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The Patchy Cost and

Feedback for the HJB

PDE

C. Navasca∗ and A. J. Krener †

Abstract. In this paper, we describe our development of a higher-order method
for solving the Hamilton-Jacobi-Bellman PDE by incorporating several techniques.
There are the power series method of Albrecht, Cauchy-Kovalevskaya techniques,
patchy methods of Ancona and Bressan and Navasca and Krener, the fast sweep-
ing and marching methods, and regularization methods. We also demonstrate the
method through an example.

1 Introduction

The Hamilton-Jacobi-Bellman (HJB) PDE arises ubiquitously in many algorithms
for the control and estimation of nonlinear systems. The solutions to the HJB
equations are necessary for nonlinear control and estimation. Yet current numer-
ical methods are inadequate for approximating the solutions in dimension higher
than three. The HJB PDE arises from optimal control problems which have many
real-world applications of high dimension, namely in, engineering, economics and
recently in biomedicine. In this paper, we describe our development of a higher-
order method for solving the HJB PDE by incorporating several methods: power
series methods of Albrecht [1], Cauchy-Kovalevsky techniques [7], patchy methods
of Ancona and Bressan [2], Navasca and Krener [12, 14], the fast sweeping [8, 15, 9]
and marching methods [17] and regularization methods [5].

Current numerical methods are infeasible for these types of problems due to
the excessively large requirement in computation and memory. There are numer-
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ous techniques to solving HJB PDE, for example see [3], [6], [10], [8], [9], [15] [16],
[17], [18] and their references therein. However, these methods suffer the curse of

dimensionality since the computation grows exponentially in the dimension of the
state variable x and control variable u. A standard approach is to introduce tem-
poral and spatial discretizations of the entire optimal control problem which then
becomes an inordinately large-scale nonlinear optimization program. There are also
approximation methods for solving HJB using techniques borrowed from conserva-
tion laws; for example, see the paper of Osher and Shu [15]. These numerical solvers
are quite efficient and could handle nonlinear and nonconvex Hamiltonians but they
only hold for state variables in low dimension, in practice. The fast sweeping and
marching method (Tsitsiklis [21], Osher et al. [15, 8, 9] and Sethian [17]) are ways
to lessen this curse. It takes advantage of the fact that an HJB PDE has charac-
teristics which are the closed loop optimal state trajectories that converge to the
origin as t → ∞.

1.1 The Hamilton-Jacobi-Bellman PDEs

The Hamilton-Jacobi-Bellman Partial Differential Equation arises in many control
problems. Consider the infinite horizon optimal control problem of minimizing the
cost

∫

∞

t

l(x, u) dt (1)

subject to the dynamics

ẋ = f(x, u) (2)

and initial condition

x(t) = x0.

The state vector x is an n dimensional column vector, the control u is an m dimen-
sional column vector and the dynamics f(x, u) and Lagrangian l(x, u) are assumed
to be sufficiently smooth.

If the minimum exists and is a smooth function π(x0) of the initial condition
then it satisfies the HJB PDE

min
u

{

∂π

∂x
(x)f(x, u) + l(x, u)

}

= 0

and the optimal control κ(x) satisfies

κ(x) = argmin
u

{

∂π

∂x
(x)f(x, u) + l(x, u)

}

(3)

These are expressed in terms of the Hamiltonian

H(p, x, u) = pf(x, u) + l(x, u) (4)
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where the argument p = ∂π
∂x

is an n dimensional row vector. The HJB PDE becomes

0 = min
u

H(
∂π

∂x
(x), x, u) (5)

κ(x) = argmin
u

H(
∂π

∂x
(x), x, u) (6)

If the Hamiltonian H(p, x, u) is strictly convex in u for all p, x. Then pair of HJB
equations (5, 6) becomes

∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x)) = 0 (7)

and

∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x)) = 0 (8)

where the optimal cost π(x) and optimal control κ(x) are the unknown solutions.
If the dynamics and the cost have Taylor series expansion, then we can find

power series solutions π(x) and κ(x) of the HJB PDE converging in a some local
neighborhood containing zero through the method of Al’brecht [1].

2 The Patchy Method

In the paper [12], we have developed a method which is a higher order approach
for locally approximating the solutions of the HJB PDE in two stages. In the
first step, we locally approximate the solution to the HJB PDE using polynomial
estimation through the method of Al’brecht [1] based on solving linear equations and
one Riccati equation. Like all polynomial approximation techniques, the solutions of
Al’brecht are only valid for a small domain around zero. To overcome this weakness,
the second-stage continues the construction of the power series solution to a larger
region. From a boundary point on the domain of the Al’brecht’s power series, an
extremal trajectory is computed backward in time using the Pontryagin Maximum
Principle. Then the ordinary differential equations are derived for the higher partial
derivatives of the solution along the extremal. These equations are solved yielding
a power series for the approximate solution in a neighborhood of the extremal.

The patchy method, the second approach [14], is a extension of the power series
method of Albrecht [1], the Cauchy-Kovalevskaya technique [7], the fast marching
method [18], [17] and the patchy technique of Ancona and Bressan [2]. It is also an
extension of our previous paper [12]. Moreover, a one-dimensional example of this
patchy method can be found in [13]. This approach also has two stages. Similarly to
the first stage in [12], the technique of Al’brecht is used to generate the power series
solution locally around the origin. The second-stage of this new approach starts
by defining the zeroth patch. The zeroth patch is a sublevel set of the computed
optimal cost function defined by how well it satisfies the HJB PDE on the level set
that is its boundary. Then we pick a point on the boundary of the zeroth patch
and assume the optimal cost and optimal feedback have a power series expansion
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around that point. This point on the boundary is what we call the patch point.
Now the Cauchy-Kovalevskaya (CK) technique comes into play for finding power
series solutions on neighborhoods around the patch point.

The disadvantage of our first approach [12] is the requirement of solving 2n

boundary value problems for the optimal state and costate trajectories. In addition,
an ODE system must be solved for the coefficients of the moving power series
solutions along the extremals. The second approach does not have these problems;
we simply calculate the partial derivatives algebraically. However, there are several
aspects in which we would like to improve the method. For example, for each patch
on the kth sub-level set requires a distinct set of algebraic equations to be solved.
With the boundary conditions provided by the Cauchy data, the linear systems of
equations from the Cauchy-Kovalevskaya method yield the coefficients of the power
series. Moreover, the accuracy of our approximation heavily relies on the Cauchy
data so that the polynomials are only as accurate as the estimated data. In addition,
we compare the straightforward approach of the patchy method using the Cauchy
data and the regularization technique for recovering power series coefficients for the
CK technique.

2.1 Cauchy-Kovalevskaya’s Method

The Cauchy problem is the following:

∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x)) = 0 (9)

and

∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x)) = 0 (10)

with the boundary conditions

π(x) = π0(x) and κ(x) = κ0(x) for x ∈ Γ (11)

where Γ is a hyper-surface that is in the transversal direction to the closed loop
dynamics. We assume that the Al’brecht closed loop dynamics is transverse to the
boundary of the sublevel set and points inward; i.e.

∂π0

∂x
(z)f(z, κ0(z)) < 0.

At the patch point z = (x̄, ȳ) on the kth sublevel set, the Cauchy problem is solved
through the following equations

∂k

∂xk

(

∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x))

)

= 0 (12)

and

∂k

∂xk

(

∂π

∂x
(z)

∂f

∂u
(z, κ(z)) +

∂l

∂u
(z, κ(z))

)

= 0 (13)
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with the side conditions

∂kπ0

∂xiα1
. . . ∂xiαk

(z) =
∂kπ

∂xiα1
. . . ∂xiαk

(z) (14)

and

∂kκ0

∂xiα1
. . . ∂xiαk

(z) =
∂kκ

∂xiα1
. . . ∂xiαk

(z) (15)

where 1 ≤ iαj
< l and l < iαj

≤ n and the jth index maximizes

|fk(z) + gk(z)κ0(z)|.

The boundary conditions (11,14,15) are usually referred to as the Cauchy data. For

simplicity, let ẋ = f(x) + g(x)u(x) and l(x, u) = q(x) + r(x)u(x)
2

2
. Here we look for

power series solutions about (x̄, ȳ):

π(x, y) = π(x̄, ȳ) +
∂π

∂x
(x̄, ȳ)(x − x̄) +

∂π

∂y
(x̄, ȳ)(y − ȳ)

+
1

2

∂2π

∂x2
(x̄, ȳ)(x − x̄)2 +

∂2π

∂x∂y
(x̄, ȳ)

∂2π

∂y
(x̄, ȳ)(x − x̄)(y − ȳ) +

1

2

∂2π

∂y
(x̄, ȳ)(y − ȳ)2

+
1

6

∂3π

∂x3
(x̄, ȳ)(x − x̄)3 +

1

2

∂3π

∂x2∂y
(x̄, ȳ)(x − x̄)2(y − ȳ) +

1

2

∂3π

∂x∂y2
(x̄, ȳ)(x − x̄)(y − ȳ)2

+
1

6

∂3π

∂y3
(x̄, ȳ)(y − ȳ)3

+
1

24

∂4π

∂x4
(x̄, ȳ)(x − x̄)4 +

1

6

∂4π

∂x3∂y
(x̄, ȳ)(x − x̄)3(y − ȳ) +

1

4

∂4π

∂x2∂y2
(x̄, ȳ)(x − x̄)2(y − ȳ)2

+
1

6

∂4π

∂x∂y3
(x̄, ȳ)(x − x̄)(y − ȳ)3 +

1

24

∂4π

∂y4
(x̄, ȳ)(y − ȳ)4 + · · ·

and

κ(x, y) = κ(x̄, ȳ) +
∂κ

∂x
(x̄, ȳ)(x − x̄) +

∂κ

∂y
(x̄, ȳ)(y − ȳ) +

1

2

∂2κ

∂x2
(x̄, ȳ)(x − x̄)2

+
∂2κ

∂x∂y
(x̄, ȳ)(x − x̄)(y − ȳ) +

1

2

∂2κ

∂y2
(x̄, ȳ)(y − ȳ)2

+
1

6

∂3κ

∂x3
(x̄, ȳ)(x − x̄)3 +

1

2

∂3κ

∂x2∂y
(x̄, ȳ)(x − x̄)2(y − ȳ) +

1

2

∂3κ

∂x∂y2
(x̄, ȳ)(x − x̄)(y − ȳ)2

+
1

6

∂3κ

∂y3
(x̄, ȳ)(y − ȳ)3 + · · ·

The coefficients are solved in stages. The lowest partial derivatives are set to the
partial derivatives of the Albrecht’s solution; i.e.

∂π

∂x
(z) =

∂π0

∂x
(z)

κ(z) = κ0(z)
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This is the Cauchy data in this level. Here we assume l = 2, that is, the y-direction
which gives the maximum entry in the closed loop dynamics. We find ∂π

∂y
from

∂π

∂x
{f1(x, y) + g1(x, y)u} +

∂π

∂y
{f2(x, y) + g2(x, y)u} + l(x, y) +

1

2
r(x)u2 = 0

∂π

∂x
g1(x, y) +

∂π

∂y
g2(x, y) + r(x)u = 0

which is equivalent to solving a quadratic equation in the unknown.
In the second level, the unknown partial derivatives are

∂2π

∂x2
(z),

∂2π

∂x∂y
(z),

∂2π

∂y2
(z),

∂κ

∂x
(z),

∂κ

∂y
(z). (16)

From the Cauchy Problem, the following system









f1 + g1u f2 + g2u 0 0 0
0 f1 + g1u f2 + g2u 0 0
g1 g2 0 r 0
0 g1 g2 0 r























∂2π
∂x2 (z)
∂2π
∂x∂y

(z)
∂2π
∂y2 (z)
∂κ
∂x

(z)
∂κ
∂y

(z)















=









ξ1
1(z)

ξ1
2(z)

ζ1
1 (z)

ζ1
2 (z)









(17)

where

ξ1
1(z) = −∂π

∂x
(z)

(

∂f1

∂x
(z) +

∂g1

∂x
(z)u(z)

)

− ∂π

∂y
(z)

(

∂f2

∂x
(z) +

∂g2

∂x
(z)u(z)

)

− ∂l

∂x
(z)

−1

2

∂r

∂x
(z)u2(z)

ξ1
2(z) = −∂π

∂x
(z)

(

∂f1

∂y
(z) +

∂g1

∂y
(z)u(z)

)

− ∂π

∂y
(z)

(

∂f2

∂y
(z) +

∂g2

∂y
(z)u(z)

)

− ∂l

∂y
(z)

−1

2

∂r

∂y
(z)u2(z)

ζ1
1 (z) = 0

ζ1
2 (z) = 0

is satisfied by the vector of the unknowns (17). Again we select the y-direction so

that the partial derivatives ∂2π
∂x2 and ∂κ

∂x
are known and the linear system





f2 + g2u 0 0
f1 + g1u f2 + g2u 0

g1 g2 r











∂2π
∂x∂y

(z)
∂2π
∂y2 (z)
∂κ
∂y

(z)






=













ξ1
1(z) − (f1 + g1u)∂2π

∂x2 (z)

ξ1
2(z)

ζ1
1 (z) − g1

∂2π
∂x2 (z) − r ∂κ

∂x
(z)













(18)

is now easily solved through matrix inversion as long as f2+g2u(z) 6= 0 and r(z) 6= 0.
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The third level involves the following unknown partial derivatives:

∂3π

∂x3
(z),

∂3π

∂x2∂y
(z),

∂3π

∂x∂y2
(z),

∂3π

∂y3
(z),

∂2κ

∂x2
(z),

∂2κ

∂x∂y
(z),

∂2κ

∂y2
(z).

Here is the linear system from the Cauchy Problem:

2

6

6

6

6

6

4

f1 + g1u f2 + g2u 0 0 0 0 0
0 f1 + g1u f2 + g2u 0 0 0 0
0 0 f1 + g1u f2 + g2u 0 0 0
g1 g2 0 0 r 0 0
0 g1 g2 0 0 r 0
0 0 g1 g2 0 0 r

3

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∂3π

∂x3
(z)

∂3π

∂x2∂y
(z)

∂3π

∂x∂y2
(z)

∂3π

∂y3
(z)

∂2κ

∂x2
(z)

∂2κ
∂x∂y

(z)
∂2κ

∂y2
(z)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

ξ2

1
(z)

ξ2

2
(z)

ξ2

3
(z)

ζ2

1
(z)

ζ2

2
(z)

ζ2

3
(z)

3

7

7

7

7

7

7

5

(19)

where

ξ
2

1(z) = −2
∂2π

∂x2
(z)

„

∂f1

∂x
(z) +

∂g1

∂x
(z)u(z) + g1(z)

∂κ

∂x
(z)

«

−

∂π

∂x

„

∂2f1

∂x2
(z)f1(z) +

∂2g1

∂x2
(z)u(z)

+2
∂g1

∂x
(z)

∂κ

∂x
(z)

«

− 2
∂2π

∂x∂y
(z)

„

∂f2

∂x
(z) +

∂g2

∂x
(z)u(z) + g2(z)

∂κ

∂x
(z)

«

−

∂π

∂y

„

∂2f2

∂x2
(z)f2(z) +

∂2g2

∂x2
(z)u(z) + 2

∂g2

∂x
(z)

∂κ

∂x
(z)

«

−

∂2l

∂x2
(z) − 2

∂r

∂x
(z)κ(z)

∂κ

∂x
(z) − r(z)(

∂κ

∂x
(z))2 − r(z)κ(z)

∂2κ

∂x2
(z) −

1

2

∂2r

∂x2
κ

2(z)

ξ
2

2(z) = −

∂2π

∂x2
(z)

„

∂f1

∂y
(z) +

∂g1

∂y
(z)u(z) + g1(z)

∂u

∂y
(z)

«

−

∂2π

∂x∂y
(z)

„

∂f1

∂y
(z) +

∂g1

∂y
(z)u(z) + g1(z)

∂u

∂x
(z)

«

−

∂π

∂x

„

∂2f1

∂x∂y
(z)f1(z) +

∂2g1

∂x∂y
(z)u(z) +

∂g1

∂x
(z)

∂u

∂y
(z) +

∂g1

∂y
(z)

∂u

∂x
(z)

«

−

∂2π

∂x∂y
(z)

„

∂f2

∂y
(z) +

∂g2

∂y
(z)u(z) + g2(z)

∂κ

∂y
(z)

«

−

∂2π

∂y2
(z)

„

∂f2

∂x
(z) +

∂g2

∂x
(z)u(z) + g2(z)

∂κ

∂x
(z)

«

−

∂π

∂y

„

∂2f2

∂x∂y
(z)f2(z) +

∂2g2

∂x∂y
(z)u(z) +

∂g2

∂x
(z)

∂u

∂y
(z) +

∂g2

∂y
(z)

∂u

∂x
(z)

«

−

∂2l

∂x∂y
(z) −

∂r

∂y
(z)κ(z)

∂κ

∂x
(z) −

∂r

∂x
(z)κ(z)

∂κ

∂y
(z) − r(z)

∂κ

∂x
(z)

∂κ

∂y
(z)

−r(z)κ(z)
∂2κ

∂x∂y
(z) −

1

2

∂2r

∂x∂y
κ

2(z)

ξ
2

3(z) = −2
∂2π

∂x∂y
(z)

„

∂f1

∂y
(z) +

∂g1

∂y
(z)u(z) + g1(z)

∂κ

∂y
(z)

«

−

∂π

∂x

„

∂2f1

∂x∂y
(z)f1(z) +

∂2g1

∂x∂y
(z)u(z)

+2
∂g1

∂y
(z)

∂κ

∂y
(z)

«

−2
∂2π

∂y2
(z)

„

∂f2

∂x
(z) +

∂g2

∂x
(z)u(z) + g2(z)

∂κ

∂x
(z)

«
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−

∂π

∂y

„

∂2f2

∂x∂y
(z)f2(z) +

∂2g2

∂x∂y
(z)κ(z) +

∂g2

∂x
(z)

∂u

∂y
(z) +

∂g2

∂y
(z)

∂u

∂x
(z)

«

−

∂2l

∂y2
(z) − 2

∂r

∂y
(z)κ(z)

∂κ

∂y
(z) − r(z)(

∂κ

∂y
(z))2 − r(z)κ(z)

∂2κ

∂y2
(z) −

1

2

∂2r

∂y2
κ

2(z)

ζ
2

1(z) = 0

ζ
2

2(z) = 0

ζ
2

3(z) = 0.

The Cauchy data on this level are the partial derivatives ∂3π
∂x3 and ∂2κ

∂x2 . It follows that
we obtain a new linear system that can be easily solved through matrix inversion.
The higher oder partial derivatives can be obtained by following the same procedure.

2.2 Regularization technique

Boundary conditions are necessary to find solutions in patches to the HJB PDEs
in patches of neighborhood. However, the HJB PDEs arising from the infinite
horizon optimal control do not have natural boundary conditions except for π(0) =
0. To obviate the problem, the Albrecht’s polynomial solutions are used as the
boundary conditions defined on the zeroth patch. Since these solutions are only
approximation, the ensuing power series solutions defined on the patches can only
be at most as accurate as the Al’brecht polynomials. The regularization methods
are often very useful for recovering the unknowns in the presence of noisy data, in
our case, the noisy boundary conditions.

The standard regularization technique amounts to finding x ∈ R
n where

min ‖b− Ax‖2 + α‖x‖2

where A ∈ R
m×n, b ∈ R

m and α is some positive constant. This is the so-called
Tikhonov regularization. We define ‖ · ‖ as the standard Euclidean norm. We
will consider the case when m < n since the linear systems (17,19) are of this
form. The numerical implementation of the Tikhonov regularization have been
well-developed; e.g. see the papers of Eldén [4] and Voevodin [19]. Similarly, the
choice for the regularization parameter α have been well-studied; see the book of
Engel, Hanke and Neubauer [5] and the references therein. For the error-free b,
several techniques may be applied to find α, namely, the L-curve criterion and the
generalized cross-validation. In our case, we have a noisy b due to the error in the
polynomial estimation on the patch points. There are two schemes for selecting the
best α: one requires an a-priori knowledge of the error level in b and the other is
an a-posteriori strategy based on the discrepancy principle of Morozov [11].

An advantage of this method is that the system of equations for solving the
power series coefficient are obtained easily for each patch since the dependence is
only the patch points and not in the direction in which the Cauchy data is defined;
i.e. the linear system (17,19) holds for all patches.
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3 Numerical Results

We solve problem:

min
u

∫

∞

0

1

2
sin2 x +

1

2

(

y − x3

3

)2

+
1

2
u2 dt

subject to

ẋ =

(

y − x3

3

)

sec x

ẏ =

(

x2y − x5

3

)

secx + u

With the nonlinear transformation

z1 = sin x

z2 = y − x3

3
,

the optimal control above is equivalent to

min
u

∫

∞

0

1

2
|z|2 +

1

2
u2 dt

subject to

ż1 = z2

ż2 = u.

The true cost and control solutions are the following:

π(z) =
1

2
z′

[ √
3 1

1
√

3

]

z

κ(z) = −[1
√

3]z.

In Figure 1, the Cauchy data are used to approximate the coefficients of the
power series solutions. In Figure 2, the regularization technique is used for finding
the coefficients of the power series. Notice that the lateral boundaries of the patches
do not match up nicely. In addition, observe that the error graph dips the most
exactly at the lateral boundaries of the patches. From these plots, the use of Cauchy
data gives better numerical results on the patches and on the lateral boundaries.
Although as the level of patching increases, maintaining the same accuracy on the
patches requires smaller patch size. We are currently working on smoothing the
lateral boundaries and experimenting on better patching schemes. Figure 3 gives
a close look at the regularized patchy cost, its contour plots and the patch points
represented as the red circles. Notice that the plot gives a crude approximation of
the closed contours unlike the smooth contour plots of Al’brecht solutions where at
some level set the contour breaks open.
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Figure 1. Patchy Cost with the Cauchy Data
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Figure 2. Patchy Cost without the Cauchy Data
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