
SIAM J. MATRIX ANAL. APPL. c© 2013 Society for Industrial and Applied Mathematics
Vol. 34, No. 2, pp. 542–570

SOLVING MULTILINEAR SYSTEMS VIA TENSOR INVERSION∗

M. BRAZELL† , N. LI‡ , C. NAVASCA§ , AND C. TAMON¶

Abstract. Higher order tensor inversion is possible for even order. This is due to the fact that
a tensor group endowed with the contracted product is isomorphic to the general linear group of
degree n. With these isomorphic group structures, we derive a tensor SVD which we have shown
to be equivalent to well-known canonical polyadic decomposition and multilinear SVD provided
that some constraints are satisfied. Moreover, within this group structure framework, multilinear
systems are derived and solved for problems of high-dimensional PDEs and large discrete quantum
models. We also address multilinear systems which do not fit the framework in the least-squares
sense. These are cases when there is an odd number of modes or when each mode has distinct
dimension. Numerically we solve multilinear systems using iterative techniques, namely, biconjugate
gradient and Jacobi methods.
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1. Introduction. Tensor decompositions have been successfully applied across
many fields which include, among others, chemometrics [54, 48, 6], signal process-
ing [10, 15], and computer vison [53]. More recent applications are in large-scale
PDEs through a reduced rank representation of operators with applications to quan-
tum chemistry [34] and aerospace engineering [21]. State-of-the-art tensor methods
have been applied to problems in quantum chemistry: Khoromskij, Khoromskaia, and
Flad [35] solved the fundamental Hatree–Fock equation and Beylkin and Mohlenkamp
[3, 4] worked on multidimensional operators in quantum models. Hackbusch and
Khoromskij [26] and Hackbusch, Khoromskij, and Tyrtyshnikov [27] have solved mul-
tidimensional boundary and eigenvalue problems using a reduced low-dimensional
tensor-product space through separated representation and hierarchical Kronecker
tensor from the underlying high spatial dimensions. See the survey papers [15, 34, 36]
and the references therein for more applications and tensor-based methods. Extensive
studies (e.g., [11, 14, 16, 37]) have exposed many aspects of the differences between
tensors and matrices despite the fact that tensors are multidimensional generalizations
of matrices.

In this paper, we continue to investigate the relationship between matrices and
tensors. Here we address the following question: when is it possible to matricize
(tensorize) and apply matrix-(tensor) based methods to high-dimensional problems
and data with inherent tensor (matrix) structure. Specifically, we address tensor
inversion through group theoretic structures and by providing numerical methods
for specific multilinear systems in quantum mechanical models and high-dimensional
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PDEs. Since the inversion of tensor impinges upon a tensor-tensor multiplication def-
inition, the contracted product for tensor multiplication was chosen since it provides
a natural setting for multilinear systems and high-dimensional eigenvalue problems
considered here. It is also an intrinsic extension of the matrix product rule. Still
other choices of multiplication rules should be considered for particular application
in hand. For example, in the matrix case, there is the alternative multiplication of
Strassen [50] which improves the computational complexity by using block structure
format and the optimized matrix multiplication based on blocking for improving cache
performance by Demmel [20]. In a recent work of Ragnarsson and Van Loan [44, 45],
the idea of blocking is extended to tensors. In the work of Braman [5], an alternative
tensor multiplication is used in image processing applications. Our choice of the stan-
dard canonical tensor-tensor multiplication provides a useful setting for algorithms
for decompositions, inversions, and multilinear iterative solvers.

Associated with tensors are multilinear systems. Multilinear systems model many
phenomena in engineering and science. For example, in continuum physics and engi-
neering, isotropic and anisotropic elasticity are modelled [41] as multilinear systems.
Approximating solutions to PDEs in high dimensions amounts to solving multilinear
systems. Current tensor-based methods for solving PDEs require a reduction of the
spatial dimensions and some applications of tensor decomposition techniques; here we
focus on tensor iterative methods for solving high-dimensional Poisson problems in
the multilinear system framework.

Tensor representations are also common in large discrete quantum models like
the discrete Schrödinger and Anderson models. The Anderson model1 [1] is the most
studied model for spectral and transport properties of an electron in a disordered
medium. The study of spectral theory of the Anderson model is a very active research
topic, but there are still many open problems and conjectures for high-dimensional
d ≥ 3 cases; see [31, 38, 49] and the references therein.

Powerful computer simulations and mathematical modeling are increasingly used
as visualization tools for understanding crystal structure and evolution. In addition,
numerical (multi)linear algebra techniques are becoming useful tools in understanding
complicated models and difficult problems in quantum statistical mechanics. For
example, Bai et al. [2] have developed numerical linear algebra methods for the many-
electrons Hubbard model and quantum Monte Carlo simulations.

We develop a tensor-based visualization tool for localization and for verifying some
conjectures in high dimension (d ≥ 3) for all disorder λ and at various distributions.
The Hamiltonians of the discrete Schrödinger and Anderson models are even order
tensors which satisfy the symmetry requirement in the tensor SVD that we describe
in section 3. Moreover, the numerical results provide some validation that these
localizations exist for large disorder for dimension d > 1 for a sufficient amount of
atoms; see the conjectures in [31, 38, 49].

The contributions of this paper are three-fold. First, we define the tensor group
which provides the framework for formulating multilinear systems and tensor inver-
sion. Second, we discuss tensor decompositions derived from the isomorphic group
structure and show that they are special cases of the well-known canonical polyadic
(CP) decomposition [8, 28] and multilinear SVD [51, 52, 16] provided that some con-
ditions are satisfied. These decompositions appear in many signal processing applica-
tions, e.g., see [10, 18] and the references therein. Moreover, we describe multilinear

1P.W. Anderson received the Nobel Prize in Physics in 1977 for his work on the spectral and
transport properties of an electron in a disordered medium.
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systems in PDEs and quantum models while providing numerical methods for solv-
ing multilinear systems. Multilinear systems which do not fit in the framework are
addressed by pseudoinversion methods.

2. Preliminaries. We denote the scalars in R with lowercase letters (a, b, . . . )
and the vectors with bold lowercase letters (a,b, . . . ). The matrices are written as
bold uppercase letters (A,B, . . . ) and the symbol for tensors are calligraphic letters
(A,B, . . . ). The subscripts represent the scalars (A)ijk = aijk, (A)ij = aij , (a)i = ai
unless noted otherwise. The superscripts indicate the length of the vector or the size
of the matrices. For example, bK is a vector with length K and BN×K is a N ×K
matrix.

The order of a tensor refers to the cardinality of the index set. A matrix is a
second order tensor and a vector is a first order tensor.

Definition 2.1 (even and odd tensors). Given an N th tensor T ∈ RI1×I2×···×IN .
If N is even (odd), then T is an even (odd) N th order tensor.

Definition 2.2 (Einstein product [22]). For any N , the Einstein product is
defined by the operation ∗N via

(A ∗N B)i1...iNkN+1...kM =
∑

k1...kN

ai1i2...iNk1...kN bk1...kNkN+1kN+2...kM ,(2.1)

where A ∈ RI1×···×IN×K1×···×KN and B ∈ RK1×···×KN×KN+1×···×KM .
For example, if T ,S ∈ RI×J×I×J , the operation ∗2 is defined by the following:

(T ∗2 S)ijîĵ =
I∑

u=1

J∑
v=1

tijuvsuvîĵ .(2.2)

The Einstein product is a contracted product that it is widely used in the area
of continuum mechanics [41] and in the study of the theory of relativity [22]. Notice
that the Einstein product ∗1 is the standard matrix multiplication since

(M ∗1 N)ij =
K∑

k=1

miknkj = (MN)ij(2.3)

for M ∈ RI×K ,N ∈ RK×J .
Definition 2.3 (Tucker mode-n product). Given a tensor T ∈ RI×J×K and

some matrices A ∈ RÎ×I , B ∈ RĴ×J , and C ∈ RK̂×K , the Tucker mode-n products
are the following:

(T •1 A)̂i,j,k =

I∑
i=1

tijkaîi ∀î, j, k (mode-1 product),

(T •2 B)ĵ,i,k =

J∑
j=1

tijkbĵj ∀ĵ, i, k (mode-2 product),

(T •3 C)k̂,i,j =

K∑
k=1

tijkck̂k ∀k̂, i, j (mode-3 product).

Notice that the Tucker product •n is the Einstein product ∗1 when the mode
summation is specified.

Below we define matrix and tensor blocks. These blockings have been described
in the papers of Ragnarsson and Van Loan [44, 45].
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Definition 2.4 (partition of indices). Let I be the index set with n partitions and
|I| cardinality. Then there exist Ik subindex sets for k = 1, . . . , n such that

∑
k |Ik| =

|I|. Collectively, (n1, n2, . . . , nm) denotes the number of partitions on multiple index
sets I1, I2, . . . , Im.

Definition 2.5 (matrix blocks). Given a matrix A of size I × J with partition
(k, l) on I and J , respectively, a matrix A ∈ RI×J is partitioned into blocks of kl
matrices of size k×l. If the partition is (I, 1), then matrix A ∈ RI×J is partitioned into

blocks of 1× J row vectors of size J , denoted by a
(1)
k = A(k, :) ∈ R

J for k = 1, . . . , I.
Similarly, if the partition is (1, J), then matrix A ∈ RI×J is partitioned into blocks

of I × 1 column vectors of size I, denoted by a
(2)
l = A(:, l) ∈ RI for l = 1, . . . , J .

Definition 2.6 (tensor blocks of third order tensor). Given a tensor A of size
I × J ×K with partition (l,m, n) on I, J , and K, a third order tensor A ∈ RI×J×K

is partitioned into l ·m · n number of tensor blocks of size l ×m× n.
Here are some special cases. If the partition is (I, 1, 1), then A ∈ RI×J×K is

partitioned into matrix blocks of size J ×K. Each matrix block (top-bottom matrix

slice) is denoted by A
(1)
i = A(i, :, :) ∈ RJ×K for i = 1, . . . , I. If the partition is

(1, J, 1), then A ∈ RI×J×K is partitioned into matrix blocks of size I × K. Each

matrix block (left-right matrix slice) is denoted by A
(2)
j = A(:, j, :) ∈ RI×K for

j = 1, . . . , J . If the partition is (1, 1,K), then A ∈ RI×J×K is partitioned into matrix

blocks of size I×K. Each matrix block (front-back matrix slice) is denoted by A
(3)
k =

S(:, :, k) ∈ RI×J for k = 1, . . . ,K. Moreover, the standard flattenings of third order
tensor are concatenations of the matrix slices forming the mode-one, mode-two, and

mode-three matricizations [16]: A(1) = [(A
(1)
1 )T (A

(1)
2 )T . . . (A

(1)
I )T ] ∈ RK×I·J ,

A(2) = [A
(2)
1 A

(2)
2 . . . A

(2)
J ] ∈ RI×J·K , andA(3) = [(A

(3)
1 )T (A

(3)
2 )T . . . (A

(3)
K )T ] ∈

RJ×K·I .
Definition 2.7 (tensor blocks of Nth order tensor). Given a tensor A ∈

RI1×I2×···×IN with N ≥ 4 with partition (J1, J2, . . . , JN ) on the index sets I1, I2, . . . , IN ,
a tensor A ∈ RI1×I2×···×IN is partitioned into j1j2 . . . jN number of tensor blocks of
size J1 × J2 × · · · × JN .

Here we discuss some relevant tensor blocks in this paper. Given a fourth or-
der tensor A ∈ RI1×I2×I3×I4 with partition (1, 1, I3, I4), A ∈ RI1×I2×I3×I4 is par-

titioned into matrix blocks of size I1 × I2. Each block is denoted by A
(3,4)
i3,i4

=

A(:, :, i3, i4) ∈ RI1×I2 with i3 = 1, . . . , I3 and i4 = 1, . . . , I4. Similarly, given a
fourth order tensor A ∈ RI1×I2×I3×I4 with partition (I1, I2, 1, 1), A ∈ RI1×I2×I3×I4

is partitioned into matrix blocks A
(1,2)
i1,i2

of size I3 × I4. See Figure 2.1. Now given

a sixth order tensor A ∈ RI1×I2×I3×I4×I5×I6 with partition (1, I2, 1, I4, 1, I6), A ∈
RI1×I2×I3×I4×I5×I6 is partitioned into tensor blocks A(2,4,6)

i1i3,i5
of size I1 × I3 × I5. See

Figure 2.2.

2.1. Tensor group set-up. Recall that the group of invertible N ×N matrices
is called the general linear group of degree n, denoted GL(n,R), where the binary
operation is the matrix multiplication. Let’s denote this group MN,N (R) consisting
of all invertible N ×N matrices with the matrix multiplication.

Definition 2.8 (transformation). Define the transformation f : TN,M,N,M(R)
−→ MN ·M,N ·M (R) with f(A) = A defined component-wise as

(A)nmnm
f−→ (A)[n+(m−1)N ][n+(m−1)N ],(2.4)
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(a) Matrix block A
(2,4)
i2i4

∈ RI1×I3 on the

(i2, i4) entry of the main block matrix

(b) Matrix block A
(3,4)
i3i4

∈ RI1×I2 on the

(i3, i4) entry of the main block matrix

Fig. 2.1. Fourth order tensor A ∈ RI1×I2×I3×I4 with I1 = I2 = I3 = I4 = 4 with index
partitioning: (1, I2, 1, I4) (left) and (1, 1, I3, I4) (right).

Fig. 2.2. Sixth order tensor A ∈ RI1×I2×I3×I4×I5×I6 with index partitioning (1, I2, 1, I4, 1, I6)

into tensor blocks A(2,4,6)
i1i3,i5

of size I1 × I3 × I5. The tensor blocks A(2,4,6)
i2i4i6

are arranged in a third

order tensor structure on the (i2, i4, i6) entry of the main block tensor.

where TN,M,N,M(R) = {A ∈ R
N×M×N×M : det(f(A)) �= 0}. In general, the transfor-

mation is defined as

(A)i1i2...inj1j2...jn
f−→ (A)[i1+

∑n
k=2(ik−1)

∏k−1
l=1 Il][j1+

∑n
k=2(jk−1)

∏k−1
l=1 Jl]

(2.5)

when A ∈ TI1,...,In,J1,...,Jn(R) and A ∈ MI1·I2...In−1·In,J1·J2...Jn−1·Jn(R).
Remark 2.9. These transformations are known as column (row) major format in

several computer languages which are typically used to enhance efficiency in accessing
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arrays. This mapping is also the matrix unfolding of fourth order tensors in signal
processing applications, e.g., see [18].

Next in section 3, we will show that TN,M,N,M with the Einstein product (2.2) is a
group and the transformation f is an isomorphism between TN,M,N,M andMN ·M,N ·M .
So even order tensor inverses exist through the mapping to the general linear group.
Consequently, we will show that tensors with different mode dimensions have no
inverses under the contraction product. These are tensor analogues to rectangular
matrices. In addition, we also discuss the notion of pseudoinverses in multilinear
systems for odd and even orders with distinct mode lengths.

2.2. Standard tensor decompositions. In 1927, Hitchcock [29, 30] introduced
the idea that a tensor is decomposable into a sum of a finite number of rank-one
tensors. Today, we refer to this decomposition as CP tensor decomposition (also
known as CANDECOMP [8] or PARAFAC [28]). CP is a linear combination of rank-
one tensors, i.e.,

T =

R∑
r=1

ar ◦ br ◦ cr ◦ dr,(2.6)

where T ∈ RI×J×K×L, ar ∈ RI , br ∈ RJ , cr ∈ RK , and dr ∈ RL. The column vectors
ar, br, cr, and dr form the so-called factor matrices A, B, C, and D, respectively.
The tensorial rank [30] is the minimum R ∈ N such that T can be expressed as a sum
of R rank-one tensors. Moreover, in 1977 Kruskal [39] proved that for third order
tensor,

2R+ 2 ≤ kA(A) + kB(B) + kC(C)

is the sufficient condition for uniqueness of T =
∑R

r=1 ar ◦ br ◦ cr up to permutation
and scalings where Kruskal’s rank kA is the maximum number r such that any set
of r columns of A is linearly independent. Kruskal’s uniqueness condition was then
generalized for n ≥ 3 by Sidiropoulous and Bro [47]:

2R+ (n− 1) ≤
n∑

j=1

kA(j) (A(j))(2.7)

for T =
∑R

r=1 a
(1)
r ◦ · · · ◦ a(n)r .

Another decomposition called higher order SVD (also known as Tucker and mul-
tilinear SVD) was introduced by Tucker [51, 52] in which a tensor is decomposable
into a core tensor multiplied (Definition 2.3) by a matrix along each mode, i.e.,

T = S •1 A •2 B •3 C •4 D,(2.8)

where T ,S ∈ RI×J×K×L are fourth order tensors with four orthogonal factors A ∈
R

I×I , B ∈ R
J×J , C ∈ R

K×K , and D ∈ R
L×L. The Tucker decomposition is not

unique, i.e., if there exist invertible matrices R ∈ RI×I , S ∈ RJ×J , T ∈ RK×K , and
U ∈ RL×L, then

T = S •1 A •2 B •3 C •4 D = S̄ •1 Ā •2 B̄ •3 C̄ •4 D̄,

where S̄ = •1R−1 •2 S−1 •3 T−1 •4U−1, Ā = RA, B̄ = SB, C̄ = TC, and D̄ = UD.
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The CP decomposition is a special case of the Tucker decomposition framework,
i.e.,

T =

R∑
r=1

ar ◦ br ◦ cr ◦ dr = SCP •1 A •2 B •3 C •4 D,(2.9)

where its core tensor SCP ∈ RI×J×K×L is diagonal, that is, the nonzero entries are
located at (S)iiii for i = 1, . . . , R with R = min{I, J,K, L}. Next, we discuss the
connections of CP and Tucker to the tensor decompositions built from the isomorphic
map.

3. Tensor group, multilinear systems and decompositions. For the sake
of clarity, the main discussion in this section is limited to fourth order tensors, al-
though the definitions and theorems presented are easily extended to the general
case of even ordered tensors. Here we define a group structure on a set of fourth
order tensor through a push-forward map on the general linear group. Also several
consequential results from the group structure will be discussed.

Lemma 3.1. Let f be the map defined in (2.4). Then the following properties
hold:

1. The map f is a bijection. Moreover, there exists a bijective inverse map
f−1 : MI1I2,I1I2(R) → TI1,I2,I1,I2(R).

2. The map satisfies f(A∗2 B) = f(A) · f(B), where · refers to the usual matrix
multiplication.

Proof. Here we denote [n] = {1, 2, . . . , n} and its cardinality as |n|.
(1) According to the definition of f , we can define a map h : [I1]× [I2] → [I1I2]

by h(i1, i2) = i1 + (i2 − 1)I1. Clearly, the map h is a bijection since f is a bijection.
(2) Since f is a bijection, for some 1 ≤ i, j ≤ I1I2, there exist some unique

indices i1, i2, j1, j2 for 1 ≤ i1, j1 ≤ I1, 1 ≤ i2, j2 ≤ I2 such that (i2 − 1)I1 + i1 = i and
(j2 − 1)I1 + j1 = j. So,

[f(A ∗2 B)]ij = (A ∗2 B)i1i2j1j2 =
∑
u,v

ai1i2uvbuvj1j2 ,

[f(A) · f(B)]ij =
|I1I2|∑
r=1

[f(A)]ir[f(B)]rj.

For every 1 ≤ r ≤ I1I2, there exist some unique u, v such that (u − 1)I1 + v = r. So,

∑
u,v

ai1i2uvbuvj1j2 =

|I1I2|∑
r=1

[f(A)]ir [f(B)]rj.

It follows from the properties of f that the Einstein product (2.2) can be defined
through the transformation:

A ∗2 B = f−1[f(A ∗2 B)] = f−1[f(A) · f(B)].(3.1)

Consequently, the inverse map f−1 satisfies

f−1(A ·B) = f−1(A) ∗2 f−1(B).(3.2)

Theorem 3.2. Suppose (M, ·) is a group. Let f : T → M be any bijection. Then
we can define a group structure on T by defining

A ∗2 B = f−1[f(A) · f(B)]
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for all A,B ∈ T. In other words, the binary operation ∗2 satisfies the group axioms.
Moreover, the mapping f is an isomorphism.

The proof is straightforward; see the details in the appendix. As a matter of fact,
the group structure can be formulated as a ring isomorphism.

Corollary 3.3. Let Im = Jm for m = 1, . . . , N . Then the ordered pair
(TI1,...,IN ,J1,...,JN (R), ∗N ) is a group where the operation ∗N is the generalized Einstein
product in (2.1).

Proof. The generalization of the transformation f (2.5) on the set TI1,...,IN ,J1,...,JN

(R) with the binary operation ∗N easily provides the extension for this case.
Theorem 3.4. The ordered pair (TI1,I2...,I2N−1(R), ∗N ) is not a group under the

operation ∗N .
Proof. TakeN = 2. Then T ∗2S /∈ TI1,I2...,I2N−1(R), where T ,S ∈ TI1,I2...,I2N−1(R).

It follows that TI1,I2...,I2N−1(R) is not closed under ∗2. Thus the ordered pair
(TI1,I2...,I2N−1(R), ∗2) is not a group.

Theorem 3.4 implies that odd order tensors have no inverses with respect to the
operation ∗N , although such binary operation may exist in which the set of odd or-
der tensors exhibits a group structure. Lemma 3.1 and Theorem 3.2 show that the
transformation f (2.4) is an isomorphism between groups T and M. From Corol-
lary 3.3, it follows that these structural properties are preserved for any ordered pair
(TI1,...,IN ,J1,...,JN (R), ∗N ) for any N .

3.1. Multilinear systems. A linear system is conveniently expressed as Ax =
b, where A ∈ RM×N ,x ∈ RN , and b ∈ RM . Recall that A ∈ RM×N defines a linear
transformation L : RN → RM such that L(x) = Ax. A bilinear system is defined
through B : RM × RN → R with B(x,y) = yTBx = B •1 x •2 y, where B ∈ RM×N .
The bilinear map has the linearity properties

B(cx1 + dx2,y) = cB(x1,y) + dB(x2,y)

and

B(x, c̄y1 + d̄y2) = c̄B(x,y1) + d̄B(x,y2)

for some scalars c, c̄, d, d̄ and vectors x,x1,x2 ∈ RN ,y,y1,y2 ∈ RM . In general, we
define multilinear transformations for the following systems:

1. B •1 x •2 y = b, where B ∈ RI×J×K , x ∈ RI , y ∈ RJ , and b ∈ R

2. M∗2X ∗2 Y = b, where M ∈ R
I×J×K×L, X ∈ R

K×L, Y ∈ R
I×J , and b ∈ R

3. M ∗2 X ∗3 Y = B, where M ∈ RI×J×K×L×M×N , X ∈ RM×N×O, Y ∈
RK×L×O, and B ∈ RI×J .
See [25] for more discussions on multilinear transformation.

Multilinear systems model many phenomena in engineering and sciences. For ex-
ample, in continuum physics and engineering, isotropic and anisotropic elastic models
are multilinear systems [41] like

C ∗2 E = T,

where T and E are second order tensors modeling stress and strain, respectively, and
the fourth order tensor C refers to the elasticity tensor. Multilinear systems are also
prevalent in solving PDEs numerically. In section 4, we derive and solve multilinear
systems in discretized Poisson problems and eigenvalue problems in quantum models
by using tensor-based iterative methods. There are modern applications in emerging
fields like system biology, e.g., sparse multilinear systems model interactions among
genes and proteins in living cells [43].
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(a) Higher Order Biconjugate Gradient

(b) Higher Order Jacobi

Fig. 3.1. Pseudocodes for iterative solvers.

3.1.1. Solving multilinear systems. Our first approach for solving multilinear
systems numerically is to use the Gauss–Newton algorithm for approximating A−1

through the function

g(X ) = A ∗2 X − I = 0,

where I is the identity fourth order tensor defined in (3.10) and tensor X is unknown.
This method is highly inefficient because calculating the inversion of a Jacobian is
very expensive. To save memory and operational costs, we consider iterative methods
for solving multilinear systems. The pseudocodes in Figure 3.1 describe the bicon-
jugate gradient (BiCG) and the higher order Jacobi methods for solving multilinear
system A ∗2 X = B. Note that the algorithms solely use tensor computations, i.e.,
no matricizations are involved. Recall that the BiCG method requires symmetric and
positive definite matrix so that the multilinear system is premultiplied by its transpose
AT which is later defined in Definition 3.5. The BiCG method solves the multilinear
system by searching along Xk = Xk−1 + αk−1Pk−1 with a line parameter αk−1 and a
search direction Pk−1 while minimizing the objective function φ(Xk+αk−1Pk), where

φ(X ) = 1
2X T ∗2A∗2X −X T ∗2B. It follows that φ(X̂ ) attains a minimum iteratively

and precisely at an optimizer X̂ , where A∗2 X̂ = B. The higher order Jacobi method
is also implemented for comparison. The Jacobi method for tensors is based on split-
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ting the tensor A into its diagonal entries from the lower and upper diagonal entries
of the tensor.

We approximate the solution to the multilinear systems considered in section 4
using these two multilinear iterative methods; see Figure 4.2 for the pseudocodes of
the algorithms. We also discuss the advantages of these methods.

3.1.2. Overdetermined multilinear systems. According to Theorem 3.4,
odd order tensors have no inverses with respect to the operation ∗N . Nonrectan-
gular tensors also do not have inverses. Multilinear systems with tensors of odd order
or that are nonrectangular (distinct mode sizes) are referred to as overdetermined
multilinear systems, for example,

1. A •3 x = B, where A ∈ RI×J×K , x ∈ RK , and B ∈ RI×J ,
2. A ∗ X = B, where A ∈ RI×J×S×T ,X ∈ RS×T×K×L, and B ∈ RI×J×K×L.

A−1 does not exist for either case. We extend the concepts of pseudoinversion for odd
order tensors and nonrectangular tensors. The optimization formulations,

min
x

‖A •3 x−B‖F and min
X

‖A ∗ X − B‖F ,(3.3)

are considered to find multilinear least-squares solutions of the systems. Note that the
Frobenius norm, ‖ · ‖F , is defined as ‖A‖2F =

∑
i1i2...iN

|ai1i2...,iN |2 for AI1×I2×...IN .
The linear least-squares (LLS) method is a well-known method for overdetermined

linear systems. Often the number of observations b exceed the number of unknown
parameters x in LLS, forming an overdetermined system, e.g.,

Ax = b,(3.4)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm with m > n. Through minimization of the
residual,

min
x

‖r‖�2,

where r = b − Ax, the overdetermined system (3.4) is solved. This is called the
LLS method. The minimizer, the vector x∗, is called the least-squares solution of the
linear system (3.4).

We now describe tensor transposition to facilitate the discussions on the normal
equations for multilinear systems.

Definition 3.5 (transpose). A transpose of S ∈ RI×J×I×J is a tensor T
which has entries tijkl = sklij . We denote the transpose of S as T = ST . If
S ∈ R

I1×I2···×IN×J1×···×JN , then (T )i1,i2,...,in,j1,j2,...,jn = (ST )j1,j2,...,jn,i1,i2,...,in is
the transpose of S.

More generally, tensor transposition can be described through the permutation
of indices. Let permutation σ be defined as σ(i1i2 . . . in) = im(1)im(2) . . . im(n), where
m(j) ∈ {1, 2, . . . , n}. Then the transpose of A ∈ RI1×I2···×IN with respect to σ is

AT
σ = Aim(1)im(2)...im(n)

.

In Definition 3.5, ST
σ = Sklij , where σ(ijkl) = klij. A transpose of a third order

tensor A ∈ R
I×J×K is AT

σ = Akij with σ(ijk) = kij.
Recall that (AT )T = A in the matrix case. In the following lemmas, we describe

some similar properties for higher order tensors.
Lemma 3.6. Let A ∈ RI×J×K and ρ = (ρ1, ρ2, ρ3) be a cyclic permutation of

length three on the index set {ijk}. Then ((AT
ρ1
)Tρ2

)Tρ3
= A.
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Proof. For the index set {ijk}, there are two cyclic permutations: ρ1(ijk) =
jki, ρ2(jki) = kij, ρ3(kij) = ijk and ρ̄1(ikj) = kji, ρ̄2(kji) = jik, ρ̄3(jik) =
ikj. It follows that ((AT

ρ1
)Tρ2

)Tρ3
= (Akij)

T
ρ3

= Aijk since AT
ρ1

= Ajki and (AT
ρ1
)Tρ2

= (Ajki)
T
ρ2
.

Although there are six permutations on the index set {ijk}, there are only two
set of cyclic permutations. For the fourth order tensor, there are twenty-four permu-
tations on the index set {ijst} and six cyclic permutations of length four.

Lemma 3.7 (property of fourth order tensor transpose). Let A ∈ RI×J×S×T and
ρ be a cyclic permutation ρ = (ρ1, ρ2, ρ3, ρ4) of length four on the index set {ijst}.
Then (((AT

ρ1
)Tρ2

)Tρ3
)Tρ4

= A. For Nth order tensors, the number of tensor transposes
is N ! with (N − 1)! cyclic permutations on the index set {i1i2 . . . iN}.

Henceforth, we drop the subscript σ in the transposes.
Definition 3.8 (critical point). Let φ : Rn → R be a continuously differentiable

function. A critical point of φ is a point x̄ ∈ R
n such that

∇φ(x̄) = 0.

Consider the multilinear system

A •3 x = B,(3.5)

where A ∈ RI×J×K , x ∈ RK , and B ∈ RI×J and define

φ1(x) = ‖A •3 x−B‖2F .(3.6)

Lemma 3.9. Any minimizer x̄ ∈ RK of φ1 satisfies the following system:

AT ∗2 A •3 x = AT ∗2 B,(3.7)

where AT ∈ RK×I×J with entries AT
kij = (A)ijk .

Proof. We expand the objective function,

φ1(x) = 〈A •3 x−B,A •3 x−B〉 = (A •3 x)T (A •3 x)− 2BT (A •3 x) +BTB

and calculate ∂φ1

∂x (x). It follows that

∂φ1
∂x

(x) = 2AT ∗2 A •3 x− 2AT ∗2 B

since

∂

∂x

[
(A •3 x)T (A •3 x)

]
=

∂

∂x

⎡⎣∑
ij

(∑
kl

xkAkijAijlxl

)⎤⎦
=

∂

∂x

⎡⎣∑
kl

⎛⎝∑
ij

xkAkijAijlxl

⎞⎠⎤⎦
=

∂

∂x

[∑
kl

xk(AT ∗ A)klxl

]
= 2(AT ∗2 A)x

= 2AT ∗2 A •3 x
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and

2
∂

∂x

[
(A •3 x)TB

]
= 2

∂

∂x

⎡⎣∑
ij

(∑
k

xkAkijBij

)⎤⎦ = 2
∂

∂x

⎡⎣∑
k

⎛⎝∑
ij

xkAkijBij

⎞⎠⎤⎦
= 2

∂

∂x

[∑
k

xk(AT ∗2 B)k

]
= 2AT ∗2 B.

Clearly, the minimizer x̄ of φ1 satisfies

AT ∗2 A •3 x = AT ∗2 B.

Furthermore, the critical point is x̄ = (AT ∗2A)−1∗2AT ∗2B provided that (AT ∗2A)−1

exists.
For the problem

A ∗2 X = B,

where A ∈ R
I×J×S×T ,X ∈ R

S×T×K×L, and B ∈ R
I×J×K×L and the objective

function

φ2(X ) = ‖A ∗2 X − B‖2F ,(3.8)

we have the following lemma.
Lemma 3.10. Any minimizer X̄ ∈ RS×T×K×L of φ2 satisfies the system

AT ∗2 A ∗2 X = AT ∗2 B,(3.9)

where AT ∈ RS×T×I×J denotes the transpose of A ∈ RI×J×S×T . Moreover, the
critical point of φ2 is X̄ = (AT ∗2A)−1∗2AT ∗2B provided that (AT ∗2A) is invertible.

Remark 3.11. We omit the proof for Lemma 3.10 since it is similar to that of
Lemma 3.9. The critical points, x̄ = (AT ∗2A)−1 ∗2AT ∗2B and X̄ = (AT ∗2A)−1 ∗2
AT ∗2 B, are unique minimizers for (3.6) and (3.8), respectively, since φ1 and φ2
are quadratic functions. Equations (3.7) and (3.9) are called the high order normal
equations. See Tables 3.1–3.2 for specific tensor transposes in multilinear systems.

Table 3.1

Third order tensor transposes in multilinear systems.

A x B AT

RI×J×K RK RI×J RK×I×J

RJ×K×I RI RJ×K RI×J×K

RK×I×J RJ RK×I RJ×K×I

RI×K×J RJ RK×I RJ×I×K

RK×J×I RI RK×J RI×K×J

RJ×I×K RK RJ×I RK×J×I
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Table 3.2

Fourth order tensor transposes in multilinear systems.

A X B AT

RI×J×S×T RS×T×K×L RS×T×K×L RS×T×I×J

RJ×S×T×I RT×I×K×L RJ×S×K×L RT×I×J×S

RS×T×I×J RI×J×K×L RS×T×K×L RI×J×S×T

RT×I×J×S RJ×S×K×L RT×I×K×L RJ×S×T×I

3.2. Decompositions via isomorphic group structures. Theorem 3.2 im-
plies that (T, ∗2) is structurally similar to (M, ·). Thus we endow (T, ∗2) with the group
structure such that (T, ∗2) and (M, ·) are isomorphic as groups. Here we discuss some
of the definitions, theorems, and decompositions preserved by the transformation.

Definition 3.12 (diagonal tensor). A tensor D ∈ RI×J×I×J is called diagonal
if dijkl = 0 when i �= k and j �= l.

Definition 3.13 (identity tensor). The identity tensor I is a diagonal tensor
with entries

Ii1i2j1j2 = δi1j1δi2j2 ,

where

δlk =

{
1, l = k,

0, l �= k.

It generalizes to

(I)i1i2...iN j1j2...jN =

N∏
k=1

δikjk(3.10)

for the 2N th order identity tensor.
Remark 3.14. The diagonal core tensor D ∈ RI1×···×IN of CP (2.6) has nonzero

entries di1,i2,...,in when i1 = · · · = iN .
Definition 3.15 (orthogonal tensor). A tensor U ∈ RI×J×I×J is orthogonal if

UT ∗2 U = I, where I is the identity tensor under the binary operation ∗2.
Definition 3.16 (symmetric tensor). A tensor S ∈ RI1×I2···×IN×J1×···×JN is

symmetric if S = ST , that is, si1,i2,...,in,j1,j2,...,jn = sj1,j2,...,jn,i1,i2,...,in .

Theorem 3.17 (SVD). Let A ∈ RI×J×I×J with R = rank(f(A)), where f is the
transformation in (2.4). The SVD for tensor A has the form

A = U ∗2 D ∗2 VT ,(3.11)

where U ∈ RI×J×I×J and V ∈ RI×J×I×J are orthogonal tensors and D ∈ RI×J×I×J

is a diagonal tensor with entries σijij called the singular values. Moreover, (3.11) can
be written as

A =
∑
kl

∑
ij,̂iĵ

σklkl(U
(3,4)
kl )ij ◦ (V(3,4)

kl )̂iĵ ,(3.12)

a sum of fourth order tensors where the left and right singular matrices, U
(3,4)
ij and

V
(3,4)
ij , are matrix blocks of U and V, respectively.
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The symbol ◦ denotes the outer product where Aijkl = Bij ◦Ckl = BijCkl.
Proof. Let A = f(A). From the isomorphic property (3.2) and Theorem 3.2, we

have

A = U ·D ·VT f−1

−−→ A = U ∗2 D ∗2 VT ,

where U and V are orthogonal matrices and D is a diagonal matrix. In addition,

U ·UT = I and V ·VT = I
f−1

−−→ UT ∗2 U = I and VT ∗2 V = I.
Theorem 3.18 (eigenvalue decomposition (EVD) for symmetric tensor). Let

Ā ∈ R
I×J×I×J and R = rank(f(A)), where f is the transformation in (2.4). Ā is a

real symmetric tensor if and only if there is a real orthogonal tensor P ∈ RI×J×I×J

and a real diagonal tensor D̄ ∈ RI×J×I×J such that

Ā = P ∗2 D̄ ∗2 PT ,(3.13)

where P ∈ R
I×J×I×J is an orthogonal tensor and D̄ ∈ R

I×J×I×J is a diagonal tensor
with entries σ̄klkl called the eigenvalues. Moreover, (3.13) can be written as

Ā =
∑
kl

∑
ijîĵ

σ̄klkl(P
(3,4)
kl )ij ◦ (P(3,4)

kl )̂iĵ ,(3.14)

a sum of fourth order tensors where the eigenmatrices P
(3,4)
kl ∈ RI×J are the matrix

blocks of P.
Proof. Through the mapping provided through the isomorphic property (3.2) and

Theorem 3.2, there exist an orthogonal tensor P and a diagonal tensor D̄ such that

Ā = P ∗2 D̄ ∗2 PT . Moreover, the fourth order tensor P̂ijîĵ = (P
(3,4)
kl )ij ◦ (P

(3,4)
kl )̂iĵ

is symmetric since P̂ijîĵ =
∑

ij,̂iĵ(P
(3,4)
kl )ij ◦ (P(3,4)

kl )̂iĵ =
∑

ij,̂iĵ PijklPT
îĵkl

=
∑

s Prs ·
PT

r̂s =
∑

s Pr̂s ·PT
rs =

∑
ij,̂iĵ PîĵklPT

ijkl = (P
(3,4)
kl )̂iĵ ◦ (P

(3,4)
kl )ij = P̂îĵij .

Remark 3.19. If the eigenmatrix (P
(3,4)
kl ) is symmetric, that is, (P

(3,4)
kl )ij =

(P
(3,4)
kl )ji, then the entries of Ā have the following symmetry: ājilk = āijkl. If

ājilk = āijkl and āijkl = āklij , then (3.14) is exactly the tensor eigendecomposition
found in the paper of De Lathauwer, Castaing, and Cardoso [18] when I = J . The
fourth order tensor in [18] is a quadricovariance tensor in the blind identification of
underdetermined mixtures problems in signal processing. Also, see Figure 3.2 for the
comparison of the core tensors from CP decomposition (2.6) and tensor SVD (3.18).

3.3. Connections to standard tensor decompositions. Here we relate ten-
sor SVD (3.11) to both CP (2.6) and Tucker (2.8) decompositions.

Lemma 3.20. Let T ∈ RI×J×I×J and R = rank(f(T )), where f is the transfor-
mation in (2.4). The tensor SVD (3.11) in Theorem 3.17 is equivalent to CP (2.6)
if there exist A ∈ R

I×I×J ,B ∈ R
J×I×J , C ∈ R

I×I×J , and D ∈ R
J×I×J such that

aiklbjkl = uijkl and cîkldĵkl = vîĵkl.

Proof. Define r = k + (l − 1)I. Then

Tijîĵ =
∑
kl

σklkl(U
(3,4)
kl )ij ◦ (V(3,4)

kl )̂iĵ =

R∑
r=1

σ̄rr(U
(3,4)
r )ij ◦ (V(3,4)

r )̂iĵ ,

where σklkl = σ̂rr. Since uijkl = (U
(3,4)
kl )ij = (U

(3,4)
r )ij = airbjr and vîĵkl =
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(a) Matrix block S
(3,4)
i3i4

of fourth or-

der core tensor from the CP decom-
position

(b) Matrix block S
(3,4)
i3i4

of fourth or-

der core tensor from tensor SVD

(c) Matrix block S
(2,4)
i2i4

of fourth or-

der core tensor from tensor SVD

Fig. 3.2. Matrix blocks of the core tensors A ∈ R3×3×3×3 with nonzero diagonal entries (purple
dots).

(V
(3,4)
kl )̂iĵ = (V

(3,4)
r )̂iĵ = cîrdĵr, it follows that

Tijîĵ =
R∑

r=1

σ̂rr(U
(3,4)
r )ij ◦ (V(3,4)

r )̂iĵ

=
R∑

r=1

σ̂rr(U
(3,4)
r )ij ◦ (V(3,4)

r )̂iĵ =
R∑

r=1

σ̂rrairbjrcîrdĵr.

Then,

T =

R∑
r=1

σ̄rrar ◦ br ◦ cr ◦ dr.(3.15)

Moreover, the factor matrices A ∈ RI×IJ ,B ∈ RJ×IJ ,C ∈ RI×IJ , and D ∈ RJ×IJ

are built from concatenating the vectors ar, br, cr, and dr, respectively.
Remark 3.21. To satisfy existence and uniqueness of the CP decomposition, the

inequality (2.7) must hold. If R = IJ = rank(f(T )), then (3.15) does not satisfy
(2.7). However, if f(T ) is sufficiently low rank, that is, R = rank(f(T )) < IJ for
some I and J , then (2.7) holds.
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Lemma 3.22. Let T ∈ RI×J×I×J and R = rank(f(T )), where f is the transfor-
mation in (2.4). The tensor SVD (3.11) in Theorem 3.17 is equivalent to multilinear
SVD (2.8) if there exist A ∈ RI×I ,B ∈ RJ×J , C ∈ RI×I , and D ∈ RJ×J such that
aikbjl = uijkl and cikdjl = vijkl.

Proof. From (3.12), we have Tijîĵ =
∑

kl σklkl(U
(3,4)
kl )ij ◦ (V(3,4)

kl )̂iĵ which implies
Tijîĵ =

∑
kl σklklaikbjlcîkdĵl.

Remark 3.23. Typically, the core tensor of a multilinear SVD (2.8) is dense.
However, the core tensor resulting from Lemma 3.22 is not dense (possibly sparse),
i.e., there are IJ nonzeros elements from the total I2J2 entries in the fourth order
core tensor of size I×J×I×J . Similarly, the existence of the decomposition impinges
upon the existence of the factors A ∈ RI×I ,B ∈ RJ×J , C ∈ RI×I , and D ∈ RJ×J

such that U = A ◦B and V = C ◦D.
Corollary 3.24. Let T ∈ RI×J×I×J be symmetric and R = rank(f(T )), where

f is the transformation in (2.4). The tensor EVD (3.14) in Theorem 3.18 is equivalent
to CP (2.6) if there exist A ∈ RI×I×J ,B ∈ RJ×I×J such that aiklbjkl = pijkl.

Corollary 3.25. Let T ∈ R
I×J×I×J with symmetries tijkl = tklij and tjikl =

tijkl with R = rank(f(T )). The tensor EVD (3.14) in Theorem 3.18 is equivalent to
CP (2.6) if there exist A ∈ RI×I×J ,B ∈ RJ×I×J such that aiklbjkl = pijkl.

Remark 3.26. From Corollary 3.24, we have Tijîĵ =
∑R

r=1 σ̄rr(P
(3,4)
r )ij ◦(P(3,4)

r )̂iĵ
=
∑R

r=1 σ̄rrairbjraîrbĵr with identical factors, A = C and B = D. As in Remark

3.17, the existence of the factors A and B requires the matrix blocks P
(3,4)
kl to be

rank-one matrices. In Corollary 3.25, the partial symmetry tjikl = tijkl implies that

P
(3,4)
kl is symmetric (as well as rank-one). Thus, (P

(3,4)
kl )ij = aiklajkl =⇒ T =∑R

r=1 σ̄rrairajraîraĵr. This decomposition is known as symmetric CP decomposi-
tion [11].

Corollary 3.27. Let T ∈ RI×J×I×J be symmetric and R = rank(f(T )), where
f is the transformation in (2.4). The tensor EVD (3.14) in Theorem 3.18 is equivalent
to multilinear SVD (2.8) if there exist A ∈ RI×I and B ∈ RJ×J such that aikbjl =
pijkl.

Remark 3.28. The multilinear SVD from Corollary 3.27 is Tijîĵ =
∑

kl σklkl
(P

(3,4)
kl )ij ◦ (P(3,4)

kl )̂iĵ =
∑

kl σklklaikbjlaîkbĵl following Lemma 3.22.

4. Numerical examples involving multilinear systems.

4.1. Multilinear systems in Poisson problems. Consider the two-dimensio-
nal (2D) Poisson problem

(4.1)
−∇2v = f in Ω,

u = 0 on Γ,

where Ω = {(x, y) : 0 < x, y < 1} with boundary Γ, f is a given function, and

∇2v =
∂2v

∂x2
+
∂2v

∂y2
.

We compute an approximation of the unknown function v(x, y) in (4.1). Several prob-
lems in physics and mechanics are modeled by (4.1), where the solution v represents,
for example, temperature, electromagnetic potential, or displacement of an elastic
membrane fixed at the boundary.

The mesh points are obtained by discretizing the unit square domain with step
sizes, Δx in the x-direction and Δy in the y-direction. From the standard central
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difference approximations, the difference formula,

(4.2)
vl−1,m − 2vl,m + vl+1,m

Δx2
+
vl,m−1 − 2vl,m + vl,m+1

Δy2
= f(xl, ym),

is obtained. If we assume Δx = Δy, then the difference equation (4.2) is equivalent
to

ANV +VAN = (Δx)2F,(4.3)

where

AN =

⎡⎢⎢⎢⎢⎣
2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2

⎤⎥⎥⎥⎥⎦ ,(4.4)

V =

⎡⎢⎢⎢⎢⎣
v11 v12 . . . v1N

v21 v22
. . .

...
...

. . .
. . . vN−1N

vN1 . . . vNN−1 vNN

⎤⎥⎥⎥⎥⎦ , and(4.5)

F =

⎡⎢⎢⎢⎢⎣
f11 f12 . . . f1N

f21 f22
. . .

...
...

. . .
. . . fN−1N

fN1 . . . fNN−1 fNN

⎤⎥⎥⎥⎥⎦ .
The entries of V and F are the values on the mesh on the unit square where, (xi, yj) =
(iΔx, jΔx) ∈ [0, 1] × [0, 1]. Here the Dirichlet boundary conditions are imposed so
the values of V are zero at the boundary of the unit square, i.e., vi0 = viN+1 = v0,j =
vN+1j = 0 for 0 < i, j < N + 1.

Typically, V and F are vectorized which gives the following linear system:

AN×N · v =

⎡⎢⎢⎢⎢⎣
AN + 2IN −IN 0

−IN AN + 2IN
. . .

. . .
. . . −IN

0 −IN AN + 2IN

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

v11
v12
...

vNN

⎤⎥⎥⎥⎦(4.6)

= (Δx)2

⎡⎢⎢⎢⎣
f11
f12
...

fNN

⎤⎥⎥⎥⎦ .
Poisson’s equation in two dimensions is expressed as a sum of Kronecker products
[19], i.e.,

AN×N = IN ⊗AN +AN ⊗ IN.(4.7)

Moreover, the discretized problem in three dimensions is

(AN ⊗ IN ⊗ IN + IN ⊗AN ⊗ IN + IN ⊗ IN ⊗AN) · vec(V) = (Δx)3vec(F).(4.8)
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(a) 5-point Stencil (b) 7-point Stencil

Fig. 4.1. Stencils for higher order tensors. The main node of the five-point and seven-point
stencils sits on the diagonal entries of fourth order and sixth order Laplacian tensors, respectively.

The higher order tensor representation of the 2D discretized Poisson problem
(4.1) is

AN ∗2 V = F,(4.9)

where AN ∈ R
N×N×N×N and matrices V ∈ R

N×N and F ∈ R
N×N are the discretized

functions v and f on a unit square mesh defined in (4.5). The nonzeros entries of the

matrix block AN
(2,4)
k=α,l=β ∈ RN×N are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(AN
(2,4)
α,β )α,β = 4

(Δx)2 ,

(AN
(2,4)
α,β )α−1β = −1

(Δx)2 ,

(AN
(2,4)
α,β )α+1,β = −1

(Δx)2 ,

(AN
(2,4)
α,β )α,β−1 = −1

(Δx)2 ,

(AN
(2,4)
α,β )α,β+1 = −1

(Δx)2

(4.10)

for α, β = 2, . . . , N − 1. These entries form a five-point stencil; see Figure 4.1. The
discretized three-dimensional Poisson equation is

ĀN ∗3 V = F ,(4.11)

where ĀN ∈ RN×N×N×N×N×N and V ,F ∈ RN×N×N . Both V and F are discretized

on the unit cube. The entries on the tensor block (ĀN )
(2,4,6)
l,m,n ∈ RN×N×N of ĀN

would follow a seven-point stencil, i.e.,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((ĀN )
(2,4,6)
α,β,γ )α,β,γ = 6

(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α−1,β,γ = −1

(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α+1,β,γ = −1

(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α,β−1,γ = −1

(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α,β+1,γ = −1

(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α,β,γ−1 =

−1
(Δx)3 ,

((ĀN )
(2,4,6)
α,β,γ )α,β,γ+1 =

−1
(Δx)3

(4.12)
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(a) Approximated Solution (b) Error vs. Iteration: Bicongugate Gradient
(blue -.-) and Jacobi (red –)

Fig. 4.2. A solution to the Poisson equation in two dimensions with Dirichlet boundary condi-
tions.

for α, β, γ = 2, . . . , N − 1 since vijk satisfies

6vijk − vi−1jk − vi+1jk − vij−1k − vij+1k − vijk−1 − vijk+1 = (Δx)3fijk.

The tensor representation of Poisson problems consists of the multilinear systems
(4.9) and (4.11). The iterative methods used to solve (4.9) and (4.11) are described
in Figure 3.1; see Figure 4.2 for the numerical results. The convergence of Jacobi is
slow since the spectral radius with respect to the Poisson’s equation is near one [19].
Also, the approximation in Figure 4.2 is first order accurate.

There are some advantages in computing in a tensor structured domain. First,
without vectorization, the solution and the computational grid have a one-to-one
correspondence so that sophisticated boundary conditions are easily integrated in
the multilinear system. Second, the Laplacian tensor preserves the low bandwidth
since the main nodal points sit on the tensor diagonal entries and the rest of the
stencil points lie on the off-diagonal positions. Although the Laplacian matrices in
(4.4) and (4.6) are banded, the Laplacian matrices in higher dimensions have larger
bandwidths. The Laplacian tensor has a lower bandwidth than the Laplacian matrix.
In fact, reducing the bandwidth of these sparse matrices directly and substantially
improves the number of operations and storage locations; see the reordering methods
of Cuthill and McKee [13] and George and Liu [24].

4.2. Multilinear systems in eigenvalue problems: The Anderson model
and localization properties. The Anderson model is the most studied model
for understanding spectral and transport properties of an electron in a disordered
medium. In 1958, Anderson [1] described the behavior of electrons in a crystal with
impurities, that is, when electrons can deviate from their sites by hopping from atom
to atom and are constrained to an external random potential modeling the random en-
vironment. He argued heuristically that electrons in such systems result in a loss of the
conductivity properties of the crystal, transforming it from conductors to insulators.

The Anderson model is a discrete random Schrödinger operator defined on a
lattice Z

d. More specifically, the Anderson model is a random Hamiltonian Hω on
�2(Zd), d ≥ 1, defined by

Hω = −Δ+ λVω ,(4.13)

where Δ(x, y) = 1 if |x − y| = 1 and zero otherwise (the discrete Laplacian) with
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spectrum [−2d, 2d] and the random potential Vω = {Vω(x), x ∈ Zd} consisting of
i.i.d. random variables on [−1, 1] which we assume to have bounded and compactly
supported density ρ. The disorder parameter is a nonnegative λ > 0. The spectrum
of Hω can be explicitly described by

σ(Hω) = σ(−Δ) + λ supp(ρ) = [−2d, 2d] + λ supp(ρ).

Remark 4.1. The random potential Vω is a multiplication operator on �2(Z
d)

with matrix elements Vω(x) = vx(ω), where (vx(ω))x∈Zd is a collection of i.i.d. random
variables with distribution ρ indexed by Zd.

The random Schrödinger operator models disordered solids. The atoms or nuclei
of ideal crystals are distributed in a lattice in a regular way. Since most solids are not
ideal crystals, the positions of the atoms may deviate away from the lattice positions.
This phenomena can be attributed to imperfections in the crystallization, glassy ma-
terials, or a mixture of alloys or doped semiconductors. To model disorder, a random
potential Vω perturbs the pure laplacian Hamiltonian (−Δ) of a perfect metal. The
time evolution of a quantum particle ψ is determined by the Hamiltonian Hω, i.e.,

ψ(t) = eitHωψ0.

Thus the spectral properties of Hω are studied to extract valuable information. In
this case, the localization properties of the Anderson model are of interest. For in-
stance, the localization properties are characterized by the spectral properties of the
Hamiltonian Hω; see the references [31, 38, 49]. The HamiltonianHω exhibits spectral
localization if Hω has almost surely pure point spectrum with exponentially decaying
eigenfunctions.

Remark 4.2. Recall that from [46] for any self-adjoint operator H , the spectral
decomposition is

σ(H) = σp(H) ∪ σac(H) ∪ σsc(H)

corresponding to the invariant subspaces Hp of point spectrum, to Hac of absolutely
continuous spectrum, and to Hsc of singular continuous spectrum.

The localization properties of the Anderson model can be described by spectral
or dynamical properties. Let I ⊂ R.

Definition 4.3. We say that Hω exhibits spectral localization in I if Hω almost
surely has pure point spectrum in I (with probability one), that is,

σ(Hω) ∩ I ⊂ σp(Hω) with probability one.

Moreover, the random Schrödinger operator Hω has exponential spectral localization
in I, and the eigenfunctions corresponding to eigenvalues in I decay exponentially.

Thus if for almost all ω, the random Hamiltonian Hω has a complete set of
eigenvectors (ψω,n)n∈N in the energy interval I satisfying

|ψω,n(x)| ≤ Cω,ne
−μ|x−xω,n|

with localization center xω,n for μ > 0 and Cω,n < ∞, then the exponential spectral
localization hold on I.

Remark 4.4. Let V : �2(Z) → �2(Z) be a multiplication operator and suppose
v : Z → R is a function. Then, V f(x) = v(x)f(x), and thus σ(V ) = range(v).
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(a) λ = 1, N = 50 (b) λ = .1, N = 50

Fig. 4.3. One-dimensional eigenvectors of the discrete Schrödinger operator (-x-) and the
Anderson model (black, -o-) for various modes.

Suppose f(x) is the Dirac delta function, i.e.,

f(x) = δ(x− x0) =

{
1 x = x0,

0 x �= x0.

Then V f(x) = v(x0)f(x) which implies that σ(V ) = σp(V ), i.e., V has a pure point
spectrum.

Definition 4.5. A random Schrödinger operator has strong dynamical localiza-
tion in an interval I if for all q > 0 and all φ ∈ �2(Z

d) with compact support,

E

[
sup
t

‖ |X |qe−itHωχI(Hω)ψ‖2 <∞
]
,

where χI is an indicator function and X is a multiplicative operator from �2(Z
d) →

�2(Z
d) defined as |X |ψ = |x|ψ(x).
Dynamical localization in this form implies that all moments of the position op-

erator are bounded in time.
The Anderson model is a well-studied subject. So there are numerous results in

both physics and mathematics literature; see [31] and the references therein. There
are several theoretical results on the existence of localization for d = 1 for all energies
and arbitrary disorder λ; see Kunz and Souillard [40] and Carmona, Klein, and Mar-
tinelli [7]. For any d, it is known that the localized states are present for all energies
for sufficiently large disorder (λ � 1). For d = 2 and with a Gaussian distribution,
it is conjectured that there is a localization for any amount of disorder λ as in the
case for d = 1. There are many more open problems for higher dimension like the
extended state conjecture [23].

In material science, many techniques like X-ray beams and X-ray micro diffraction
(e.g., see [32, 33]) have been used to study elemental composition to understand how
the atoms are arranged and to identify some defects. Powerful computer simulations
and mathematical modeling are being applied increasingly as visualization tools for
understanding crystal structure and evolution. Here we develop a tensor-based vi-
sualization tool for localization and for verifying some conjectures in high dimension
(d ≥ 3) for all disorder λ and at various distributions.
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(a) λ = .1, N = 100

Fig. 4.4. One-dimensional eigenvectors of the discrete Schrödinger operator (-x-) and the
Anderson model (black, -o-) for various modes.

In Figures 4.3–4.7, the eigenvectors of the Anderson model are compared against
the eigenvectors of the discrete Schrödinger operator model for dimension d = 1, 2, 3.
Recall that the discrete Schrödinger operator models perfect crystals without disor-
der, that is, where λ = 0. In Figure 4.5, the 2D eigenvectors of the Anderson and
the discrete Schrödinger are calculated through the tensor SVD (3.18) based on the
isomorphic map and the standard multilinear SVD (2.8).

4.2.1. Approximation of eigenvectors. To approximate the eigenvectors of
the multidimensional Anderson model, the eigenvalue decomposition in Theorem 3.18
is applied to the Hamiltonian Hω . The Hamiltonian Hω in two and three dimensions
are formed into fourth and sixth order tensors using the same stencils in Figure 4.1
with entries in (4.10) and (4.12), respectively. Note that the center nodes are around
zero and have random entries, i.e.,

(Hω
(3,4)
k=α,l=β)α,β =

σ

(Δx)2
(4.14)

and

(Hω
(4,5,6)
l=α,m=β,n=γ)α,β,γ =

τ

(Δx)3
,(4.15)

where σ and τ are random numbers with uniform distribution on [−1, 1] account-
ing for the random diagonal potential Vω. Higher order tensor representation easily
preserved the uniform distribution on [−1, 1] on the random potential, but this is
not necessarily true for Hamiltonians in (4.7) and (4.8). To compute numerically
the higher-dimensional eigenvector, the tensor representation of the Hamiltonian is
necessary before the appropriate Einstein product rules and mappings are applied.

In Figures 4.3, 4.4, 4.5, 4.6, and 4.7, the eigenfunctions are approximated by the
eigenvectors from the both discrete Schrödinger and random Schrödinger (Anderson)
models. In Figures 4.3 and 4.4, the eigenvectors of the Anderson model in one di-
mension are definitely more localized than the eigenvectors of the discrete random
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(a) N=29

(b) N=48

Fig. 4.5. 2D eigenvectors of the discrete Schrödinger operator (left column) and the Anderson
model (right column) for varying disorder (λ = 10 (top), λ = 1 (middle), and λ = .1 (bottom)).
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Fig. 4.6. Factors of the multilinear SVD decomposition [16] of the 2D discrete Schrödinger
operator (right column) and the Anderson model (left column) for varying disorder (λ = 10 (top),
λ = 1 (middle), and λ = .1 (bottom)).

(a) λ = 10 (b) λ = 10

(c) λ = 1 (d) λ = 1

(e) λ = 0.1 (f) λ = 0.1

Fig. 4.7. Two views (first column and second column) of the three-dimensional eigenvectors of
the Anderson model (left) and the discrete Schrödinger operator (right) for varying disorder.

Schrödinger model in one dimension which are consistent with the results in [31] for
the Anderson model in one dimension. Observe that for large amount of disorder
(e.g., λ = 1), the localized states are apparent. However this is not true for a smaller
amount of disorder (e.g., λ = .1). The localization is not so apparent for λ = .1 for
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N = 50, but when the number of atoms is increased, that is, setting N = 100, the
localized eigenvectors are present as in the case when λ = 1; see Figures 4.3(b) and 4.4.

In the contour plots of Figures 4.5 and 4.7, the eigenvectors in two and three
dimensions of the Anderson model are more peaked than those of the nonrandomized
Schrödinger for large disorder λ ≥ 1. As in the case for one dimension, localization
is not apparent for small disorder (λ = .1) as seen in Figure 4.5. Moreover, as N
increases, the eigenstates of both discrete Schrödinger and Anderson models seem to
coincide for small disorder. This does not necessarily mean that the localization is
absent for this regime, but rather the localized states are harder to find for a small
amount of disorder. A larger amount of atoms has to be considered for this case. In
Figure 4.5, localization is not clearly visible for even λ = 1 in the factors calculated via
the multilinear SVD decomposition (2.8) while localization is detected in the plots in
Figure 4.5 when λ = 1. The plots in Figure 4.6 are generated by applying the higher
order orthogonal iteration algorithm [17] to the Hamiltonian tensors (4.14) and (4.15).

The numerical results provide some validations that these localizations exist for
large disorder for dimensions d > 1 for a sufficient amount of atoms.

5. Conclusion. We have shown that even order tensors with a rectangular form
I1 × · · · × IN × J1 × · · · × JN are invertible by a transformation to the general linear
group equipped with the Einstein contracted product. While odd order tensors and
even order tensors with distinct modes are not invertible, we have extended the notion
of pseudoinversion for these cases. Alternative multilinear SVD and EVD decompo-
sitions arise from these isomorphic properties. Notably, these decompositions give a
natural framework for the eigenvalue problems of quantum models like the discrete
Schrödinger and Anderson models as well as solving Poisson problems in high dimen-
sions. Moreover, CP and multilinear SVD can be computed through these alternative
decompositions provided that some symmetry constraints hold. These alternative de-
compositions also provide a simple way to factorize quadricovariance tensors in blind
identification of underdetermined mixtures problems.

Solving multilinear systems with the tensor-based iterative methods has several
advantages: (1) higher order tensor representation of PDEs preserve low bandwidth
thereby keeping the computational cost and memory requirement low and (2) a one-
to-one correspondence between the solution and the computational grid facilitate the
integration of complicated boundary conditions. Moreover, the tensor representation
of eigenvalue problems in quantum statistical mechanics yields visualization tools for
studying localization properties of the Anderson model in high dimension.

To improve the applicability of tensor-based methods in solving high-dimensional
eigenvalue problems and multilinear systems, we plan to further develop these pro-
posed methods in several research lines. We plan to make the iterative solvers more
efficient. Starting with the high-dimensional Poisson problems and eigenvalue prob-
lems, a novel method which can operate on each sparse matrix (tensor) blocks as
opposed to the whole tensor structure will cut down the memory and operational
costs. Extensions of these methods in nonsymmetric and sparse multilinear systems
are important since these systems have direct applications in analyzing genes and
proteins interaction. Further developments of tensor SVD and tensor EVD for partial
symmetric fourth order tensors are needed to provide direct methods in decomposing
quadricovariance tensors in prevalent signal processing applications.

Appendix: Proof of Theorem 3.2. Recall the basic definitions.
Definition 5.1 (binary operation). A binary operation � on a set G is a rule

that assigns to each ordered pair (A,B) of elements of G some element of G.
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Definition 5.2. A group (G, �) is a set G with the operation � which satisfy the
following axioms:

(A1) The binary operation � is associative, i.e., (A � B) � C = A � (B � C) for
A,B,C ∈ G.

(A2) There is an element I ∈ G such that I�X = X�I for all X ∈ G. This element
I is an identity element for � on G.

(A3) For each A ∈ G, there is an element Ã ∈ G with the property that Ã � A =

A � Ã = I.
Proof. Here we prove by checking each axiom (A1–A3) hold in Definition 5.2.
(A1) Show that the binary operation ∗2 is associative.
Since we know that f is a bijective map with the property that f(A ∗2 B) =

f(A) · f(B), we will show f−1(A ·B) = f−1(A) ∗2 f−1(B) for A,B ∈ M.
Let A,B, C ∈ T and A,B,C ∈ M, where f(A) = A, f(B) = B and f(C) = C.

Then,

(A ∗2 B) ∗2 C = f−1(A) ∗2 f−1(B) ∗2 f−1(C) = f−1(A ·B ·C) = f−1(A · (B ·C))

= f−1(A) ∗2 f−1(B ·C) = A ∗2 (f−1(B) ∗2 f−1(C)) = A ∗2 (B ∗2 C).

Therefore, (A ∗2 B) ∗2 C = A ∗2 (B ∗2 C).
(A2) Show that there is an identity element for ∗2 on T.
Since II1I2×I1I2 ∈ M is the identity element in the group, note that we will

suppress the superscript of I in the calculation below. Then we claim that f−1(I) is
the identity element for ∗2 on T.

For every element A ∈ T, there exists a matrix A ∈ M so that f−1(A) = A. So,
we get

A ∗2 f−1(I) = f−1(A) ∗2 f−1(I) = f−1(A · I) = f−1(A) = A.

Similarly,

f−1(I) ∗2 A = f−1(I) ∗2 f−1(A) = f−1(I ·A) = f−1(A) = A.

Therefore, A ∗2 f−1(I) = f−1(I) ∗2 A = A.
Define the tensor E as follows:

(E)i1i2j1j2 = δi1j1δi2j2 ,

where

δlk =

{
1, l = k,

0, l �= k.

We claim that E = f−1(I). By direct calculations, we have

(E ∗2 A)i1i2j1j2 =
∑
u,v

εi1i2uvauvj1j2 = εi1i2i1i2ai1i2j1j2

= δi1i1δi2i2ai1i2j1j2 = ai1i2j1j2 = Ai1i2j1j2

and

(A ∗2 E)i1i2j1j2 =
∑
u,v

ai1i2uvεuvj1j2 = ai1i2j1j2εj1i2j1j2

= ai1i2j1j2δj1j1δj2j2 = ai1i2j1j2 = Ai1i2j1j2 .
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Thus E ∗2 A = A ∗2 E = A for ∀A ∈ T. Therefore Ei1i2j1j2 = δi1j1δi2j2 is the identity
element for ∗2 on T.

Finally, we know that f−1(II1I2×I1I2) = E.

(A3) Show that for each A ∈ T, there exists an inverse Ã such that Ã ∗2 A =

A ∗2 Ã = E.
We define Ã = f−1{[f(A)]−1} since f(A) ∈ M and f−1 is a bijection map from

Lemma (3.1). Then,

f(Ã ∗2 A) = f(Ã) · f(A) = [f(A)]−1 · f(A) = II1I2×I1I2 .

From Lemma 3.1 and since f(E) = II1I2×I1I2 , we obtain Ã ∗2 A = E. Similarly,

we can get A ∗2 Ã = E.
It follows that for each A ∈ T, there exists an inverse Ã such that Ã ∗2 A =

A ∗2 Ã = E.
Therefore, the ordered pair (T, ∗2) is a group where the operation ∗2 is defined

in (2.2). In addition, the transformation f : T → M in (2.4) is a bijective mapping
between groups. Hence, f is an isomorphism.
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