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Intermediate Value Teorem

The Intermediate Value Theorem (the IVT) is a part of Calculus 1. In
what follows all functions are assumed to be continuous.

Intermediate Value Theorem

Let f : [a,b] → R be a continuous function on the interval I. If
f(a) ≤ T ≤ f(b) or f(a) ≥ T ≥ f(b) then f(c) = T for some c ∈ [a,b].
Thus, if a and b map (non-strictly) in opposite directions, then there
exists a fixed point x ∈ I, i.e. a point such that f(x) = x.

The converse of the IVT fails: some
discontinuous functions have the
same property. A Darboux function is
a function f satisfying the conclusion
of the IVT. Darboux proved that if f ′

is defined everywhere, then f ′ is a
Darboux function.
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Intermediate Value Theorem: history

The Intermediate Value Theorem was first “proven” by Bryson of Heraclea
Pontica (in modern Turkey, on the Black Sea coast). He was a philosopher
(a pupil of Socrates); with Antiphon they were the first to approximate π
as follows: inscribe (superscribe) a polygon inside (around) a circle, find
the polygon’s area, double the number of sides of the polygon, and repeat
the process, resulting in an approximation of the area of a circle.

With these calculations, Bryson was able to approximate π. Aristotle
criticized this method, but Archimedes would later use a method similar to
that of Bryson and Antiphon to calculate π; however, Archimedes
calculated the perimeter of a polygon instead of the area.

Thank you, Wikipedia!!!!!
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Intermediate Value Theorem: history

Bryson was concerned with proving that there exists a square of the same
area as a given circle. According to the 13th-century English philosopher
Robert Kilwardby, Bryson “argued” as follows:

In any genus in which one can find a greater and a lesser than something,
one can find what is equal; but in the genus of squares one can find a
greater and a lesser than a circle; therefore, one can also find a square
equal to a circle.

This is a map of ancient Bulgaria,
Greece and Anatolia with Heraclea
Pontica shown on it.
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Intermediate Value Theorem: history

The first rigorous proof of the IVT
was given by Bolzano in 1817
(Bolzano lived all his life in Prague
or the country side nearby where is
was exiled by Austrian authorities for
his political views).

It was then modified and perfected
by a French mathematician Cauchy
whose statement is actually used in
calculus.
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Dynamical systems: iterations and cycles

Before we go any further, we need to introduce basic concepts of the
theory of dynamical systems. The theory studies self-mappings of spaces
with certain structure and their iterations, i.e. repeated self-compositions
f, f2, f3, . . . of a map f with itself. If we have a map f : X → X then we
can talk about the (f)-orbit of a point x ∈ X understood as the sequence
(x, f(x), f2(x), f3(x), . . . ) or as the corresponding set of points.

A point x ∈ X is then said to be periodic if for some number n we have
fn(x) = x. If n is the minimal number with that property then n is called
the period of x, and the set of points {x = fn(x), f(x), . . . , fn−1(x)} is said
to be periodic orbit or a cycle. A point of period 1 is said to be fixed. By
the IVT, a continuous self-mapping of an interval must have a fixed point.
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The Sharkovsky order

In 1961 Sharkovsky proved his famous theorem on coexistence of periods
of cycles of continuous interval maps (the paper with the proof was
published in 1964). It could have been proven any time after Bryson of
Heraclea Pontica as it relies only on the IVT and various clever
one-dimensional arguments. To state it let us first introduce the
Sharkovsky order for positive integers:

3 ≻s 5 ≻s 7 ≻s . . . ≻s 2 · 3 ≻s 2 · 5 ≻s 2 · 7 ≻s . . . ≻s 4 ≻s 2 ≻s 1.

This order is extended by transitivity, so that if a number m is to the left
of a number n in the Sharkovsky order, then we write m ≻s n. In this case
we say that m forces n.
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The Sharkovsky theorem

The Sharkovsky theorem can be stated in several ways. Here is the most
transparent version.

Sharkovsky Theorem

If g : [0, 1] → [0, 1] is continuous, m ≻s n and there exists a point
x ∈ [0, 1] of period m then g has a periodic point of period n.

This explains the terminology (m
forces n). In particular, 3 forces any
natural number which is a very
particular and narrow case of the
Sharkovsky Theorem.
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The Sharkovsky theorem: an anecdote

That a continuous interval map with a point of period 3 must have points
of all periods, was rediscovered in 1975 by Li and Yorke in their paper in
American Mathematical Monthly titled “Period Three Implies Chaos”.
Li and Yorke had no idea about the Sharkovsky theorem.

In 1976 Sharkovsky and Yorke visited Max Planck Institute for
Mathematics in Bonn. Sharkovsky then could hardly speak English, but a
famous Soviet mathematician Anosov was in Bonn, too. When they all
took a boat ride on Rhein, Anosov and Sharkovsky explained the matter to
Yorke. The issue was resolved, Yorke became a fan of the Sharkovsky
theorem and advertised it at various meetings and conferences.

This is “how the West was won” :-)

Alexander Blokh ( Dept of Math, UAB ) Topics in one-dimensional dynamics UAB, October 2024 9 / 18



The Sharkovsky theorem: an anecdote

That a continuous interval map with a point of period 3 must have points
of all periods, was rediscovered in 1975 by Li and Yorke in their paper in
American Mathematical Monthly titled “Period Three Implies Chaos”.
Li and Yorke had no idea about the Sharkovsky theorem.

In 1976 Sharkovsky and Yorke visited Max Planck Institute for
Mathematics in Bonn. Sharkovsky then could hardly speak English, but a
famous Soviet mathematician Anosov was in Bonn, too. When they all
took a boat ride on Rhein, Anosov and Sharkovsky explained the matter to
Yorke. The issue was resolved, Yorke became a fan of the Sharkovsky
theorem and advertised it at various meetings and conferences.

This is “how the West was won” :-)

Alexander Blokh ( Dept of Math, UAB ) Topics in one-dimensional dynamics UAB, October 2024 9 / 18



The Sharkovsky theorem: an anecdote

That a continuous interval map with a point of period 3 must have points
of all periods, was rediscovered in 1975 by Li and Yorke in their paper in
American Mathematical Monthly titled “Period Three Implies Chaos”.
Li and Yorke had no idea about the Sharkovsky theorem.

In 1976 Sharkovsky and Yorke visited Max Planck Institute for
Mathematics in Bonn. Sharkovsky then could hardly speak English, but a
famous Soviet mathematician Anosov was in Bonn, too. When they all
took a boat ride on Rhein, Anosov and Sharkovsky explained the matter to
Yorke. The issue was resolved, Yorke became a fan of the Sharkovsky
theorem and advertised it at various meetings and conferences.

This is “how the West was won” :-)

Alexander Blokh ( Dept of Math, UAB ) Topics in one-dimensional dynamics UAB, October 2024 9 / 18



Sharkovsky theorem: types of cycles

Since 1976 about a hundred proofs of the Sharkovsky theorem appeared in
print. All of them are elementary in the sense that they rely upon the IVT
and some straightforward arguments. There were various attempts to
generalize it and/or to understand it better. However, the Sharkovsky
theorem is an example of the result which one can prove, but not really
understand.

Let us now consider an interpretation of the Sharkovsky theorem. Think of
the period of a cycle as its “type”. Then the Sharkovsky Theorem shows
how such types of cycles (i.e., their periods) force each other. What
other types can we associate with interval periodic orbits? Periods are
rather crude in this respect (many combinatorially different behaviors can
be exhibited by cycles of a given period). It turns out that there exists
another way of defining the type of a cycle for which a nice order can be
established.
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Rotation theory: Poincaré

Rotation theory in the very general sense studies how orbits of points
compare to rotations. We say it in a very vague fashion because the
concept of rotation can be understood in a variety of ways. However in the
case of circle maps the situation is more transparent and intuitive. The
first steps here are due to Henri Poincaré who laid foundation for modern
theory of dynamical systems.

Poincaré defined rotation numbers
of circle homeomorphisms preserving
orientation, i.e. 1-to-1 continuous
self-mappings f of the circle S1 such
that if x walks along S1 clockwise,
f(x) does the same. Then the
rotation number ρ(f) describes the
circular order among points from an
orbit of a point x ∈ S1.
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Rotation theory: modeling complicated maps

To state one related and nice result by Poincaré recall that a continuous
map ψ : S1 → S1 is said to be monotone if for any point x ∈ S1 its
preimage ψ−1(x) is a closed arc or a point. Also, suppose that we have
maps f : S1 → S1 and g : S1 → S1. These maps are said to be
monotonically semiconjugate is there exists a monotone map
ψ : S1 → S1 such that ψ ◦ f = g ◦ ψ (if the map ψ is in fact a
homeomorphism, we say that f and g are conjugate). Here is the
corresponding commutative diagram:

S1 S1

S1 S1
ψ

f

ψ

g

(1)
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Rotation theory: modeling complicated maps

Suppose now that ρ(f) is irrational. Then Poincaré proved that f is
monotonically semiconjugate to a true rigid irrational rotation τρ(f) of S1
by the angle ρ(f). What it means is that one can collapse some (perhaps,
infinitely many) closed arcs of S1 to points and by doing so transform a
given homeomorphism f to the irrational rotation τρ(f) by the angle ρ(f).
In fact, Denjoy later proved that if f is twice differentiable, then f and τρ(f)
are in fact conjugate.

Poincaré’s approach is key in dynamical systems. The idea is to model a
given, seemingly very complicated map, using a more transparent map to
which a given map is conjugate (or at least semiconjugate by a nice map).
Finding good models for various classes of maps is an important part of
the dynamical systems theory.
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Rotation theory on the interval

Take a periodic point x of period q on the interval. Take a vector from x
to f(x) and consider its evolution as we apply f to its endpoints. Each
time vector changes its direction we think of the rotation of the vector in
the positive direction by 1

2 . In the end the vector comes back, so the
overall angle by which it rotated is an integer p. Then the rotation pair
of x is (p,q) and the rotation number of x is p

q . Then, clearly,
p
q ≤ 1

2 .

Forcing of Rotation Pairs (B. and Misiurewicz, 1997)

If an interval map f has a periodic point of rotation pair (m,n) and
m
n < p

q , then f has a periodic point of rotation pair (p,q).

One can say that if (p,q) and (m,n) are rotation pairs, and m
n < p

q , then
(m,n) forces (p,q).
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Rotation theory on the interval

Notice that 1
3 <

2
5 <

3
7 < · · · < n

2n+1 <
n+1
2n+3 < · · · < 1

2 . The closest to 1
2

rotation number of a cycle is n
2n+1 . Hence the first countable segment in

the Sharkovsky Theorem follows; also, any odd period > 1 forces any even
period. Considering f2, we get the second countable segment (dealing with
numbers of the form 2(2n+ 1)), etc. The last countable segment with
descending powers of two needs a separate proof which is rather easy.

Indeed, first one proves that a cycle of period 4 forces a cycle of period 2.

Now, suppose that f has a cycle of period 2n and consider a map
g = f2

n−2
. It follows that g has a cycle of period 4. By the above, g must

have a cycle of period 2. Since g = f2
n−2

, then this implies that f has a
cycle of period 2n−1. In other words, 2n forces 2n−1.
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A couple of lemmas

To give you a flavor of one-dimensional combinatorial dynamics, here are
some lemmas from the original diploma of Sharkovsky (1961).

L-scheme

Suppose that there are points a, x such that f2(x) ≤ a = f(a) < x < f(x).
Then f has cycles of all periods. If a map has such points one says that it
has L-scheme.

Forcing L-scheme

Suppose that in a cycle there are points y and x with f(y) < y < x < f(x).
Then f has L-scheme, and therefore, cycles of all periods.
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Another look at rotation and one more lemma

By the above the only cycles of interest are the ones that do not force f to
have L-scheme. These are the cycles in which there are no points x, y with
f(y) < y < x < f(x). It means that in a cycle all points mapped to the
right are located to the left, and all points mapping to the left are located
to the right. Hence there is a fixed point, say, a between these two
collections of points. We can connect a and a point from the cycle with a
rubber string, and count every “jump” of a point of the cycle over a as
rotation by 1

2 . This is another way to figure the rotation pair of a cycle.

4 forces 2

If f has a cycle of period 4, then f has a cycle of period 2.
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Thank you!

THANK YOU!
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