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1 Introduction

Research scientists in the biomedical sciences perform
large scale experiments referred to as high throughput
research. High throughput methods enable research in-
volving large data (e.g. the human genome) to inves-
tigate the effects of individual genes and to eventually
answer fundamental questions. These large scale exper-
iments allow scientists to investigate the effects of indi-
vidual genes, i.e. identifying genes involved in a specific
function. By studying each single-deletion strain, biol-
ogists are able to deduce the relevance of a particular
gene to a specific function or functions. However, stud-
ies with single gene suppression at a time have shown
a weak correlation between the genes and the functions
due to redundancy in the genome [5, 4]; i.e. a similar
gene or backup copies can perform the function of the
deleted one [5].

Moving beyond pairwise interactions and to organ-
isms with larger genomes is challenging. We model pair-
wise and high-order gene interactions through multilin-
ear systems. Since sparsity is an important character-
istic of the models structure [5], which means relatively
few of all conceivable interactions of genes are signifi-
cant, we build from the existing theory from compressed
sensing [2, 3]. Compressed sensing efficiently recon-
structs signals by finding solutions to underdetermined
linear systems. It takes advantage of the signal’s com-
pressibility, allowing the entire signal to be determined
from relatively few measurements. Our contribution is
to extend the application of compressed sensing in gene
interaction analysis within the tensor paradigm.

Multiple interactions with up to D genes are mod-
eled as multilinear equations which can be structured
as a high-order tensor equations [1]. Informally, tensors
are multi-dimensional arrays; the order of a tensor is the
number modal directions. A vector is first-order tensor,
a matrix is a second-order tensor. Multilinear systems
are generalizations of linear systems [1]. A matrix de-
fines a linear transformation such that L(x) = Ax as

would a tensor define a multilinear transformation.

2 Tensor Equation for Multiple
Gene Interactions

Genomic interactions are modeled as a sparse system
[5]. We develop a tensor representation of the under-
lying sparse multilinear system for the genomic data.
One knockdown inhibits one gene in the pathway; two
knockdowns (pairwise) inhibit two genes. Let a be the
genome vector with a nonzero entry ai be the knock-
down of the ith gene. If M experiments are performed,
there will be M distinct one gene knockdown. Thus,
a linear system representation can be set-up to detect

the relevance of these knockdowns; i.e. y
(1)
k =

∑N
i akixi

where a is a row vector with one nonzero value on the ith
entry, y(1) ∈ RM with entries signifying the amount of
viral replication with one gene knockdown and x is the
unknown sparse vector with nonzero entries reflect the
relevance of the gene. The one knockdown set-up may
not be sufficient since other genes may act like a proxy in
the pathway for the blocked gene. For the pairwise inter-
action of inhibited genes, the multilinear case is defined

as y
(2)
k =

∑
i<j akiakjxij where aki is the ith knock-

down gene in the kth observation and y(2) ∈ RM with
entries signifying viral replication with two-gene knock-
downs. For D gene interactions is the following equa-

tion: y
(D)
k =

∑N
i<j<···<D akiakj . . . akDxij...D. Thus, the

equation for all interactions up to D is

y
(1,2,...,D)
k =

∑
i

akixi +
∑
i<j

akiakjxij (1)

+ . . .+
∑

i1<i2<···<iD

aki1aki2 . . . akiDxi1i2...iD

where xi is a vector entry in x ∈ RN , xij is a matrix
entry in X ∈ RN×N , and xi1i2...iD is a tensor entry in

X ∈ R
N × · · · × N︸ ︷︷ ︸

D .



We denote the scalars in R with lower-case letters
(a, b, . . .) and the vectors with bold lower-case letters
(a,b, . . .). The matrices are written as bold upper-case
letters (A,B, . . .) and the symbol for tensors are calli-
graphic letters (A,B, . . .). The subscripts represent the
following scalars: (A)ijk = aijk, (A)ij = aij , (a)i = ai,
unless noted otherwise. The superscripts indicate the
length of the vector or the size of the matrices. For ex-
ample, bK is a vector with length K and BN×K is a
N ×K matrix.

2.1 Tensor Equation via Embedding

We reformulate (1) by embedding the one-knockdown
system into the pairwise interaction system, and then
the pairwise equation into the higher order interactions.
Recall that the one-interaction is

y
(1)
k =

N∑
i

akixi = Ax (2)

whereas the two-interaction model is y
(2)
k =∑

i<j akiakjxij . The pairwise model can be formulated
as

A ∗X = y(2) (3)

where (A ∗ X)k =
∑N
ij AkijXij = y

(2)
k with Akij =

akiakj . The dimensions are: A is a third-order tensor
of size M ×N ×N , X is a N ×N matrix and y(2) is a
vector of size M .

Incorporating (2) into (3), we obtain

y
(1,2)
k =

N+1,N∑
i,j

AkijXij = (A ∗X)k (4)

(see Figures 1-2) where Akij = akiakj . Henceforth, A is
a tensor of size M×N+1×N , X is a matrix of size N+
1×N and yk is a vector of size M . The generalization

of the multilinear system up to order D is y
(1,...,D)
k =∑

i1,j2,...,iD
Ai1j1...iDkXi1i2...iD where A and X are (D+

1)th and Dth order tensors.

Figure 1: (Multi)linear system for one gene knockdown
(left) and two-gene knockdowns (right).

Figure 2: Tensor model for up to two-gene interactions

2.2 Tensor Restricted Isometry Prop-
erty

Let X ∈ Rn×m. The Frobenius norm is defined as
‖X‖F = (Σn,mi,j x2ij)

1
2 . The l1 norm of a vector v ∈ Rn is

‖v‖1 = Σni=1|vi|, while the l2 norm is ‖v‖2 = (Σni=1vi
2)

1
2 .

The vectorization map is defined as vec(W ∈ RN×M )→
w ∈ RN ·M where Wij → wk with k = (i − 1) ∗ N + j
for i = 1, . . . , N and j = 1, . . . ,M .

We will provide the Tensor Restricted Isometry
Property (TRIP) for the necessary conditions for a
sparse and unique solution to (3). We define the
nullspace of A as N (A) = {X ∈ RN+1×N |A ∗X = 0}.
We denote Σs ⊆ Rn s.t. Σs = {x ∈ Rn|s << n at most
nonzero elements}. We say x ∈ Σs is s-sparse.

Lemma 2.1 Assume Σ2s∩N(A) = {0}. Then the mul-
tilinear system A ∗X = y (3) has a unique s-sparse so-
lution.

Proof: Assume X ∈ Σs for some s. Suppose there
are two different s-sparse solutions X1, X2 ∈ Σs, i.e.
A ∗X1 = y, A ∗X2 = y. Note X1 6= X2 implies X1 −
X2 6= 0. Then, A ∗ (X1 − X2) = A ∗ X1 − A ∗ X2 =
y−y = 0 implies X1−X2 ∈ N (A). Also, X1−X2 ∈ Σ2s.
So, X1 − X2 ∈ N (A) ∩ Σ2s. But N (A) ∩ Σ2s = {0}.
Therefore, X1 − X2 = 0, i.e. X1 = X2 which is a
contradiction. �

Remark 2.1 From the given assumption that Σ2s ∩
N(A) = {0}, all nonzero elements in the null space of
tensor A have at least 2s+1 nonzero components. If
A ∗X = y has more than one s-sparse solution, then
N (A) must contain a nonzero 2s-sparse matrix.

Lemma 2.2 Suppose there exists positive constants c1
and c2 such that c1 ≤ ‖A∗U‖22 ≤ c2 for every X ∈ Σ2s,
where we define U = X

‖X‖F . Then Σ2s ∩N(A) = 0.

Note that ‖U‖2F = 1. If there exists a positive c1
such that c1 ≤ ‖A∗U‖22 for all U ∈ Σ2s. It follows that
no 2s-sparse matrix with norm one is in the nullspace of
A. Moreover,

max
U
‖A ∗U‖22 = max

vec(U)
‖Amat · vec(U)‖22



where Amat ∈ RM×(N+1)·N is the matrix unfolding of
A. A maximum of ‖Amat · vec(U)‖22 is attained since
vec(U) → ‖Amat · vec(U)‖22 is continuous over a com-
pact subset of 2s-sparse vectors in R(N+1)·N .

Theorem 2.1 If A ∈ RM×N+1×N and X ∈ RN+1×N

satisfies the Tensor Restricted Isometry Property
(TRIP):

(1− δs)‖X‖2F ≤ ‖A ∗X‖22 ≤ (1 + δs)‖X‖2F (5)

for δs ∈ (0, 1) and some s ≥ 1, then any s-sparse solu-
tion to A ∗X = y is unique.

Proof: It follows from Lemma 2.2 that

c1 ≤ ‖A ∗U‖22 ≤ c2.

If we take c1 = 1 − δs and c2 = 1 + δs for δs ∈ (0, 1),
then

(1− δs) ≤ ‖A ∗X‖22 ∗
1

‖X‖2F
≤ (1 + δs).

Now from Lemma 2.2 and Lemma 2.1, we obtain the
uniqueness of the s-sparse solution of A ∗U = y. �

It is well-known from compressed sensing [3, 2] that
`1 minimization recovers the sparse signals. For our
case, the optimal solution X∗ is the unique solution to
the following optimization problem,

min ‖vec(X)‖`1 subject to Amat · vec(X) = y. (6)

Define f(t) = ‖vec(X∗ + tN)‖`1 where N ∈ N (A).
Suppose A ∗ X∗∗ = y where X∗∗ 6= X∗. Take N =
X∗∗−X∗ 6= 0 and N ∈ N (A). Then vec(X∗∗) = f(1) >
f(0) = vec(X∗).

Theorem 2.2 If f(t) has a unique global minimum at
t = 0 for nonzero N ∈ N (A), then X∗ is the unique
solution of (6).

Proof: WLOG, assume vec(X∗) = (x∗1, 0, . . . , 0)
and fix any nonzero vec(N) = (n1, · · · , n(N+1)·N ). The
function

f(t) = ‖vec(X∗ + tN)‖`1 (7)

=

(N+1)·N∑
i=1

|x∗i + tni| (8)

= |x∗1 + tn1|+ |t|
(N+1)·N∑
i=2

|ni| (9)

has critical numbers at t = 0 and t = −x
∗
1

n1
. Now, our

goal is to show that f(0) < f(−x
∗
1

n1
) which is equivalent

to

|n1| <
(N+1)·N∑
i=2

|ni| (10)

We use the re-ordering trick [3, 2] of the indices
of vec(N). Let T1 = {σ1, σ2} where σ1 and
σ2 are the indices of the two largest components
where σ1, σ2 ∈ {n2, n3, . . . , n(N+1)·N )}. Continue
the process: T2 = {σ3, σ4}, T3 = {σ5, σ6}, . . . Ts =
{σ(N+1)·N−1, σ(N + 1) ·N} if the vector length is even.
Let T = {1} ∪ T1 and T c = ∪si=2Ti. We denote
nTi
∈ R(N+1)·N be a vector where all the components

are zero except at the indices of Ti. Observe that nT is
a 3-sparse vector. Recall that N ∈ N (A) so that

0 = Amat ∗ vec(N) = Amat ∗ nT + Amat ∗ nT c

which implies

Amat ∗ nT = −Amat ∗ nT c . (11)

Then,

|n1| ≤ |nT |22 ≤
1√

1− δ
‖Amat ∗ nT ‖2

due to the LHS of TRIP. It follows from (11) that
1√
1−δ‖Amat∗nT ‖2 = 1√

1−δ‖Amat∗nT c‖2. Now by using

the triangle inequality and the RHS of TRIP, we have

|n1| ≤
√

1 + δ√
1− δ

s∑
i=2

‖nTi‖2. (12)

Using the fact

‖nTi
‖2 ≤

1√
2
‖nTi
‖`1 ,

from [2], we obtain

|n1| ≤
√

1 + δ√
2(1− δ)

(N+1)·N∑
i=2

|ni|.

If
√
1+δ√

2(1−δ)
< 1, then we satisfy (10).

�

3 Conclusions

We develop a tensor based multilinear system framework
which describes genomic interactions. We have shown
that TRIP gives the conditions for the sparse multilinear
system to have a unique solution. Moreover, TRIP was
key in proving the recovery of sparse signals through `1
minimization.

In our future work, we will provide some numerical
methods based on `1 minimization to approximate the
solution to the multilinear system.
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