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Abstract

We study the convergence of the Regularized Alternating Least-Squares
algorithm for tensor decompositions. As a main result, we have shown
that given the existence of critical points of the Alternating Least-Squares
method, the limit points of the converging subsequences of the RALS are
the critical points of the least squares cost functional. Some numerical
examples indicate a faster convergence rate for the RALS in comparison
to the usual alternating least squares method.

1 Introduction

A well-known iterative method for CANDECOM/PARAFAC (CP) is the Alter-
nating Least-Squares (ALS) technique. Independently, the ALS was introduced
by Carol and Chang [8] and Harshman [19] in 1970. It has been extensively
applied to many problems across various engineering [34][35][1] [13] and science
[36][24] fields; see the survey papers [23] [11] and the references therein. For
example, Beylkin and Mohlenkamp [5] [6] utilizes ALS to compute optimal sep-
aration rank for certain operators like inverse Laplacian and the multiparticle
Schrödinger equation to reduce computational complexity. In a more recent ap-
plication, Doostan et al. [14] has implemented ALS to study complex systems
modeled by stochastic PDEs.

Its widespread success can be attributed to the simplicity of the method.
Moreover, Bro et al. [38] [37] found that the ALS method gives superior quality
solutions with fewer memory and time requirements than the other CP methods.
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Despite its success, the ALS has some drawbacks. For example, initialization of
the factor matrices, collinearity in the factor matrices or degeneracy problems
may require a high number of iterations for the ALS method to converge. This
slowed convergence characterized by a flat curve in a log error plot is referred
to as the swamp. Swamps can be present in the non-degenerate and degenerate
cases. The degenerate case is a more challenging problem; see [30] [27] for some
regularization techniques for the degenerate swamps.

Here we address the non-degenerate case. There have been several meth-
ods which address the issues of the swamp occurrences in the non-degenerate
case. For example, line search schemes [33][29] have been used to accelerate
the ALS algorithm. An entirely different approach by De Lathauwer, De Moor
and Vandewalle obviates the swamp issues by considering a simultaneous ma-
trix diagonalization for CP decomposition [10] [9]. Paatero [31] have applied
regularization to a gradient descent based method for CP.

In this paper, we analyze the Regularized Alternating Least-Squares (RALS)
method introduced by Navasca, Kindermann and De Lathawer [28]. The imple-
mentation of RALS is simple; it is no more complicated than the ALS algorithm.
The cost functional of the RALS penalizes the difference between the current
and previous factor iterates with a regularization parameter. Unlike the tensor
regularization method found in [30] [27], RALS is an unconstrained optimiza-
tion problem since there is no uniform constraint in the penalty terms that are
sequentially changing at each iteration, and thus, the sequences of limit points
of RALS can be unbounded. Hence, RALS does not address the degeneracy
problem; i.e. RALS will not find a critical point if the original ALS functional
does not have a critical point.

The study of the convergence analysis of ALS and RALS is facilitated by
an optimization framework; ALS is the nonlinear block Gauss-Seidel (GS) and
RALS is the nonlinear block proximal point modification of GS (PGS) for CP
tensor decomposition. What we have shown is that if a limit point exists, then
it is a critical point of the functional. More specifically, we study the ALS
non-degenerate swamps by analyzing how RALS removes, if not, shortens the
swamps. Furthermore, our convergence analysis brings attention to fact that
the RALS functional has a weakened assumption than the requirement of the
ALS functional. This finding sheds light on the swamps in the non-degenerate
case in the ALS method.

1.1 Organization

Beginning with Section 2, we give some preliminaries which include basic defini-
tions of rank-one tensor and CP decomposition. Section 3 reviews the classical
ALS for third-order tensors and includes a discussion on the ALS swamp through
an example. Section 4 is the main section where we introduce the RALS method
and show that if the sequence obtained from RALS algorithm converges, then
the limit points are the critical points of the original ALS algorithm. In Section
5, we provide a numerical comparison study of ALS and RALS with several
data sets. Lastly, we make some concluding remarks in Section 6.
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2 Preliminaries

We denote the scalars in R with lower-case letters (a, b, . . .) and the vectors with
bold lower-case letters (a,b, . . .). The matrices are written as bold upper-case
letters (A,B, . . .) and the symbol for tensors are calligraphic letters (A,B, . . .).
The subscripts represent the following scalars: (A)ijk = aijk, (A)ij = aij ,
(a)i = ai and the r-th column of a matrix A is ar. The matrix sequence is
{Ak}.

Definition 2.1 The Kronecker product of matrices A and B is defined as

A⊗B =

264 a11B a12B . . .
a21B a22B . . .

...
...

375 .

Definition 2.2 The Khatri-Rao product is the “matching columnwise” Kro-
necker product. Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao
product is denoted by A�B. The result is a matrix of size (IJ ×K) defined by

A�B = [A1 ⊗B1 A2 ⊗B2 . . .].

Definition 2.3 (Mode-n fibers) A mode-n fiber of an N th order tensor is a
vector defined by fixing all indices but the n-th one.

For example, a matrix column is a mode-1 fiber and a matrix row is a mode-
2 fiber. Third-order tensors have column (mode-1), row (mode-2) and tube
(mode-3) fibers, denoted by x:jk, xi:k and xij: respectively.

Definition 2.4 (Mode-n matricization) Matricization is the process of re-
ordering the elements of an N th order tensor into a matrix. The mode-n ma-
tricization of a tensor T ∈ RI1×I2×···×IN is denoted by T(n) and concatenates
the mode-n fibers to be the columns of the resulting matrix.

If we use a map to express such matricization process for any Nth order
tensor T ∈ RI1×I2×···×IN , that is, the tensor element (i1, i2, . . . , iN ) maps to
matrix element (in, j), then there is a formula to calculate j:

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk with Jk =
k−1∏
m=1
m 6=n

Im.

So, given a third-order tensor X ∈ RI×J×K , the mode-1, mode-2 and mode-3
matricizations of X are:

X(1) = [x:11, . . . ,x:J1,x:12 . . . ,x:J2, . . . ,x:1K, . . . ,x:JK],
X(2) = [x1:1, . . . ,xI:1,x1:2 . . . ,xI:2, . . . ,x1:K, . . . ,xI:K],
X(3) = [x11:, . . . ,xI1:,x12: . . . ,xI2:, . . . ,x1J:, . . . ,xIJ:].
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Definition 2.5 (Rank-one tensor) An N th order tensor T ∈ RI1×I2×···×IN

is a rank-one tensor if it can be written as the outer product of N vectors, i.e.,

T = a(1) ◦ a(2) ◦ · · · ◦ a(N),

where a(r) ∈ RIr×1, 1 ≤ r ≤ N . The symbol “ ◦” represents the vector outer
product. This means that each element of the tensor is the product of the cor-
responding vector elements:

ti1i2···iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
, for all 1 ≤ in ≤ In.

3 ALS and Nonlinear Block Gauss-Seidel Method

In 1927, Hitchcock [20] [21] proposed the idea of the polyadic form of a ten-
sor, i.e., expressing a tensor as the sum of a finite number of rank-one tensors.
Currently, this decomposition is called the CANDECOMP/PARAFAC (CP) de-
composition. The Parallel Factor Decomposition (PARAFAC) first appeared in
[19] in the context of psychometrics. Independently, [8] introduced this decom-
position as the Canonical Decomposition (CANDECOMP) in phonetics. The
work of Kruskal in 1977 [25] [26] provided a sufficient condition,

I + J +K ≥ 2R+ 2,

where I, J and K denote the k-rank (defined as the maximum value k such that
any k columns are linearly independent in a matrix) of matrices A, B and C
respectively, for uniqueness up to permutation and scalings of CP. Later on, De
Lathauwer [10] and Jiang and Sidiropoulous [22] gave new sufficient conditions
for uniqueness by assuming only one full-rank factor with the new bound,

R(R− 1)
2

≤ I(I − 1)J(J − 1)
4

.

Also, some constraints on the factor matrices of the CP are considered by re-
quiring all the columns in each factor matrix to be orthonormal. This condition
is useful in applications like independent component analysis (ICA) [7].

In terms of numerical methods for computing CP decomposition, there are
several methods (see e.g. [37]) to solve CP decomposition of a given tensor. The
ALS method is the most popular technique. We will discuss the connection of
ALS to the nonlinear block Gauss-Seidel (GS) method [3] [17]. This connection
is important since it is a well-known fact that the GS method does not necessar-
ily converge, leading us to further discuss some convergence results of the ALS
algorithm.

3.1 Alternating Least Squares

For the simplicity of the exposition, we looked at third-order tensors, but all
the analysis holds for higher-order tensors. For a given third-order tensor T ∈
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RI×J×K , its CP decomposition is

T ≈
R∑
r=1

ar ◦ br ◦ cr. (3.1)

The factor matrices are the combination of the vectors from the rank-one
components; i.e., A = [a1,a2, · · · ,aR] ∈ RI×R, B = [b1,b2, · · · ,bR] ∈ RJ×R
and C = [c1, c2, · · · , cR] ∈ RK×R where R is called the rank of the tensor T
denoted by R = rank(T ).

The problem we want to solve is the following: given a third-order tensor
T ∈ RI×J×K , compute its CP decomposition with R components of rank-one
tensors that best approximates T , i.e.,

minimizebT ‖T − T̂ ‖2F , where T̂ =
R∑
r=1

ar ◦ br ◦ cr, (3.2)

and ‖ · ‖2F is the Frobenius norm. The problem is equivalent to

min
A,B,C

‖T −
R∑
r=1

ar ◦ br ◦ cr‖2F (3.3)

with respect to factor matrices A, B and C.
By using the Khatri-Rao product and tensor matricization, (3.1) can be

written in three matricized forms:

T(1) ≈ A(C�B)T,

T(2) ≈ B(C�A)T,

T(3) ≈ C(B�A)T.

Then by fixing all factor matrices but one, the problem reduces to three
coupled linear least-squares subproblems. Thus, ALS solves three least-squares
subproblems to obtain the factor matrices through these subproblems:

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − Â(Ck �Bk)T‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2)
J×IK − B̂(Ck �Ak+1)T‖2F , (3.4)

Ck+1 = argminbC∈RK×R

‖T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T‖2F ,

where T(1)
I×JK , T(2)

J×IK and T(3)
K×IJ are the mode-1, mode-2 and mode-3

matricizations of tensor T . So starting from an initial guess A0, B0, C0, the
ALS approach fixes B and C to solve for A, then fixes A and C to solve for
B, and then fixes A and B to solve for C. This process continues iteratively
until some convergence criterion is satisfied. Therefore, this method translates
the original nonlinear minimization problem to three subproblems where each
one is just a least-squares problem.
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3.2 Block Nonlinear Gauss-Seidel Method

In this section, we want to introduce the nonlinear block Gauss-Seidel method
[2] [3] [4] [17] [18], a technique that is used to find a minimizer of a nonlinear
functional. We will see that ALS is a special case of GS.

Consider such a problem:

minimize f(x) (3.5)
subject to x ∈ X = X1 ×X2 × · · ·Xm ⊆ Rn,

where f be a continuously differentiable function from Rn to R and X is the
cartesian product of closed, nonempty and convex subsets Xi ⊆ Rni , for i =

1, . . . ,m, with
m∑
i=1

ni = n. If the vector x ∈ Rn is partitioned into m component

vectors xi ∈ Rni , then we can consider f is a function from Rn1 ×Rn2 ×· · ·Rnm

to R with
f(x) = f(x1,x2, · · · ,xm).

The minimization of the block nonlinear Gauss-Seidel method for the solution
(3.5) is defined by the iteration,

xi
k+1 = argmin

yi∈Xi

f(x1
k+1, . . . ,xi−1

k+1,yi,xi+1
k, . . . ,xm

k),

which in turn updates the components of x, starting from a given initial guess
x0 ∈ X and generating a sequence {xk} = {(x1

k,x2
k, . . . ,xm

k)}.
We introduce the following definitions to facilitate our discussion on the

connection between GS and ALS.

Definition 3.1 (Vectorization) The vectorization of a matrix

M = [m1,m2, · · · ,mn] ∈ Rm×n,

where mi is the i-th column of M, is denoted by vec(M) which is a vector of
size (mn) defined by

vec(M) =


m1

m2

...
mn

 .
From the PARAFAC formulation (3.2) and the definition of rank-one tensor,

the cost function we want to minimize is

‖T − T̂ ‖2F =
K∑
k=1

J∑
j=1

I∑
i=1

(tijk −
R∑
r=1

airbjrckr)2 = f(A,B,C),

where the cost function is a function s.t. f : Rn → R, n = (I + J + K)R. Let
x = vec([vec(A), vec(B), vec(C)]) ∈ Rn, it is obvious that

f(x) = f(A,B,C) =
K∑
k=1

J∑
j=1

I∑
i=1

(tijk −
R∑
r=1

airbjrckr)2.
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Let vec(A) = x1 ∈ RIR, vec(B) = x2 ∈ RJR and vec(C) = x3 ∈ RKR so that
we partition the vector x ∈ Rn into 3 component vectors xi ∈ Rni , i = 1, 2, 3.
n1 = IR, n2 = JR and n3 = KR. It follows that x = x1 × x2 × x3 ∈
Rn1 × Rn2 × Rn3 = Rn. Thus, the CP decomposition can be reformulated to
the following problem:

minimize f(x) (3.6)
subject to x ∈ Rn1 × Rn2 × Rn3 = Rn.

From the ALS algorithm, the updates are in terms of components of x, start-
ing from a given initial point x0 = vec([vec(A0), vec(B0), vec(C0)]) ∈ Rn and
generates a sequence {(x1

k,x2
k,x3

k)} by the following:

x1
k+1 = argmin

y1∈Rn1

f(y1,x2
k,x3

k),

x2
k+1 = argmin

y2∈Rn2

f(x1
k+1,y2,x3

k),

x3
k+1 = argmin

y3∈Rn3

f(x1
k+1,x2

k+1,y3).

Notice that this is the exact GS method to solve the problem (3.6). Therefore,
the ALS algorithm is the block nonlinear Gauss-Seidel method for solving the
CP decomposition of a given tensor.

3.3 Some Analysis about ALS

Since we already know that the ALS method coincides with the GS method, we
can bring some GS results to analyze the ALS algorithm.

Definition 3.2 (Critical Point) Let f : X → R, X ⊂ Rn is a continuously
differentiable function, a critical point of f is a point x ∈ X such that

Of(x)T(y − x) ≥ 0, ∀ y ∈ X, (3.7)

where Of(x) ∈ Rn denotes the gradient of f at x and Of(x)T is the transposition
of it. If X = Rn or if x is an iterior point of X, then the condition (3.7) reduces
to the stationarity condition Of(x) = 0 of unconstrained optimization.

Theorem 3.3 (Optimality Condition) (a) If x is a local minimum of f over
X, then it satisfies the optimality condition (3.7), i.e.,

Of(x)T(x− x) ≥ 0, ∀ x ∈ X.

(b) If f is convex over X, then the condition of part (a) is also sufficient for
x to minimize f over X.

If X = Rn or if x is an interior point of X, then the condition reduces to
Of(x) = 0.
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Definition 3.4 (Limit Point) We say that a vector x ∈ Rn is a limit point
of a sequence {xk}∞k=1 in Rn if there exists a subsequence of {xk}∞k=1 that con-
verges to x.

Definition 3.5 (Convex Function) A real-valued function f(x) defined on a
convex subset is called convex if for any two points x1 and x2, in its domain
and any t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

If furthermore,

f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2),

x1 6= x2, then f is strictly convex.

Definition 3.6 (Quasiconvex Function) A function f : S → R defined on
a convex subset S of a real vector space is quasiconvex if whenever x, y ∈ S
and λ ∈ [0, 1], then

f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

If furthermore,
f(λx+ (1− λ)y) < max(f(x), f(y)),

x 6= y, then f is strictly quasiconvex.
Consider the function f in (3.5), which is defined on a subset X = X1 ×

X2× · · ·×Xm, we say that f is quasiconvex with respect to xi ∈ Xi on X if for
every x ∈ X and yi ∈ Xi, we have

f(x1, . . . , txi + (1− t)yi, . . . , xm) ≤ max{f(x), f(x1, . . . , yi, . . . , xm)},

for all t ∈ (0, 1). If furthermore,

f(x1, . . . , txi + (1− t)yi, . . . , xm) < max{f(x), f(x1, . . . , yi, . . . , xm)},

yi 6= xi, then f is strictly quasiconvex.

The convergence of the GS method is studied under different assumptions
(see e.g. [2] [3] [17] [18]).

Theorem 3.7 (see [17]) Suppose that the function f in (3.5) is strictly qua-
siconvex with respect to xi on X, for each i = 1, . . . ,m − 2 in the sense of
Definition 3.6 and that the sequence {xk} generated by the GS method has limit
points. Then, every limit point x of {xk} is a critical point of (3.5).

Theorem 3.8 (see [3]) Let f be the function in (3.5). Suppose that for each
i and x ∈ X, the minimum of

min
ξ∈Xi

f(x1, . . . ,xi−1, ξ,xi+1, . . . ,xm)

is uniquely attained. If xk is the sequence generated by GS, then every limit
point of xk is a critical point.
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(a) Quasiconvex function, but not convex (b) Not a quasiconvex function

Figure 1

These theorems show that the GS method can produce a converging sequence
with limit points that are critical points of the problem. But, in general, the GS
method may not converge, in the sense that it may produce a sequence with limit
points that are not critical points of the problem. A counterexample of Powell
[32] (see also [17]) shows that for a non-convex function that is component-wise
convex but not strictly quasiconvex with respect to each component, its limit
points need not be critical points.

Comparing these convergence results for the GS method with the least-
squares cost functionals, we observe that neither of the hypothesis in [3] or [17]
are satisfied. Indeed, the least-squares cost functional is convex (even quadratic)
in each component and therefore, quasiconvex. However, in the case that the
Kathri-Rao product of two factor matrices involved is rank deficient, then the
least-squares function will not be strictly quasiconvex (see the following propo-
sition).

Proposition 3.9 Let f(x) = ‖Ax − b‖2 where A ∈ Rm×n, m > n, x ∈ Rn×1

and b ∈ Rm×1. If A is rank deficient, then f(x) is not strictly convex.

Proof. Since A is rank deficient, then assume rank(A) = r which implies
that dim(NulA) = n − r. Take x, x̃ ∈ NulA where x 6= x̃. Then, according
to the definition of a strictly convex function, for any t ∈ [0, 1], f(tx + (1 −
t)x̃) = ‖A[tx + (1− t)x̃]− b‖2 = ‖b‖2 and tf(x) + (1− t)f(x̃) = ‖b‖2. Thus,
f(tx + (1− t)x̃) = tf(x) + (1− t)f(x̃). �

It follows from the proposition above that f is not a strictly quasiconvex
function since f(tx + (1− t)x̃) = f(x) = f(x̃). Thus from Theorem 3.7, a limit
point of the ALS sequence is not guaranteed to be a critical point.

The main difficulty in proving the convergence is the lack of strict (quasi)convexity
in the case of rank deficient Khatri-Rao products. This indicates that one reason
for the occurrence of swamps, namely if the Khatri-Rao products of at least two
of the three iteration matrices is almost singular, the associated least-squares
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functional will be flat. Thus, we can expect slow convergence, verified by the
plots in Figures 2a and 2b. We observe that the region of a swamp in the ALS
method (the plateau in the left convergence plot) is strongly correlated with
very small singular value of the Khatri-Rao product of Bk and Ck.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10 6

10 4

10 2

100

102

104

106

 

 
ALS

(a) Fifth order tensor

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

 

 
ALS

(b) Smallest singular values of Ck �Bk

Figure 2

4 The Regularized Alternating Least-Squares

In the last section, we analyzed why ALS do not always converge through the
properties of the GS method while examining RALS [28], a proximal point mod-
ification of the Gauss-Seidel method (PGS) (see [3] [17]) for tensor decomposi-
tion. The analysis provides some explanations on why RALS performs better
than than ALS and decreases the high number of ALS iterations if there are
swamp occurrences.

4.1 Regularized ALS

The regularized ALS solves the same problem (3.2). It recasts the main problem
to three subproblems for a third-order tensor. But RALS has an extra term in
each subproblem. Therefore, in order to solve the problem:

min
A,B,C

‖T −
R∑
r=1

ar ◦ br ◦ cr‖2F , (4.1)

with respect to factor matrices A, B and C, for a given third-order tensor T ,
here are RALS subproblems:

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − Â(Ck �Bk)T‖2F + λk‖Ak − Â‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2)
J×IK − B̂(Ck �Ak+1)T‖2F + λk‖Bk − B̂‖2F , (4.2)

Ck+1 = argminbC∈RK×R

‖T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T‖2F + λk‖Ck − Ĉ‖2F ,
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where λk > 0 is the regularization parameter. The regularization terms λk‖Ak−
Â‖2F , λk‖Bk − B̂‖2F and λk‖Ck − Ĉ‖2F are the fitting terms for the factors A,
B and C.

In fact, RALS also gives us three least-squares subproblems. For example,
the first subproblem in (4.2) actually is equivalent to solving a least-squares
problem: [

(C̃k � B̃k)
λk · IR×R

]
X =

[
T(1)

T

λk · (Ãk)T

]
, (4.3)

which is different from the least-squares obtained from ALS, that is,

(Ck �Bk)X = T(1)
T. (4.4)

RALS-Algorithm
procedure CP-RALS(X , R,N, λ)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R, λ0

for n = 1, . . . , N do
W← [(Cn �Bn);λnIR×R] ∈ R(JK+R)×R

S← [X(1)
T;λn(An)T] ∈ R(JK+R)×I

An+1 ←W/S —— % solving least squares to update A

W← [(Cn �An+1);λnIR×R] ∈ R(IK+R)×R

S← [X(2)
T;λn(Bn)T] ∈ R(IK+R)×J

Bn+1 ←W/S —— % solving least squares to update B

W← [(Bn+1 �An+1);λnIR×R] ∈ R(IJ+R)×R

S← [X(3)
T;λn(Cn)T] ∈ R(IJ+R)×K

Cn+1 ←W/S —— % solving least squares to update C

λn+1 ← δ · λn —— % update regularization parameter

end for
return AN , BN , CN

end procedure

The number of iteration N is set to a large number; otherwise a convergence
stopping criterion can be used.

Our notion of a regularized ALS can be misleading. In the usual regular-
ization setting, the minimizer (critical point) of the regularized cost functional
is found. The additional regularization terms in 4.2 penalize the difference be-
tween the previous iterates, which themselves need not be a bounded sequence.
Although there is regularization in each step, the method imposes no uniform
constraint for all k on the matrices Ak,Bk,Ck. For this reason, the cost func-
tional 4.2 is not a constrained optimization problem, i.e. no global optimal
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solutions are guaranteed. In particular, this approach does not address the de-
generacy problem. Moreover, the limit points of the RALS algorithm will be
shown as the critical points of the least-squares functional 4.1 and not of the
regularized version.

The RALS method differs from the Tikhonov regularization for CP decom-
position considered in [27] [30] in the following way: the Tikhonov functional
minimized is∥∥∥∥∥T −

R∑
r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

+ λ
(
‖A‖2F + ‖B‖2F + ‖C‖2F

)
. (4.5)

If ALS is applied to this regularized functional, then the corresponding sub-
problems are

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − Â(Ck �Bk)T‖2F + λ‖Â‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2)
J×IK − B̂(Ck �Ak+1)T‖2F + λ‖B̂‖2F , (4.6)

Ck+1 = argminbC∈RK×R

‖T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T‖2F + λ‖Ĉ‖2F .

Observe that the penalization terms, ‖Â‖2F , ‖B̂‖2F and ‖Ĉ‖2F , are independent
of k, which are viewed as uniform constraints on the norm of the matrices. From
[27], this constrained optimization problem 4.5 always has a globally optimal
solution. However, the price to pay here is that the optimal solution is not a
critical point of the 4.1, but it is a critical point of the regularized functional.

4.1.1 Proximal Point Modification of the Gauss-Seidel (PGS) Method

In Section 3, we have shown that the ALS (GS) method may not converge
due to a requirement of convexity or quasiconvexity assumption to guarantee
convergence. Thus, a modification of GS is considered by adding an extra term
in each iteration:

xi
k+1 = argmin

yi∈Xi

f(x1
k+1, . . . ,yi, . . . ,xm

k) +
1
2
τi‖yi − xi

k‖2.

This method is called the proximal point modification of the GS (PGS) method
(see [3], [17]). It is also referred as partial proximal minimization [4]. The PGS
formulation lead to a weakened assumption for convergence to critical points.

Definition 4.1 The GS and PGS methods are well-defined if every subproblem
has solutions.

Proposition 4.2 (Convergence proposition of PGS [17]) Suppose that the
PGS method is well defined and that the sequence {xk} has limit points, then
every limit point x of {xk} is a critical point of problem (3.5).
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Recall that in Section 3.2, we showed that the ALS method is the GS method
for CP decomposition with respect to the factor matrices A, B and C. Similarly,
through vectorization of the three factor matrices, we have

x1
k+1 = argmin

y1∈Rn1

{f(y1,x2
k,x3

k) + λk‖x1
k − y1‖2F },

x2
k+1 = argmin

y2∈Rn2

{f(x1
k+1,y2,x3

k) + λk‖x2
k − y2‖2F },

x3
k+1 = argmin

y3∈Rn3

{f(x1
k+1,x2

k+1,y3) + λk‖x3
k − y3‖2F }.

Thus the regularized ALS is the PGS method for CP decomposition.

4.2 Convergence Result of the Regularized ALS

In this section, we will show that the converging sequence obtained from RALS
method leads to a critical point. This characterization is not true for the ALS
algorithm as we have seen in Section 3 where converging sequence of factor
matrices {(Ak,Bk,Ck)} cannot guarantee that the limit point is a critical point
(local minimum).

We adapt the proposition in Section 7 in [17] to our problem.

Theorem 4.3 Suppose that the sequence {(Ak,Bk,Ck)} obtained from RALS
has limit points, then every limit point (A,B,C) is a critical point of the Prob-
lem (4.1).

Proof. Recall the vectorization in Section 3 which allows us to re-express
{(Ak,Bk,Ck)} as (x1,x2,x3) and the cost function as

f(x1,x2,x3) =
K∑
k=1

J∑
j=1

I∑
i=1

(tijk −
R∑
r=1

airbjrckr)2

where x1 = vec(A) ∈ RIR, x2 = vec(B) ∈ RJR and x3 = vec(C) ∈ RKR. Let
{xnk}∞k=1 = {(x1

nk ,x2
nk ,x3

nk)}∞k=1 be the converging subsequence of {(x1
k,x2

k,x3
k)}

which has the limit point (x1,x2,x3).
The subproblem in the RALS method provides the following inequality:

f(x1
nk+1,x2

nk ,x3
nk) ≤ f(x1

nk ,x2
nk ,x3

nk)− λnk
‖x1

nk+1 − x1
nk‖2. (4.7)

Using the inequality above repeatedly, we have

f(x1
nk+1,x2

nk+1,x3
nk+1) ≤ f(x1

nk+1,x2
nk+1,x3

nk)
≤ f(x1

nk+1,x2
nk ,x3

nk) (4.8)
≤ f(x1

nk ,x2
nk ,x3

nk).

By the Squeeze Theorem, the continuity of f and (x1
nk ,x2

nk ,x3
nk) −→ (x1,x2,x3)

as k →∞, then we have the following

lim
k→∞

f(x1
nk+1,x2

nk ,x3
nk) = lim

k→∞
f(x1

nk ,x2
nk ,x3

nk) = f(x1,x2,x3).
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Now taking the limits in (4.7) for k →∞ on both sides, we have

lim
k→∞

‖x1
nk+1 − x1

nk‖2 = 0 (4.9)

which implies

lim
k→∞

(x1
nk+1,x2

nk ,x3
nk) = (x1,x2,x3). (4.10)

Similarly, we obtain

lim
k→∞

(x1
nk+1,x2

nk+1,x3
nk) = (x1,x2,x3). (4.11)

Since every RALS subproblem is well defined, then each point in the subse-
quence satisfies the corresponding optimality condition (Theorem 3.3); i.e.

O1f(x1
nk+1,x2

nk ,x3
nk) + 2λnk

(x1
nk+1 − x1

nk) = 0, (4.12)
O2f(x1

nk+1,x2
nk+1,x3

nk) + 2λnk
(x2

nk+1 − x2
nk) = 0, (4.13)

O3f(x1
nk+1,x2

nk+1,x3
nk+1) + 2λnk

(x3
nk+1 − x3

nk) = 0. (4.14)

Then, taking k →∞ in (4.12–4.14), using the arguments in (4.9), (4.10), (4.11)
and the continuity of Of , we obtain

Oif(x1,x2,x3) = 0, i = 1, 2, 3.

Thus, this proves that the limit point (x1,x2,x3) is a critical point of the
cost function f(x1,x2,x3). Furthermore, we obtain

OAf(A,B,C) = 0, (4.15)
OBf(A,B,C) = 0,
OCf(A,B,C) = 0.

through the inverse mapping of the vectorization. Therefore, (A,B,C) is a
critical point. �

Here are some remarks:

1. Following from the discussion and the theorem above, we showed that
RALS method solves the same ALS cost function. Moreover, we have
proved that the limit point obtained from RALS is a critical point of the
original minimization problem of ‖T − T̂ ‖2F .

2. The main theorem above solves the CP decomposition on the whole space,
so we use the optimality condition, Of(x1,x2,x3) = 0. If the solution
is not in the whole space, namely, in the problem of non-negative tensor
decomposition, then the optimality condition,Of(x1,x2,x3)T(y−xi) ≥ 0,
must be used.
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3. For the ALS method, under the same assumption in Theorem 4.3, the the-
orem may not be true. From the assumption, we know that the sequence
{(Ank ,Bnk ,Cnk)} converges to a limit point (A,B,C), but we cannot
obtain the sequences {(Ank+1,Bnk ,Cnk)} and {(Ank+1,Bnk+1,Cnk)} to
converge. Furthermore, we also cannot prove that these two sequences
converge to the same limit point (A,B,C).

4. The optimality conditions in (4.15) are equivalent to the normal equations
of the subproblems:

T(1)
I×JK(C�B) = A(C�B)T(C�B),

T(2)
J×IK(C�A) = B(C�A)T(C�A),

T(3)
K×IJ(B�A) = C(B�A)T(B�A).

5. Theorem 4.3 is a conditional convergence proof, impinging upon the exis-
tence of the ALS limit points. Thus this result does not address the de-
generacy problems. Analysis of the existence of the limits of the (R)ALS
is a challenging problem that would require a careful study of the degen-
erate cases of the CP decomposition. The regularization 4.5 considered by
Paatero [30] is a good approach in finding approximation to the degenerate
case, but the solutions satisfy the regularized cost functional and not the
original least-squares functional. Moreover, a similar conditional conver-
gent analysis [17] can be established for the regularized functional 4.5. In
fact, if λ > 0, then the cost functional 4.5 will be component-wise strictly
quasiconvex. Thus Theorem 3.7 applies and hence, the limit points of 4.6
will be critical points of the regularized functional 4.5.

5 Numerical Comparison of the ALS and RALS
Algorithms

In this section, we compare the performance of RALS against ALS. We give three
examples of third-order tensor CP decomposition to demonstrate the swamp
shortening property of the iterated regularization and one example of large real
third-order tensor data.

5.1 Example I: Initial Factors Dependent Swamp

Let the matrices

A =

1 2
2 1
3 2

 , B =

 2 1
−1 3
1 −1

 , C =

3 1
1 2
2 2

 ,
be the three factor matrices of a third-order tensor T ∈ R3×3×3 of rank-two:

T = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2.

15



0 10 20 30 40 50 60
10 6

10 4

10 2

100

102

104

 

 
Reg ALS
ALS

(a) right initial guess
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(b) random initial guess

Figure 3

In the two figures, the plots show the error ‖T −Test‖2F versus the number of
iterations it takes to obtain an error of 1×10−5, where Test denotes the obtained
tensor after every iteration. The red line denotes ALS method while the blue
one is RALS in each picture for the same initial guess.

Two initial guesses are compared in Figures 3a–3b in terms of ALS. In Figure

3a, A0 = A, B0 = B
[
0 1
1 0

]
and C0 = C. For Figure 3b, we randomly gener-

ated 3× 2 matrices as the initial factors. With {A,B
[
0 1
1 0

]
,C} as the initial

guess, ALS takes 55 iterations to reach an error within 10−5 while it takes 1988
iterations by using random initial guess. Observe in Figure 3a that ALS and
RALS have the same convergence speed and take the same iterations to reach
an error within 10−5. However, in Figure 3b, RALS can reduce the swamp by
only taking 206 iterations in comparison to that of 1988 ALS iterations. In some
cases, randomly generated factors can lead to swamp in the implementation of
the ALS. However this swamp phenomena induced by the initial factors is not
observed if the RALS method is used.

5.2 Example II: Rank Specific Swamp

Let the matrices

A =
[
1 2 3
2 1 2

]
, B =

[
2 1 1
−1 3 1

]
, C =

[
3 1 2
1 2 −1

]
.

be the three factor matrices of a third-order tensor T =
3∑
r=1

ar◦br◦cr ∈ R2×2×2

that is a rank-three tensor. Rank-two (Figure 4b) and rank-three (Figure 4a)
approximations are calculated with the following initial matrices:

A0 =
[
0.1679 0.7127
0.9787 0.5005

]
, B0 =

[
0.4711 0.6820
0.0596 0.0424

]
, C0 =

[
0.0714 0.0967
0.5216 0.8181

]
.
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So, the following picture shows the error plot by using ALS and RALS sepa-
rately:

(a) Rank-three
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(b) Rank-two

Figure 4

Notice that the rank-three tensor approximations present no problem in both
ALS and RALS as seen in Figure 4a. However, in Figure 4b, the rank-two tensor
approximation requires only 53 iterations RALS (blue line) to reach an error
within 10−5 while ALS needs 27322 iterations as indicated in a swamp. Further
investigation is needed to understand the degeneracy problems with respect to
the RALS algorithm.

5.3 Example III: Induced Rank-Deficiency Swamp

From the example in Section 3.3, the RALS and ALS are compared. Recall
that the rank deficiency of the Khatri-Rao products induce an ALS swamp. In
the Figure 5a, the error plots show a swamp for ALS with 9707 iterations while
RALS exhibits no swamp with only 884 iterations.
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(a) Fifth order tensor

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

 

 
Reg ALS
ALS

(b) Singularity of Khatri-Rao

Figure 5

To understand why RALS is not hampered by a swamp, let’s look at the
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normal equation of the subproblem (we have already mentioned in the last
section (4.3)): [

(C̃k � B̃k)
λk · IR×R

]
X =

[
T(1)

T

λk · (Ãk)T

]
where the least squares solution is Ãk+1. The submatrix λk · IR×R in (4.3)
embeds the range space of (C̃k�B̃k) in a higher dimensional space while induces
a full rank linear least-squares subproblem. Thus, the regularization keeps the
cost function strictly component-wise quasiconvex.

5.4 Example IV: Large Real Datasets

Since ALS type algorithms have been particularly useful in real large datasets,
a comparison study of the ALS and RALS algorithms was made on a tensor
X ∈ R170×274×35 from the paper of Bro et al. [38] in detecting and character-
izing active photosensitizers in butter. The light exposure experimental data is
obtained from different colors of light, variation in oxygen availability, and time
of exposure while measuring the fluorescence EEMs (excitation emission matri-
ces) and sensory evaluation of the samples. Thus the element xijk represents
the fluorescence intensity for sample i at excitation wavelength j and emission
wavelength k. CP algorithms offer decomposition into factors of sample scores,
emission loadings and excitation loadings.

The ALS and RALS algorithms were used to analyze the fluorescence land-
scapes with rank R = 7. In Figure 6, 100 different random initial starters for
ALS and RALS were used on tensor X . The relative error (‖X k − X k−1‖2F )
was used as the stopping criterion, but the absolute error (‖X − Xfinal‖

2
F ) was

measured as well. The table in Figure 6 shows that RALS performed slightly
better than ALS with respect to both relative and absolute errors as well as the
number of iterations.

6 Conclusion

The RALS method proposed by Navasca, Kindermann and De Lathauwer [28] is
a numerical technique for the classical problem of solving the CP decomposition
of a given tensor. We examined the RALS method to find some theoretical expla-
nations on what we observed numerically. In many instances, several examples
showed that RALS converges faster than ALS. Moreover, RALS decreases the
high number of ALS iterations, thereby removing the swamp to some degree.
Furthermore, our numerical experiments provide us a numerical justification
that ALS swamping is related to the rank deficiency of the Khatri-Rao prod-
ucts. This phenomena is not present when the RALS algorithm is implemented.
Based on these observations, it is important to study the theoretical properties
of RALS and its differences from ALS. Both the ALS and the RALS are related
to the GS and the proximal modification of GS (PGS), respectively, by vector-
izing the three factor matrices in the cost functionals. Using the properties of
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Figure 6: A comparison of ALS and RALS for large data set [38], averaging 100
random initialized runs.

PGS, we have proved that the limit point of a converging sequence obtained
from the RALS algorithm is a critical point of the original ALS problem. Some
difficulties arise when proving the same convergent results for ALS due to the
lack of strict quasiconvexity. These same difficulties are exhibited numerically
as swamps.
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