
Recovering Tensor Data from Incomplete Measurement via
Compressive Sampling

Jason R. Holloway Carmeliza Navasca
hollowjr@clarkson.edu cnavasca@clarkson.edu

Department of Electrical Engineering Department of Mathematics

Clarkson University Clarkson University

Potsdam, New York 13699, USA Potsdam, New York 13699, USA

January 15, 2010

Abstract

We present a method for recovering tensor data from few
measurements. By the process of vectorizing a tensor,
the compressed sensing techniques are readily applied.
Our formulation leads to three `1 minimizations for third
order tensors. We demonstrate our algorithm on many
random tensors with varying dimensions and sparsity.

1 Introduction

The purpose of this paper is to present a novel technique
for constructing tensors from a priori few measurements:
thereby, recovering missing data. We denote the original
tensor as T ∈ RI×J×K , and we suppose that the mea-
surement is encoded in another tensor T̂ ∈ RI×J×K ,
which we assume is sparse in the sense that most of
the entries of T̂ are zero. Our goal is to recover T , if
possible.

We use the PARAFAC/CANDECOMP decomposi-
tion, due to Harshman [15] and Carol and Chang [8]
in the context of phonetics and psychometrics, respec-
tively. This is as follows. We assume that there are
matrices (a.k.a factors) A ∈ RI×R, B ∈ RJ×R, and
C ∈ RK×R, and that we can represent the original ten-
sor as

Tijk =
R∑

r=1

AirBjrCkr , (1)

for (i, j, k) ∈ [1, I] × [1, J] × [1, K]. The proposed
method utilizes this important decomposition to cap-
ture its missing entries; i.e. we approximate the original
tensor T ∈ RI×J×K by reconstructing sparse factors A,
B and C.

Much of this work is inspired by the success of com-
pressed sensing or compressive sampling (CS) [6, 4, 5].

This provides us with new sampling theories that al-
low recovery of signals and images from what appear
to be highly incomplete sets of data. CS uses `1-
minimization for exact recovery of sparse vectors and
approximate recovery of non-sparse vectors. A recent
extension [23, 2, 7] replaces the `1 norm by the trace-
class norm for low-rank matrices. In [21], the rank min-
imization technique has been extended to tensor data
in a mode-by-mode fashion, minimizing the trace-class
norm of the n-mode “matricizations.”

We call the measurement tensor data T̂ the a priori
tensor. We assume that this is sparse tensors, i.e., its
multilinear rank is small even if IJK is large. Large
sparse tensors occur ubiquitously in text mining, web
search, social networks and other information science
applications; see [10, 12, 17, 18, 20]. Many of these
papers propose efficient techniques for analyzing such
tensors, for example, through memory efficient meth-
ods via Tucker decomposition [19] and low-dimensional
projections such as Krylov subspace methods [24].

A direct application of our proposal is in excitation-
emission spectroscopy [25] in the context of chemomet-
rics. In this application, part of the tensor data is cor-
rupted due to Rayleigh and Raman scattering, hence
discarded. The resulting measurements are inherently
sparse since the corrupted data is considered missing.

Our proposal uses CS for recovering tensor data, us-
ing tensor “vectorization,” as opposed to matricization.
We vectorize the tensor into all its modes, applying the
`1 minimization technique to each one. The proposed
algorithm is simple. It relies on alternating sweeping up-
dates of the approximated factors, solved through subse-
quent linear programs. The overall algorithm is efficient
and relatively fast for the test cases considered.

2 Preliminaries

We denote the scalars in R with lower-case letters
(a, b, . . .) and the vectors with bold lower-case letters
(a, b, . . .). The matrices are written as bold upper-case
letters (A, B, . . .) and the symbol for tensors are calli-
graphic letters (A,B, . . .). The subscripts represent the
following scalars: (A)ijk = aijk, (A)ij = aij , (a)i = ai.
The superscripts indicate the length of the vector or the
size of the matrices. For example, bK is a vector with
length K and BN×K is a N ×K matrix.

Definition 2.1 The Kronecker product of matrices
AN×K and BM×J is defined as the matrix in RNM×KJ

A⊗B =

264 a11B a12B . . .
a21B a22B . . .

...
...

. . .

375 .

Definition 2.2 The column-wise Khatri-Rao product
of AI×R and BJ×R is defined as the matrix in RIJ×R

A�c B = [a1 ⊗ b1 a2 ⊗ b2 . . .]

when A = [a1 a2 . . . aR] and B = [b1 b2 . . . bR].

2.1 Matricization and Vectorization

In the PARAFAC framework, the standard matriciza-
tion of the tensors are in the directions of left-to-right,
front-to-back, and top-to-bottom. This generates slices
of matrices. Concatenating these sliced matrices allows
us to build these long matrices. Rather than present the
formal definition, let us note that these matricizations
can be written as,

TJK×I = (B�C)AT ,

TKI×J = (C�A)BT

and
TIJ×K = (A�B)CT

referring to the decomposition (1), where the super-
scripts of T reflect the matrix size.

The long matrices can then be vectorized via column
stacking. This results is the linearizations:

tJKI = Q̂aRI , Q̂ = [II×I ⊗ (C�B)] (2)

tKIJ = R̂bRJ , R̂ = [IJ×J ⊗ (A�C)] (3)

tIJK = ŜcRK , Ŝ = [IK×K ⊗ (B�A)] (4)

where II×I , IJ×J and IK×K are identity matrices.

3 Tensor `1 Minimization

From the linear systems (2-4), we obtain our optimiza-
tion model with equality constraints:

min ‖aRI‖`1 subject to Q̂aRI = tJKI (5)
min ‖bRJ‖`1 subject to R̂bRJ = tKIJ (6)

and
min ‖cRK‖`1 subject to ŜcRK = tIJK . (7)

Note that if x ∈ Rn, then ‖x‖`1 =
∑n

i=1 |xi|. Each of
the triplet problems in (5-7) is well-known as the basis
pursuit problem [9]. The pioneering work led by Candès,
Romberg and Tao [4, 5, 6] provide some rigorous argu-
ments how `1 minimization yields optimally sparse and
exact solutions from incomplete measurements provided
that some basis coherence properties [6] are satisfied.
The idea behind the model (5-6) is to construct sparse
and exact solution vectors a, b and c which becomes
sparse factors A, B and C satisfying the decomposition
(1). The dimension R in (1) is typically denoted as the
generic rank [11]. For us, the parameter R is not the
generic rank of the tensor T , which we denote R̃.

Each of (5), (6) and (7) is an `1 minimization prob-
lem:

min ‖u‖`1 subject to Au = f , (8)

These `1 minimization problems can be recast as linear
programs [1]. The equality constrained becomes a linear
program with both equality and inequality constraints:

min 1′v subject to − v ≤ u ≤ v and Au = f .

The link between `1 minimization and linear pro-
grams has been known since the 1950’s in the paper of
[16]. Moreover, numerical techniques for solving linear
programs have been well studied. In 1947 at its early in-
ception, Dantzig pioneered the simplex method; see the
paper of [14]. Due to its wide applicability to many real-
world problems, there is a need for large-scale methods.

The work of [22] developed the interior point method
for large-scale problems and for convex programming in
general. There are good solvers in the optimization tool-
box in Matlab as well as many solvers available on-line;
e.g. see Grant and Boyd [13] and Candès and Romberg
[3]. The technique that we use to solve the tri-linear
program problems is based on the primal-dual interior
point method. A good discussion on the primal-dual
interior point method can be found in [1] and the refer-
ences therein.

4 Numerical Experiment

A tensor T ∈ RI×J×K consisting of n entries is con-
structed from randomly generated A, B and C matri-
ces. The sparsity of A, B, and C are specified. Sparsity

is measured as the ratio of non-zero entries to the to-
tal number of entries. Once the sparsity is specified, a
support is created by picking an appropriate number of
random entries in A, B, and C to make non-zero. The
matrices are populated by multiplying each entry in the
support by a number picked at random from a normal
distribution. Thus the non-zero entry locations in the
matrices and the values in those locations are random.
The parameter R is taken to be a value near the largest
product of any two dimensions of T . It is important to
note that R is a parameter that can be varied; it does
not necessarily need to meet the aforementioned crite-
ria. The constructed tensor T is then vectorized. Fur-
thermore, T is undersampled such that M samples are
taken where M ≤ n. The goal is to recover T with the
missing information filled in and recover a sparse repre-
sentation, i.e. approximate the input matrices A, B and
C matrices.

The general algorithm is as follows. Each equation
in the linearized system is solved using our `1 minimiza-
tion algorithm. The CVX toolbox [13] is used when ac-
complishing this task. As a result of minimization, one
factor is updated which update two of the constraints
Q̂, R̂ and Ŝ. Once all three equations have been mini-
mized the tensor is reconstructed.

The relative error between the reconstructed tensor
Tnew and the original tensor T is measured according to

error =
‖Trecovered − T ‖F

‖T ‖F
(9)

This iterative process continues until the relative er-
ror falls below a stopping criteria or the number of iter-
ations exceeds a predetermined maximum.

In the first experiment 5 × 5 × 10 tensors (T) are
used for testing purposes. The sparsity of A is 0.8, the
sparsity of B is 0.7, and the sparsity of C is 0.5. It is
assumed that the factors B and C have been successfully
recovered and the algorithm’s performance recovering T
and A is analyzed. The first experiment concerns the
relative error between Trecovered and T as the sampling
rate varies. The reported error is the average relative
error of fifty trials taken at each sampling rate. The
experiment was run twice, once with R equal to 50 and
once with R equal to 40.

The second experiment set out to test the efficacy
of the algorithm with varying R values. There are 170
entries of T are sampled, that is, M = 170, 68% of the
entries. The sparsity of A, B and C are the same as
in the first experiment. Five different values of R are
chosen starting with 30 and incrementing by 5 until 50.
For each value of R the algorithm was executed on 50
random tensors.

4.1 Results

The results from the first experiment are shown in Fig-
ure 1. The relative error decreases as the number of

samples M approaches the total number of entries in T ,
n. A drastic decline in the relative error can be seen be-
tween M = 140 and M = 160. For M values as low as
160 the average relative error is less than 5% between the
recovered tensor and the original tensor. Interestingly,
the lower value of R produced lower average errors. This
may lead to the assumption that even smaller values of
R will yield better results; however, the findings in the
second experiment show that this is not always true.

Figure 1: The relative error between Trecovered and T
decreases as the value of M approaches n.

Figure 1 suggests that lowering the value of R will
also decrease the average relative error. The sampling
rate M was fixed to a value of 170 and R was varied in
the range 30-50. For each value of R the algorithm was
applied to 50 random tensors and the number of failures
and successes were recorded. A failure is defined to be
an instance where the algorithm did not converge to
a solution. Success was measured against two criteria,
if the relative error is less than 5% and if the relative
error is less than 1%. Instances where the algorithm
converged but the error was greater than 5% are not
considered part of the failure counts. The results of the
second test are shown in Figure 2.

The value of R must be sufficiently large for the al-
gorithm to converge but the value should be minimized
for faithful reconstruction of T . When R was 30, the
algorithm failed to converge 46 times out of 50. The al-
gorithm converged in all 50 cases when R was set to be
50 but the performance was not as strong as when R was
set to 40 and 45. A constant sampling rate, M = 170,
was used for each trial. For each different value of R,
the matrices A, B and C are created such that the spar-
sity of each matrix is fixed. As R increases there are
more non-zero entries in each matrix in order to main-
tain the desired sparsity. The value of R that should be
used depends upon the application. In instances where
significant undersampling will occur and a faithful re-

Figure 2: The efficacy of the proposed algorithm for M
= 170 and various values of R. The number of failures
for each value of R is shown.

construction is crucial, R may have to be smaller which
risks the change of the algorithm not converging for nu-
merous attempts.

5 Conclusion

In this paper we ran experiments to determine the pa-
rameters of the sampling rate required to completely
determine a sparse tensor (T) using compressive sam-
pling techniques. We found that the necessary sampling
depends both on R and M , where R is the number of
columns in the matrices A, B, and C and M is the
number of observations made of the tensor T . Three
experiments were conducted to heuristically determine
the impact of R and M on the recovery of T . If the
value of R is too small the tensor can not be recovered
using the CVX toolbox. As the tensor is increasingly un-
dersampled, that is as the value of M drops, the error
between the reconstructed tensor and the original ten-
sor increases. Although our experiments are consistent
with the tenets of compressive sampling, it is difficult
to assess the impact of small values of R because of the
numerical method used to solve our algorithm.

The CVX toolbox is a robust solver designed to solve
convex optimization with linear (matrix) (in)equality
constraints. Yet we have implemented the CVX algo-
rithms to solve multilinear programs. To improve nu-
merical results, we plan to develop more efficient algo-
rithms for solving convex optimization for tensors.

Acknowledgments

C.N. and J.H. would like to thank Lieven De Lathauwer
for some fruitful discussions. Furthermore the authors
would like to thank Na Li for her invaluable assistance.

Figure 3: The efficacy of the proposed algorithm for M
= 230 and various values of R. All successful trials had
relative errors well below 10−8.

C.N. and J.H. are both in part supported by NSF DMS-
0915100.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization,
Cambridge University Press, Cambridge, 2004.

[2] E. Candès and B. Recht, “Exact Matrix Completion
Via Convex Optimization,” Preprint.

[3] E. Candès and J. Romberg, “`1 Magic,” http:\\
www.acm.caltech.edu\l1magic

[4] E. Candès J. Romberg and T. Tao, “Stable signal
recovery from incomplete and inaccurate measure-
ments,” Communications of Pure and Applied Math-
ematics, vol. 59, pp. 1207-1223, 2005.

[5] E. Candès J. Romberg and T. Tao, “Robust un-
certainty principles: exact signal reconstruction
from highly incomplete frequency information, IEEE
Trans. Inform. Theory, vol.52, no. 2, pp. 489-509,
2006.

[6] E. Candès and T. Tao, “Decoding by linear program-
ming,” IEEE Trans. Inform. Theory, vol. 52, no. 12,
pp. 4203-4215, 2005.

[7] E. J. Candès and T. Tao, “The Power of Con-
vex Relaxation: Near-Optimal Matrix Comple-
tion,” Preprint, 2009, 51 pages. http://front.
math.ucdavis.edu/0903.1476.

[8] J. Carrol and J. Chang, “Analysis of Individual Dif-
ferences in Multidimensional Scaling via an N-way
Generalization of ”Eckart-Young” Decomposition”
Psychometrika, 9, 267-283, 1970.

http://front.math.ucdavis.edu/0903.1476
http://front.math.ucdavis.edu/0903.1476

[9] S. S. Chen, D. Donoho and M. Saunders, “Atomic
decomposition by basis pursuit,” SISC vol. 20, no.
1, pp. 33-61, 1998.

[10] A. Cichocki, A. H. Phan, and C. Caiafa, “Flex-
ible HALS algorithms for sparse non-negative ma-
trix/tensor factorization,” Proc. Conf. for Machine
Learning for Signal Processing, , Cancun, Mexico,
October 16–19, 2008.

[11] P. Comon, J.M.F. ten Berge, L. De Lathauwer, J.
Castaing, “Generic and Typical Ranks of Multi-Way
Arrays,” Linear Alg. Appl., in press.

[12] D. M. Dunlavy, T. G. Kolda and W. P. Kegelmeyer,
“Multilinear algebra for analyzing data with multi-
ple linkages,” Tech. Rep. SAND2006-2079, Sandia
National Laboratories, Albuquerque, NM and Liv-
ermore, CA, April 2006.

[13] M. Grant and S. Boyd, “CVX: Matlab software for
disciplined convex programming (web page and soft-
ware),” http:\\stanford.edu\ ∼boyd\cvx, December
2007.

[14] G. Dantzig, A. Orden and P. Wolfe. “The gen-
eralized simplex method for minimizing a linear
form under linear inequality restraints,” Pacific J.
Math 5(2) (1955) 183-195.

[15] R. A. Harshman, “Foundations of the PARAFAC
procedure: Model and Conditions for an ”Explana-
tory” Mutli-code Factor Analysis,” UCLA Working
Papers in Phonetics, 16, pp. 1-84, 1970.

[16] A. Karmarkar. “A new polynomial-time algorithm
for linear programming,” Combinatorica vol. 4, 1984.

[17] T. G. Kolda and B. W. Bader, “Tensor decompo-
sitions and applications,” SIAM Review, to appear.

[18] T .G. Kolda, B. W. Bader and J. P. Kenny,
“Higher-order web link analysis using multilinear al-
gebra,” Proc. 5th IEEE Int. Conf. on Data Mining,
November 2005, pp.242–249.

[19] T. G. Kolda and J. Sun. “Scalable Tensor Decom-
positions for Multi-aspect Data Mining.” Proc. 8th
IEEE International Conference on Data Mining, De-
cember 2008, pp. 363-372.

[20] M. Mørup, L. K. Hansen and S. M. Arnfred, “Al-
gorithms for sparse non-negative Tucker,” Neural
Computation, 20 8, pp. 2112–2131, 2008.

[21] C. Navasca and L. De Lathauwer. “Low multilinear
rank tensor via semidefinite programming.” Proc.
EUSIPCO 2009 Glasgow, Scotland, August 24-28,
2009.

[22] Y. Nesterov and A. Nemirovskii. Interior-point
polynomial algorithms in convex programming.
SIAM Publications, Philadelphia, 1994.

[23] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed
Minimum Rank Solutions to Linear Matrix Equa-
tions via Nuclear Norm Minimization,” Preprint.

[24] B. Savas and L. Elén, “Krylov subspace methods
for tensor computations,” Techreport LiTH-MAT-
R-2009-02-SE

[25] A. Smilde, R. Bro, and P. Geladi, Multi-way Anal-
ysis. Applications in the Chemical Sciences, Chich-
ester, U.K., John Wiley and Sons, 2004.

	Introduction
	Preliminaries
	Matricization and Vectorization

	Tensor 1 Minimization
	Numerical Experiment
	Results

	Conclusion

