step, and is not a preimage of 3.
At further stages the picture would be different (recall that in the third step of the
construction we simply pull back the bubblers). Hence if B were constructed in
the third step, then we would see two pieces of the joining curves attached to Bp,
and they would be preimages of 3.

The idea is to continue the construction from now on by simply pulling back
the prebubblers created in the preceding step. To justify this method we need the
following lemma.

Lemma 5.3. A preimage of a prebubbler constructed in the construction above in
the step n > 2 is a prebubbler.

Proof. As we have already established, preimages of bubbles are bubbles. Thus, if
we take a preimage B of a prebubbler, we get a base bubble By, some secondary
bubbles inside, and some preimages of joining curves. The boundaries of bubbles
are disjoint from J(f). If there are no singular points in the base bubble then f
restricted to it is a homeomorphism and there is nothing to prove. Otherwise, by the
assumptions (1) and (2) that we made on D and n, all singular points contained in



the base bubble By, belong to the same component of J(f). Therefore, they belong
to the same secondary bubble B;. This means that f restricted to By \ By is a local
homeomorphism of some degree m. We can make a slit from the bubble f(B;) to
the boundary of f(By) that cuts through the interior of the prebubbler f(B) (see
Figure 5.5). Then the preimages of this slit cut B into m sectors, and f restricted
to each sector is a homeomorphism. Thus, the union of the secondary bubbles and
joining curves of B consists of m copies of those objects for f(B), disjoint except
for their common bubble B,. Therefore B is a prebubbler. m

/" sector 2

sector 1,

f(Bp)

FIGURE 5.5. A slit and sectors

Thus, in the third step we take preimages of bubblers constructed in the second
step, then preimages of those prebubblers, etc. We also take preimages of the
corresponding foliations. Note that in any prebubbler the leaves start at the outer
boundary and end either at a joining curve or at a secondary bubble. However,
that secondary bubble is a primary bubble of the next generation, and so the latter
leaves are then joined with the leaves of the foliation of the next generation. In
other words, the leaves which end at a secondary bubble are extended by the leaves
of the next generation.

In such a way we get two objects. The first one is the union K of all joining
curves (including endpoints) and J(f). The second one is the foliation H obtained
by joining all foliations together. Since J(f) = (2, f79(D), H foliates int(D) \
K. All leaves of H begin at the circle C. Since the foliations F, Fq,...,Fy are
rectifiable and the lengths of the leaves decay exponentially from one generation
to the next, the foliation # is rectifiable too. Therefore all leaves land. There are
two possibilities. Either a leaf lands at a point of a joining curve, or it is extended
through all generations of bubbles. In the latter case, since the intersection of
f79(D) over all j is equal to J(f), a leaf lands at a point of J(f). In any case, a
leaf lands at a point of K.

Lemma 5.4. The set K is a dendrite.



Proof. Let K,, be the union of the joining curves up to generation m and the
bubbles of generation m. Of course each K, is compact.

Clearly, K; is connected and simply connected. We get K,,+; from K,, by
replacing the bubbles of generation m by the union of joining curves and bubbles
of generation m + 1. In each bubble of generation m this union is connected and
simply connected. Moreover, it joins all special points on the boundary of this
bubble. Therefore, if K,, is connected and simply connected, so is K,,11. Hence,
by induction, all sets K,, are connected and simply connected.

As the intersection of a descending family of compact connected simply connected
sets, K is also a compact, connected and simply connected. It is the union of J(f),
which has empty interior, and countably many curves. Therefore it has empty
interior.

It remains to show that K is locally connected. For this, we consider a map
that assigns to each point of C' the landing point of the leaf of foliation H that begins
at this point. Additionally, since the special point p of D has no leaf beginning at
it, we set 1 (p) = p.

We show that 1 is continuous. Clearly, it is continuous at p. If a leaf starting at
z lands on a joining curve, all nearby leaves land close to 1(z) on a joining curve
(of the same generation, possibly plus or minus 1). Thus, % is continuous at z. If
a leaf starting at z lands at a point of J(f), then for every m there is a point of
this leaf that belongs to the interior a bubble of m-th generation. Then all nearby
leaves also have such points. Since the distance between such point and the landing
point of the leaf decays exponentially with m, this shows that 1 is continuous at z
also in this case. Hence, v is continuous on the whole circle C.

We know already that ¢(C) C K. We will show that ¢(C) = K. All points of
the joining curves are landing points of leaves of the foliation H. If z € J(f) then
in any neighborhood of z there are points of bubbles of arbitrarily large generation.
Those points belong to leaves of H and are arbitrarily close to the landing points
of those leaves. Therefore 1(C) is dense in J(f). Since # is continuous and C' is
compact, J(f) C (C), and hence ¢(C) = K. Thus, K is locally connected as a
continuous image of a circle. =

Now Theorem 5.1 follows from Lemma 5.4.

6. NONDEGENERATE SUBCONTINUA OF THE JULIA SET

We consider the situation when the Julia set J(f) of an expanding polymodial f
is disconnected, but not all singular points lie in the basin of the infinity. However,
formally everything in this section applies to all expanding polymodials.

We will start with an immediate corollary to Theorem 5.1. We will call a con-
tinuum nondegenerate if it consists of more than one point.

Corollary 6.1. The Julia set of an expanding polymodial has at most countably
many nondegenerate components. Each of them is a dendrite. For every e > 0 any
family of pairwise disjoint subcontinua of J(f) of diameter larger than € is finite.
In particular, there are only finitely many components of J(f) of diameter larger
than e.

We will say that a continuum A is wandering if the sets f™(A), n =0,1,2,...,
are pairwise disjoint. Note that according to our definition, A can be wandering



even if it is attracted to an attracting periodic orbit. Also, we will say that a
continuum B is periodic (of period k) if B, ..., f*~1(B) are pairwise disjoint, while
f¥(B) C B. In this case by orb(B) we will denote the union Uf:_ol fi(B).

Theorem 6.2. There are no wandering nondegenerate subcontinua of the Julia set
J(f) of an expanding polymodial f. If I is a periodic nondegenerate subcontinuum
of J(f) then the set orb(I) contains a singular point of f and f|ow (1) s not 1-to-1.

Since f is open and J(f) is fully invariant, f maps components of J(f) onto
components of J(f). Therefore from Theorem 6.2 we get immediately the following
corollary.

Corollary 6.3. If a component I of J(f) is nondegenerate then there is n > 0
such that f™(I) is a periodic component of J(f) and contains a singular point of f.

Now we will proceed towards proving Theorem 6.2. By diam(/) we will denote
the diameter of a set I. Recall that «(f) is the expansion constant of f (from the
definition of an expanding polymodial). If a,b are points of a dendrite I then we
write [a,b]; for the smallest connected set containing a,b and contained in I. If
a = b, it is of course {a}, and if a # b then it is an arc joining a with b.

Lemma 6.4. Assume that I is a dendrite and none of the singular points of f
belongs to I. Assume also that the convex hull of f(I) contains at most one singular

value of f. Then

diam(f(I)) > diam(I). (6.1)
Proof. Assume first that the convex hull of f(I) does not contain a singular value
of f. We join f(z) with f(y) by a straight line segment v (we can think of it as a
curve). Then the lifting of v starting at x ends at y. By Lemma 2.3 its length is
at most |f(x) — f(y)|/a(f). This proves that diam(f(I)) > «(f)diam([I), so (6.1)
holds in this case.

Assume now that the convex hull of f(I) contains one singular value ¢ of f. Let
r be the infimum of the lengths of curves joining f(z) with f(y) in C\ {c} and
homotopic to [f(z), f(y)] ) in C\ {c}. For every s > r there is such curve vy of
length smaller than s. The lifting of v starting at = ends at y. By Lemma 2.3 its
length is smaller than s/a(f). This proves that r > a(f)|z — y|. Since the curves
used to define r can have self-intersections, we have r < |f(z) — c| + |f(y) — ¢|.
Since the diameters of f(I) and its convex hull are the same, we have |f(z) — ¢| <
diam(f(I)) and |f(y) — ¢| < diam(f(I)). Therefore 2diam(f(I)) > a(f)|x — yl.
This proves (6.1) in this case. m

Let us now consider a more abstract situation. A point a of a dendrite I is said
to be an endpoint of I if I\ {a} is connected, and a cutpoint of I otherwise.

Lemma 6.5. Let I be a dendrite and g : I — I a continuous 1-to-1 map. Assume
that there are no wandering nondegenerate subcontinua of I. Then for every cut-
point p of I there is m > 1 such that p belongs to an arc consisting of fired points
of g™. Moreover, g is onto (so it is a homeomorphism).

Proof. Observe first that if g*(a) = a and g"(b) = b then ¢g*” maps [a, b]; homeo-
morphically onto itself. Then in every maximal subinterval of [a, b]; without fixed



points of g¥™ there is a wandering subinterval. Therefore there are no such intervals,
and this means that g*" restricted to [a,b]; is the identity.

We will show that periodic points are dense in I. If they are not, their comple-
ment (which is invariant) contains nondegenerate components. If we take a contin-
uum contained in such component, it cannot be wandering, so this component has
to be periodic or preperiodic. This shows that there is a periodic component. Its
closure M is a subcontinuum of I mapped to itself by some iterate h = g* of g. By
the property proved in the preceding paragraph, h has at most one periodic point
in M, and this point is an endpoint of M. On the other hand, it is well known that
any dendrite has a fixed point property, so h has a unique fixed point a € M.

We claim that h maps some arc [a,y|p into itself. Choose any point b € M,
b # a. The intersection of the arcs [a,b]y and [a, h(b)]as is an arc [a, c¢]p for some
c€M,c+#a. Set x =h~(c), then z € [a,b];. We have x € [c,b]p or z € [a, c]ur.
In the first case h([a,x]p) C [a,x]p- In the second case [a, x|y C h(la,z]m) C
h2([a,z]pr) C ... and all those sets are arcs. Therefore their union is an arc with
one endpoint a and A maps this arc onto itself. This proves our claim. As before,
we conclude that [a, y]as consists of fixed points of h. In particular, we found in M
periodic points of g other than a, a contradiction. This shows that periodic points
of g are dense in I.

Now the statement of the lemma follows from the observation from the beginning
of the proof and the density of periodic points. m

The reader can easily construct a dendrite homeomorphism without wandering
subcontinua for which the map on the set of endpoints is an adding machine.

Proof of Theorem 6.2. Suppose that I is a wandering nondegenerate subcontinuum
of the Julia set of an expanding polymodial f. By Corollary 6.1, I is a dendrite and
the diameters of f™(I) converge to 0. Choose an integer m such that («(f))™ > 2.
By Lemma 2.2, the map g = f™ is an expanding polymodial. Its constant of
expansion «(g) is at least (a(f))™, so it is greater than 2. By the definition of
the Julia set we have J(g) = J(f), and hence I is a wandering nondegenerate
subcontinuum of J(g).

If n is sufficiently large then ¢™(I) does not contain any singular point of g and
diam(g"T1(I)) is so small that the convex hull of g"*1(I) contains at most one
singular value of g. Therefore by Lemma 6.4, diam(g" (1)) > diam(g™(I)). This
contradicts the fact that the diameters of g™ (I) converge to 0. Therefore there are
no wandering nondegenerate subcontinua of J(f).

Assume now that I is a periodic nondegenerate subcontinuum of J(f) of period
k. If f¥|; is a 1-to-1 map then by Lemma 6.5 there exist non-trivial arcs in I on
which some iterate of f is the identity. This is impossible because the iterates of
f are also expanding polymodials. Therefore f*|; (and hence f|om, 1) is not 1-to-1,
and hence a singular point of f has to be contained in orb(7). =

7. HAUSDORFF DIMENSION OF THE JULIA SET

So far we have been studying topological properties of the Julia sets of expanding
polymodials. This was possible in particular because their expanding properties
are strong enough to allow us to obtain qualitative results like Theorem 5.1 or
Theorem 6.2. However, these properties are too weak to obtain more quantitative



characteristics of the Julia set such as its Hausdorff dimension, except the trivial
statement, that it is in [0, 2]. While we will give an example that it can be 0, we do
not have an example that it can be 2. We conjecture that it cannot. However, we
even do not know whether the Lebesgue measure of the Julia set of an expanding
polynomial f has to be zero.

More precisely, the difficulties in estimating the Hausdorff dimension of the Julia
set are due to the fact that while f is expanding, it does not have to be regular
in any reasonable sense. The shape of an image or a preimage of a ball is unpre-
dictable. Thus, in order to get better estimates of HD(.J(f)) (by HD(-) we denote
the Hausdorff dimension of a set), we have to make additional assumptions. To get
an estimate from below, we need only to assume that f is Lipschitz continuous. To
get an estimate from above, we have to assume that it is sufficiently smooth. Since
it is not our aim to look for the weakest possible assumptions, we will settle for C?
(apart from the singular points).

Let |U| denote the diameter of a set U, and define the diameter of a collection
of sets {U;} by {U;}| = sup, |U;|. A collection {U;} is said to be a d-cover of a set
Aif A C Y, U; and [{U;}| < 6. We recall the definition of the Hausdorff measure
and dimension of A. For s > 0 and § > 0, we let

H5(A) = inf {Z |U;|1° - {U;}32 is a d-cover of A} .

i=1
The s-dimensional Hausdorff measure of A is

M (A) = lim H3(A),

and the Hausdorfl dimension of A is the number
HD(A) = sup{s : H°(A) = oo} = inf{s : H*(A) = 0}.

To begin with, let us consider the estimate from below. The main result of
[DZG] and [M] is that the Hausdorff dimension of a set is larger than or equal
to the topological entropy of the map on this set divided by the logarithm of the
Lipschitz constant of this map. From this and from Theorem 4.3 we get immediately
the following theorem.

Theorem 7.1. If an expanding polymodial f of degree d restricted to its Julia set
is Lipschitz continuous with the Lipschitz constant L then HD(J(f)) > logd/log L.

Now we give the example we promised.

Example 7.2. We will construct an expanding polymodial f with HD(J(f)) = 0.
It will be similar to a c-tent map. More precisely, it will be of the form

ZZ

fz) = ¢(|Z|)W —2

for some strictly increasing real valued function ¢ on [0, 00) such that ¢! is Lip-

schitz continuous with a constant less than 1, ¢(0) = 0 and (1) = 3.



Since ™! is Lipschitz continuous with a constant less than 1, ¢ is expanding,

and therefore f is an expanding polymodial. If z is real and nonnegative, then
f(z) = p(z) — 2, and if x is negative then f(z) = f(—z). Since f(0) = —2 and
f(1) = f(=1) = 1, the interval [—1,1] is mapped by f onto [—2,1]. All points of
[—2, —1) are mapped to (1,00), which is contained in the basin of attraction of the
infinity. Let A be the set of all points of [—1, 1], whose trajectories are contained
in [—1,1]. It is equal to the intersection of unions of intervals, exactly as in the
classical construction of the Cantor set, except that the lengths of those intervals
depend on the function ¢ and thus may (and in our case will) be different. As
long as the function ¢ satisfies the conditions listed in the preceding paragraph,
the maximal length of the intervals obtained on each step converges exponentially
to 0. Thus, A is homeomorphic to the Cantor set (in particular, A is closed). Since
the degree of f is 2 and every point of A has 2 preimages in A, the set A is fully
invariant. Fix a point b € A; by Lemma 3.13 of [BCM] every point of J(f) is the
limit of a sequence of preimages of b under the iterates of f, and since A is fully
invariant, .J(f) is contained in A = A. All points of A have bounded trajectories,
so they belong to J(f). Thus, J(f) = A. Observe that the same arguments would
apply to any fully invariant compact set on which the map is 2-to-1.

Define the set A, as the set of all points = such that f*(z) € [~1,1] for i =
0,1,...,n. The idea of the construction is to simultaneously build a sequence of
collections of intervals A,, and define the map f on them (and eventually on the
entire plane), so that the Hausdorff dimension of A4 is 0. To this end we need to look
closely at the sets A,,. Observe that the set A,, is the union of 2" intervals. Thus,
Ap = [-1,1], Ay is the union of 2 intervals [—1,a] and [a, 1] for some 0 < a < 1,
and in general A,, is the set of 2" closed intervals. The set A, \ A,41 is also the
union of 2™ intervals (each of them contained in the corresponding interval of A,,).
We will call those intervals gaps of n-th generation; in other words, each component
I of the set A,, contains exactly one gap of n-th generation, and if we remove this
gap we will obtain the two components of A, contained in I.

Each gap of n-th generation must be mapped by f to a gap of (n — 1)-st gener-
ation. We will require this map to be affine. Since f is continuous, if a sequence of
sets A, is given, this requirement will define f on the gap of the 0-th generation,
then on the gaps of the 1-st generation, and so on. Moreover, if the sets A,, are
chosen so that their intersection is homeomorphic to the Cantor set, then eventu-
ally it will define the map on the union of all gaps, and hence by continuity on the
entire interval [—1,1]. Of course not every choice of sets A,, leads to an expanding
polymodial. In order for f to be of the right form, A has to be symmetric with
respect to 0 and the ratio of the lengths of gaps of (n — 1)-st generation to the gaps
of n-th generation should be at least some o > 1.

In order to simplify the construction, we make all gaps of n-th generation of the
same length, and all components of each set A,, of the same length too (although,
clearly, the length of a component of A,, will be larger than the length of a gap
of n-th generation). The gap of the 0-th generation will have length 2/3, and the
components [—1,—1/3] and [1/3,1] of A; will have also lengths 2/3, so the gaps
of the first generation are shorter. Then we make the lengths of the components
of A,, and the lengths of the gaps of n-th generation decrease very rapidly with n.
Thus the conditions from the preceding paragraph will be satisfied. We make ¢



also affine on [0,1/3] and [1,00). The slope of ¢ on [0,1/3] is 3, and we make the
slope of ¢ on [1,00) also 3. This completes the definition of f, except that we have
to specify the lengths of the components of A,,.

When we take the cover of A by the components of A,,, we have 2" of them,
and the length of each of them is some number b,,. To get HD(A) = 0, it is enough
to have (log(2"))/(—logb,) — 0 as n — oo. This is satisfied if we set by = 2 and
b, = (4/3)2="" for n > 1. Then in particular b; = 2/3 and 2by = 1/6 < 2/3, as it
should be. For n > 1 the gaps of n-th generation have lengths

1 (27" -2 270") = Lot (1 am).
3 3

The ratio of two consecutive numbers of this form is equal to

§-27 (14 4 1
) R —
% . 2—(n+1)2(1 — 4-n-1) 1 — 4—n—1

> 6,

and the length of the gap of 0-th generation is 2/3, while the gaps of the first
generation have length 1/2. This gives the stretching factor & = 4/3 > 1. Thus, f
is an expanding polymodial with the Julia set of Hausdorff dimension 0. [

Now we pass on to the upper estimate on the Hausdorff dimension of the Julia
set of an expanding polymodial. Unlike our lower estimates, they require much
more information about the map. Moreover, it may seem that the proofs are more
difficult. However, to some extent this is because for the lower estimates we have
the results of [DZG] and [M], which allow us to get these estimates almost for free
(modulo Theorem 4.3 which is already proven), while before we can obtain the
upper estimates we need to develop certain tools. Let us start by describing the
information we want to know about an expanding polymodial whose Julia set we
study.

Let f : C — C be an expanding polymodial of degree d with singular set S(f).
We assume that f |@\S( ) 1s of class C? and Lipschitz continuous. We denote the
Lipschitz constant of f by L and its minimal expansion rate by «. The minimal
Jacobian is denoted by . Instead of considering the set S(f), we will rather use
the set S, which is the union of S(f) and all periodic orbits of the points of S(f).

At every point z € C we have its local degree, that is a number p such that f is
p-to-1 in a neighborhood of z. Of course, this number is 1 at any regular point of f
and larger than 1 at any singular point. If z is a periodic point of period n of f, we
define the local periodic degree at z as the n-th root of the product of local degrees
at points of the orbit of z. Finally, the periodic degree of f is the maximum of local
periodic degrees at all periodic points. We will denote it by d,. Note that d, = 1
if and only if f has no periodic singular points.

Theorem 7.3. The Hausdorff dimension of the Julia set J of an expanding poly-
modial 1s less than or equal to

log 9&°
max g 710gdp .
logL ’ log«




Note that if f has no periodic singular points then logd, = 0, so the estimate is
simply (log %)/(log L). Observe also that if d > 8 then (log dTLQ)/(log L) > 2 and
the estimate from Theorem 7.3 holds automatically. Similarly, it holds automati-
cally if d, > a®. On the other hand, if d < 8 and d,, < o then, by Theorem 7.3,
HD(J) < 2.

We will prove this theorem in steps.

Upper bounds on HD(.J) can be obtained by producing arbitrarily small §-covers
{U;} of J and considering Y .°, |U;|°. Given a set U of diameter §, the connected
components of f~"(U) may be chopped up and covered with balls of diameter
0" < 6. In this way, a é’-cover of J may be produced from an existing d-cover.
When the sets U are closed disks, and the preimage sets comprising f~"(U) are
particularly regular, this method is commonly referred to as “cutting up ellipses”,
see e.g. [F]. We use a version of this here.

By D(z,r) we will denote the closed ball centered at z with radius r. For a set
V and a positive integer n we will call a point z (V,n)-good if none of the points
z, f(2), f2(2),..., f""1(2) belongs to V. Otherwise of course it will be called (V,n)-
bad.

Lemma 7.4. Let V be a neighborhood of S U {o0}, and n be a positive integer.
Then there exists € > 0 such that if r < e and z is (V,n)-good then the component
of f=™(D(f™(z),r)) containing z is contained in a rectangle of side lengths s and

t, where % <s<t, and st < %Li.

Proof. Since f is Lipschitz continuous, if § is sufficiently small then there is a
closed neighborhood W of S U {co} such that whenever z is (V,n)-good, all sets
A, f(A), f2(A),..., f""1(A), where A = D(z,0), are disjoint from W. The map
f restricted to C\ W is a local diffeomorphism of class C2. Therefore there is
e > 0 such that under our assumptions on z there is a branch g of f~" mapping
D(f™(z),¢) diffeomorphically onto a neighborhood of z. This g is of class C?,
and thus if ¢ is sufficiently small and r < e then g(D(f"(z),r)) is contained in
an ellipse which we get when we replace g by its linear approximation, enlarged
homothetically by a factor v/2. This ellipse is contained in turn in a rectangle of
side lengths s < ¢, where s/2 and ¢/2 are the semiaxes of the ellipse. The area of
the ellipse is at most 27r2/B8™, so because the area st of the rectangle is by the
factor 4/ greater than the area of the ellipse, we conclude that st < 8r2/3™. The
estimate s > 2r /L™ follows immediately from the Lipschitz property of f. m

Lemma 7.5. Under the assumptions of the preceding lemma, if a point w has k,
(V,n)-good preimages and ky (V,n)-bad preimages under f~", then f~"(D(w,r))
can be covered by 8k, (L?/B)" closed disks of radius \/2r /L™ and ky closed disks of
radius r/a™.

Proof. Consider a point z € f~"(D(w,r)). If the component of f~™(D(w,r)) to
which z belongs, contains also a (V, n)-good point of f~"(w) then, by Lemma 7.4, x
belongs to a rectangle form that lemma. There are k4 such rectangles. If z does not
belong to a component of f~"(D(w,r)) containing a (V,n)-good point of f~"(w)
then, by Lemma 3.4 of [BCM], it lies in a closed disk of radius r/a™ centered at a
(V,n)-bad point of f~"(w). There are k; such points.



Thus, it remains to prove that a rectangle from Lemma 7.4 can be covered by
8(L?/B)™ closed disks of radius v/2r/L™. To do this, we first cover the rectangle
by squares of side length ¢ = 2r/L™. We can do this with Im squares, where [, m
are integers, if s/q < [ and t/qg < m. By Lemma 7.4, 1 < s/q < t/q, so there
exist integers [, m such that s/q <1 < 2s/q and t/qg < m < 2t/q. Then, again by
Lemma 7.4, Im < 4st/q®> < 8L?" /™. As the last step we cover each square by a
closed disk of radius /2r/L™. =

Now we fix n,V,e,r as in Lemma 7.4 and a point zy € C, and define a disk tree
T by induction. The vertices of our tree will be disks, and they will be divided into
generations. There will be only one disk of the first generation, namely D(zy, 7).
If we have a disk A of k-th generation, then we apply Lemma 7.5, where w is the
center of A and r is replaced by the radius of A. The new disks obtained in such a
way will belong to (k + 1)-st generation and will be joined with A by edges of T.
Thus, the new disks cover f™-preimages of the disks of the previous generation. In
order to have the radii of the disks decrease to 0 as the generation number goes to
infinity (and to be sure that they all are smaller than €), we assume that n is so
large that /2/L™ < 1. For every vertex v of generation m > 1, we will denote by
©(v) the unique vertex of generation m — 1 which is joined with v by an edge. We
will then consider ¢ as a map, so we will speak of ¢*(v) and ¢~1(v).

We will call a positive integer n admissible if L™ > /2, periods of all periodic
singular points of f divide n, and if for any two points z,w € S with f(z) =w
we can find a number m; < n such that f™ (z2) = w.

Recall that V' is a neighborhood of SUoco. We will be considering the set V of a
special form. Namely, we choose a sufficiently large number R and a small number
0, and define V' as the union of the open disks of radius § centered at the points
of S and the complement of the closed disk of radius R centered at 0. The union
of the disks of radius & centered at the periodic points of S will be denoted by V.
Clearly, V' C V.

We will paint the vertices of the disk tree T into 3 colors. If the center of v
(remember that v is a disk) is (V,n)-good then v will be painted green. If the
center z of v is (V,n)-bad, and z belongs to V', we will paint v red. If the center z
of v is (V,n)-bad and z does not belong to V', we will paint v yellow.

Lemma 7.6. For given positive integers n, K, with n admissible, there exist V' of
the above form and € > 0 such that the following properties hold.

(1) If a vertex v of generation m is not green and p(v) is green then the vertices
¢’ (v) are green for j =1,2,...,min(K,m — 1).

(2) If vertices v and ¢(v) are yellow then ©?(v) is not yellow.

(3) If a vertex v is red then the vertex o(v) is not yellow.

(4) If a vertex v is red then at most dyy of the elements of ¢™*(v) are red.

Proof. Consider 0 and R that define V. If we take § sufficiently small then it takes
more than Kn iterates of f to get from a 2d-neighborhood of a point z € S to a
26-neighborhood of a point w € S, unless f¥(z) = w (but then either k& < n or both
z and w belong to the same periodic orbit). Also, we can take R so big that first
Kn images of 26-neighborhoods of points of S are contained in the disk of radius
R centered at 0.



If we now choose a sufficiently small e, we see that the first three properties are
satisfied. Observe that a point which is sufficiently close to a point of S will stay
in the disk of radius R centered at 0 for a long time. Moreover, once a trajectory
leaves a very small neighborhood of an element z of S, it takes a long time for it to
get to a small neighborhood of some element w of S, unless f7(z) = w for some j.
It cannot get back close to the trajectory of z (if 0 is sufficiently small), because f is
an expanding polynomial. Since n is admissible, this proves (1) and (2) (two yellow
vertices in a row may occur, since when cutting a trajectory into pieces of length
n, we may cut it at a place after leaving a neighborhood of z and before arriving
to a neighborhood of w). To see that (3) is satisfied, note that once a trajectory
finally leaves a small neighborhood of a periodic orbit of a singular point, it still
stays close to this periodic orbit, where there are no other singular points.

To count the maximal possible number of red elements of ¢ ~!(v), we have to
know how many elements of f~"(z) is close to z, if z is very close to a periodic
point w of S. If the period is k then n is a multiple of k& (since it is admissible),
so the number of the elements of f~"(z) is close to z is at most the local periodic
degree at w to the power k to the power n/k, that is, the local periodic degree at
w to the power n. This proves (4). m

We know now which vertex is of which color, but there still may be different
shades. We define K shades of green and 2 shades of yellow. Assume first that
1 <k<K-—1. Ifvis a green vertex of T, vertices ¢/ (v) are defined and green
for j =1,2,...,k — 1, and the vertex ¢¥(v) is defined, but it is not green, then we
say that the shade of v is k. The shade of the rest of green vertices is K. If v is
yellow and ¢(v) is defined and yellow, then the shade of v is 2. The shade of all
other yellow vertices is 1.

With this notation, we can summarize our knowledge of the tree 7' in the fol-
lowing directed graph G.

.G

\//\/

FIGURE 7.1. The graph G for T

The notation for vertices is obvious, for example, G; means green, shade j. An
arrow from A to B means that it may happen that v has color/shade B and ¢(v)
color/shade A (note that the arrows go in the opposite direction than ¢). The
absence of an arrow means that this cannot happen (by Lemma 7.6 or the shading
rules). Let us explain now the letters a, b, ¢ by the arrows. A letter corresponding
to an arrow A — B indicates an upper bound on the number of elements of =1 (v)



of color/shade B if v is of color/shade A, and the ratio of the radii of those elements
to the radius of v. By Lemmas 7.5 and 7.6 (4), those numbers and ratios are the
following.

For a: number 8(dL?/B)", ratio v/2/L™.

For b: number dy, ratio 1/a™.

For ¢: number d", ratio 1/a™.

Now we are in a position to complete the proof of Theorem 7.3. The estimate
in this theorem is the real number s such that the pressure of the subshift of
finite type with the graph G, for the observable (potential) that is the logarithm of
the (number)-(ratio)® above, is zero. Such method is standard for computing the
Hausdorff dimension (see, e.g. [Pe]), except that in our case we perform kind of
coding and the observable is not that simple.

Proof of Theorem 7.3. Denote the radius of the vertex of T' of generation 1 by r. For
every vertex v of generation m we define its color m-code as the sequence of vertices
of the graph G corresponding to the color/shade of ™ 1(v), "™ 2(v),. .., p(v),v.
In other words, the color m-code of v is a path of length m — 1 in G. From this
path we can easily read off an upper bound for the number of vertices of generation
m with this color m-code and their radii. Namely, the bound for the number is
the product of the numbers corresponding to the letters a, b, ¢ by the arrows of the
path, and the radius is the product of the corresponding ratios, times r.

Fix s > 0 and set s, = 8(dL?/B)™(V2/L")*, s = d(1/a™)* and s, = d™(1/a™)".
We will say that s,, sp, s are the quantities associated to arrows in G marked a, b, c
respectively. The product of quantities associated to the arrows of a given path will
be called the quantity associated to this path.

Now, the sum of the diameters to the power s of all vertices of generation m is
not larger than the sum over all paths of length m — 1 of quantities associated to
those paths (call this number N(m)) times (2r)°. In every path in G there can be
at most 3 arrows marked ¢ in a row, and every block of arrows marked c is followed
by a block of arrows marked a of length at least K. Therefore if we assume that
se < 1 and s, < 1, if K is so large that s2sX < 1 then there are constants A > 0
and g € (0,1) such that for every m and a path of length m — 1, the quantity
associated to this path is less than Ap™.

Our plan is to show that N(m) — 0 as m — oo. As we will see later, this means
that the s-dimensional Hausdorff measure of .J is equal to 0, thus implying that
HD(J) < s. In order to show that lim,, -, N(m) = 0 if K is sufficiently large,
it remains to prove that the number of paths of length m — 1 is not larger than
A1 for some constants Ay > 0 and puq € (0,1/p). This means that the topological
entropy of the subshift of finite type given by the graph G is smaller than —log u
(for sufficiently large K). We can compute the entropy of this subshift using the
rome method (see [BGMY], [ALM]). The vertices R, Gk of G form a rome. There
are paths of length K +2, K+ 1,1 from G to itself, a path of length 1 from Gk to
R, paths of lengths K + 2, K + 1, K from R to Gk, and a path of length 1 from R
to itself. Therefore the determinant that we have to compute in the rome method
is equal to

(x—(K—l—Z) + .T_(K+1) + .’17_1 - 1)($—1 - 1) - (x—(K—l—Z) + x—(K—l—l) + .T_K)(.I'_l)

=1 -2 -z E+D (22 4 1).



Topological entropy of the subshift is equal to the logarithm of the largest zero
of this function (call it ®x). We have @i (1) < 0, while if v > 1 then, if K is
sufficiently large, @ (z) > 0 for all > v. This means that the limit of the largest
zero of @ is 1 as K — oco. This completes the proof that if K is sufficiently large
then lim,, ,~ N(m) = 0.

Now we use the standard method of estimating the Hausdorff dimension of J.
We cover it by a finite number of balls with radii less than the number e specified
earlier. The computation made above shows that if s, < 1 and s < 1 (we take
K sufficiently large) then the s-dimensional Hausdorff measure of .J is zero. Thus,
in this case, HD(J) < s. Therefore HD(J) is less than or equal to the minimal
number s for which max(s,, s) = 1. We have s, =1 for

nlog% + log 8
nlog L — log /2

and s, = 1 for s = (logd,)/(log ). Letting n go to infinity, we get the desired
estimate of HD(J). =

Let us apply Theorem 7.3 to our main examples of expanding polymodials, that
is, to tent maps. Then L = 2|c|, 8 = 2|¢|? and d = 2. Thus,

2
log % 2log2
logL. ~ log2 +log|c| '

Thus, together with Theorem 7.1, we get the following corollary.

Corollary 7.7. If f is a c-tent map then the Hausdorff dimension of its Julia set
s positive. If additionally 0 is not periodic for f then this dimension is less than
2.

For c-tent maps with 0 periodic of period k, we have d, = ¥/2 and a = |c|, so in
Theorem 7.3 we have to take also into account the number

logd,  log2

logae  klog|c|’

Unfortunately this number can be larger than 2. For instance, 0 is periodic of
period 7 for ¢ equal approximately 0.11248827878329313 4+ 0.99974190174702423:.
Then |c| is approximately 1.00605043758868500, so (log2)/(7 log |c|) is over 16. We
can improve estimates by a more careful study of the preimages of balls that are
close to the periodic orbit of 0, but it seems that with |¢| so close to 1 with relatively
small period 7, some new ideas would be necessary to get an upper estimate of the
Hausdorff dimension less than 2.

Of course we can improve the estimate from Theorem 7.3 also for general ex-
panding polymodials if there are no periodic singular points. For instance, we can
apply it to f™ instead of f, or take into account that large stretching can occur in
a completely different place than small Jacobian. This should lead to a “pressure”
formula (see e.g. [Pe]). If the image of the unit ball under the derivative of f at



z has semiaxes L(z) > a(z), then the Hausdorff dimension should be less than or
equal to the value of s for which the pressure for the logarithm of the function

w0= 35 ()

is equal to 0. Perhaps some assumptions on regularity at singular points (for in-
stance, that the limit of @ exists at every singular point) should be assumed.

However, for c-tent maps such a formula would yield the same estimate as The-
orem 7.3. The real questions are whether this formula not only gives an upper
estimate, but the actual value of HD(.J), and whether it is valid also in the case
when there are periodic singular points.
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