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Abstract. We describe two regularization techniques based on optimal control for
solving two types of ill-posed problems. We include convergence proofs of the regu-
larization method and error estimates. We illustrate our method through problems in
signal processing and parameter identification using an efficient Riccati solver. Our
numerical results are compared to the same examples solved using Tikhonov regular-
ization.
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1. Introduction

In this work we consider control-theoretic methods for the construction of regular-
ization operators for ill-posed problems. As a main tool we make use of the well-known
Riccati equation and efficient numerical methods for solving it.

We consider two types of ill-posed problem. At first we construct regularization
operators for abstract ill-posed problems in Hilbert spaces. We reformulate these
problems in the spirit of the dynamic regularization approach [8]. However, we take
a different technique to regularize them by casting it as an infinite-horizon optimal
control problem.

For the second type of ill-posed problem, we consider a specific parameter estima-
tion problem for the heat equation. This particularly problem includes a naturally
defined evolution eqution, namely, the heat equation. Our approach takes advantage
of this system and we propose a dynamic regularization which propagates in time.

The common theme between these two methods is to formulate the problem as a
quadratic minimization problem with a linear dynamics constraint. The solutions for
both problems require solving the Riccati equation. In addition, we develop numerical
regularization algorithms based on an efficient Riccati solver [10].

We consider the following ill-posed problems:

Problem 1: Approximate the solution u of

Fu = y(1)

where F is a bounded linear operator between Hilbert spaces U to X, repre-
senting an ill-posed problem.

Problem 2: Reconstruct a solution to the heat equation from overdetermined
boundary data.
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A simple example of problem 1 is an integral equation of the first kind

Fu =
∫ 1

0

k(s− t)u(t)dt.(2)

where F is a blurring operator with a convolution kernel. We want to reconstruct
u from possibly noisy data y. Because we assume ill-posedness of the problem the
inverse of F does not exist or is not continuous. This is the typical case for equation (2)
and for many inverse problems.

A standard treatment for ill-posedness is to look at a generalized solution defined
by a solution to the least square problem

(3) u = arg min
u∈U

‖Fu− y‖2.

With the least square formulation above, a minimizer in (3) solves the normal
equations

F ∗Fu = F ∗y.

This problem does not have a solution for all y nor is a solution unique if it exists at
all. But for a dense set of data y a solution exists, and we can define a unique one by
a so called minimal-norm solution:

u† = arg min
u sol.to(3)

‖u‖.

The mapping F † : y → u† defines a generalized inverse, the Moore-Penrose inverse F †

[5]. However, for ill-posed problems, such as equation (2), the Moore-Penrose inverse,
is not continuous. To obtain a feasible numerical algorithm it has to be approximated
by a sequence of stable operators, the regularization operators. Regularization is the
approximation of an ill-posed problem by a family of well-posed problems. In 1963,
Tikhonov introduced a stable method for numerically computing solutions to inverse
problems. He proposed to minimize the Tikhonov functional

‖Fu− y‖2 + α‖u‖2(4)

for some α > 0. Thus, the solution u of Problem 1 is approximated by a family of
solutions,

uα = (F ∗F + αI)−1F ∗y.

Another choice of functionals is to minimize

‖Fu− y‖2 + α‖∇u‖2L2

for some α > 0.
It can be shown that under reasonable conditions uα converges to u† in the limit

α → 0. This technique can be generalized by choosing other norms or seminorms as
penalty functional. One important choice in image processing is the bounded variation
seminorm, which leads to the Rudin-Osher-Fatemi method [12].

Our approach is based on dynamic regularization; we approximate the solution
u† by a dynamic process which converges to u† in the limit as time goes to infinity.
The dynamic process is constructed by minimizing the following functional which has
some resemblance to (4).

∫ ∞

0

‖Fu(t)− y‖2 + ‖u′(t)‖2 dt.
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In Section 2, we formulate this problem as a linear quadratic control problem where a
regularization parameter is introduced through the dynamics of the problem. By con-
trol theory, a solution is constructed from an algebraic Riccati equation. In Section 3
we investigate the regularization properties of this procedure and prove convergence
and convergence rates of this method.

In Problem 2, we consider a Cauchy problem for the heat equation:

wt = ∆w on Ω× [0,∞),

subject to the initial and boundary conditions

w(x, 0) = w0(x) x ∈ Ω
w(x, t) = 0 on ∂Ω \ Γ2 × [0,∞)

∂w(x, t)
∂n

= v(t) on Γ2 × [0,∞)

We want to reconstruct the heat flux v(t) on Γ2 from the measurements of the heat
flux on another part of the boundary Γ1, where x ∈ Ω, Γ1, Γ2 ⊂ ∂Ω and Γ1 ∩ Γ2 = ∅.
This particular problem can be written as an inverse problem where F is the operator

F : H−1/2(Γ2)× [0,∞) → H−1/2(Γ1)(5)

v → ∂w(x, t)
∂n

and thus, can be solved similarly as for problem 1. However, such a formulation
neglects the inherent time-structure of the heat equation. Treating the unknown
solution v as control variable and denoting y(t) := Fv as the given data allows to apply
the optimal control paradigm. In Section 4 we use again control-theoretic methods to
find a regularization for this problem. Finally we outline the numerical aspects of our
algorithm in Section 5 and give some numerical results for the regularization method
for Problem 1 and Problem 2 in Section 6.

2. Regularization Problem I

Let X and Y be Hilbert spaces. Consider the inverse problem 1 of recovering u
from the data y where F : X → Y is a linear bounded operator.

In [8] this problem was treated by dynamic regularization, i.e. a regularized solution
was constructed by introducing an artificial time-variable u(t) and minimizing the
functional ∫ T

0

‖Fu(t)− y‖2 + ‖u′(t)‖2 dt.

Although the original problem is stationary, the new time-dependent problem is con-
venient as it allows a formulation of a quadratic optimization problem with a linear
dynamics. Regularization is introduced by penalizing the time derivative of u, con-
trary to the usual Tikhonov regularization, where a spacial norm (such as L2(Ω))
or derivatives on the spacial variable is penalized. It was also shown in [8] that the
minimizer u(T ) converges to the minimal norm solution u† for noise-free data as
T →∞.

In our new approach we consider a similar functional but with T = ∞; i.e. we
consider an infinite-time horizon problem

(6) J(u) :=
1
2

∫ ∞

0

‖Fu(t)− y‖2 + ‖u′(t)‖2dt.
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As in the finite-time case this functional leads to a linear quadratic control problem.
By introducing the new variables ε(t) := Fu(t)−y and v(t) := u′(t), the minimization
over (6) is now equivalent to the following problem

min
v

1
2

∫ ∞

0

‖ε‖2 + ‖v‖2 dt(7)

subject to the dynamics

ε̇(t) = Fv(8)
ε(0) = Fu0 − y =: ε0.

We know that a minimizer at infinity, u(∞) = F †y, satisfying the problem above
is equivalent to computing the Moore-Penrose inverse F †, which is unbounded for
ill-posed problem. Then the problem (7-8) provides a method for computing a dis-
continuous operator which cannot be done in a stable way. Therefore, this problem
is not stable.

In order to deal with the instability we have to replace (7-8) by an approximate sta-
ble solution. Keeping T finite is one possibility, but we propose another regularization
by replacing the dynamics (8) by

ε′α(t) = Aαεα + Fvα

where Aα is bounded linear operator depending on a regularization parameter α such
that limα→0 Aα = 0.

Then the new regularized problem is the following:

min
vα

1
2

∫ ∞

0

‖εα‖2 + ‖vα‖2 dt(9)

subject to the dynamics

ε̇α(t) = Aαεα + Fvα(10)
εα(0) = Fu0 − y = ε0.

The solution of the regularized optimal control problem on an infinite-time horizon
is closely related to stationary solution of the following operator algebraic Riccati
equation [15, 4],

A∗αP + PAα − PFF ∗P + I = 0.

where P is the unknown. We give some basic definitions and theorems which ensure
existence (and uniqueness) of the operator P (see [4],[15]).

Definition 2.1. The pair (Aα, F ) is said to be exponentially stabilizable if there exists
a linear, bounded K such that Aα + FK generates an exponentially stable semigroup;
i.e. if in the (10), the control is vα = Kεα(t), then

ε̇α(t) = (Aα + FK)εα

and
εα(t) = S(t)ε0 −→ 0 as t −→∞

where S(t) is semigroup for t ≥ 0.

Definition 2.2. The pair (Aα, I) is said to be exponentially detectable if there exists
a linear, bounded L such that Aα + L generates an exponential stable semigroup.
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Theorem 2.3. If the pair (Aα, F ) is exponentially stabilizable, then the Riccati equa-
tion has at least one linear, bounded, and nonnegative solution P .

Theorem 2.4. If the pair (Aα, F ) is exponentially stabilizable and (Aα, I) is exponen-
tially detectable, then the Riccati equation has a unique linear, bounded, and nonneg-
ative P and Aα + FK generates an exponential stable semigroup where K = −F ∗P .

It follows that Aα +FK is a bounded linear operator and hence, the exponentially
stable semigroup is e(Aα+FK)t; i.e.

εα(t) = e(Aα+FK)tεα(0) → 0

as t →∞.
Moreover, since u′α(t) = vα(t), then the integrated optimal control is the following:

u∗α = u0 +
∫ ∞

0

vα(s) ds

= u0 +
∫ ∞

0

Kεα(s) ds

= u0 + K

∫ ∞

0

e(Aα+FK)sεα(0) ds.

For simplicity we choose u0 = 0. Then it follows

u∗α = Rαy

with the regularization operator

Rα = F ∗P (Aα − FF ∗P )−1.(11)

In the next section we will show that this is indeed a regularization, and that
u∗α → u† as α → 0 for the choice Aα = −αI.

Furthermore, the ill-posedness of problem (8) can be further discussed using the
following control-theoretic arguments.

Theorem 2.5. The linear system (8) is not exponentially stabilizable; i.e. there
does not exists a linear, bounded K such that FK generates an exponentially stable
semigroup.

Proof: Suppose there exists a linear, bounded K such that FK generates an
exponentially stable semigroup. Then, the pair (0, F ) is exponentially stabilizable.
By Theorem 2.3, there exists linear, bounded, and nonnegative P satisfying

PFF ∗P = I,

the Riccati equation corresponding to the linear-quadratic regulator problem (7-8).
Observe that P = (FF ∗)−

1
2 . However, for ill-posed problems 0 is in σ(FF ∗), the

spectrum of FF ∗, thus the eigenvalues of (FF ∗)−1 are unbounded. Thus, P is an
unbounded operator. Therefore, we get a contradiction.

3. Regularization Properties

In this section we express the operator Rα : y → uα through the spectral filter
function gα. In the spirit of [5], we prove convergence as well as calculate the rates
of convergence.
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3.1. Spectral Filter Function. Let

A = −αI

in the operator Riccati equation where α > 0 is the regularization parameter and I
is the identity operator. Then P is the positive solution of

−2αP − PFF ∗P + I = 0.(12)

Denote by Fλ the spectral family associated with FF ∗. From (12) it follows that P
has a representation via the spectral measure

P =
∫ ‖F‖2

0

p(λ)dFλ.

with an appropriate function p(λ). Recall that the regularization operator is defined
as Rα = F ∗P (Aα − FF ∗P )−1, which yields

Rα = F ∗gα(FF ∗)

where

gα(FF ∗) =
∫ ‖F‖2

0

p(λ)
α + λp(λ)

dFλ.(13)

From the operator Riccati equation (12), we have the condition

0 =
∫ ‖F‖2

0

1− 2αp(λ)− λp(λ)2dFλ.

By simple algebra this can be solved to

p±(λ) =
1
λ

(
−α∓

√
α2 + λ

)
.

In control theory only the positive P is meaningful and computed, hence we set

p(λ) =
1
λ

(
−α +

√
α2 + λ

)
.

The spectral filter function (13) becomes

gα(FF ∗) =
∫ ‖F‖2

0

−α +
√

α2 + λ

λ
√

α2 + λ
dFλ.

The following identity, which can easily be proven by the Weierstrass aproximation
theorem, is well-known in spectral theory:

F ∗gα(FF ∗) = gα(F ∗F )F ∗.

Finally this leads to the representation of the regularization operator

(14) Rα = gα(F ∗F )F.
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3.2. Estimates and Convergence. We denote the regularized solution from the
exact data y ∈ R(F ) (R(F ) is the range of F ) and the noisy data yδ as u∗α and u∗α,δ,
respectively.

Recall that

gα(λ) =
−α +

√
α2 + λ

λ
√

α2 + λ
.

Observe that

|λgα(λ)| =
∣∣∣∣∣
−α +

√
α2 + λ√

α2 + λ.

∣∣∣∣∣ ≤ 1.(15)

In addition, for λ > 0 fixed we have

lim
α→0

gα(λ) =
1
λ

.(16)

Since gα is a continuous function on [0, ‖F‖2] satisfying the properties (15-16), The-
orem 4.1 in [5], is applicable, which gives the convergence result for noise-free data:

‖u∗α − u†‖ → 0 as α → 0, for y ∈ R(F ).(17)

Moreover, Theorem 4.2 in [5] with

Gα := sup
λ∈[0,‖F‖2]

|gα(λ)| = 1
2α2

(18)

calculated using L’Hopital’s rule leads to

‖u∗α − u∗α,δ‖ ≤ δ
√

Gα ≤ δ√
2α

(19)

whenever ‖y − yδ‖ ≤ δ with y ∈ R(F ). The estimate (19) shows the stability of the
method when noise is present. Notice that the equation (17) only gives the conver-
gence of the u∗α to u†. In the following theorems, we find the rates of convergence. Note
that convergence rates for regularization operators can only be find if an additional
abstract smoothness condition on the exact data, the so called source condition (20)
is satisfied [5]. In Theorem 3.1 we state the precise convergence rates results under
such a condition:

Theorem 3.1. Let u∗α := Rαy, with Rα as in (11). If the data are exact, i.e.
y = Fu†, and the exact solution satisfies a source condition

(20) u† ∈ R((F ∗F )µ)

for µ > 0, then we have the error estimate

‖u∗α − u†‖ ≤ Cα2µ∗ for µ∗ = min(µ, 1
2 ).

Proof: First, by the spectral representation (14) we have

u† − u∗α = u† − gα(F ∗F )F ∗y,

which implies

u† − gα(F ∗F )F ∗y = (I − gα(F ∗F )F ∗F )u†.

Define

rα(λ) := 1− λgα(λ).
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By (20),

u† − u∗α = rα(F ∗F )u† = rα(F ∗F )(F ∗F )µw

for some w ∈ X. It follows that

‖u† − u∗α‖ ≤ Cλµ|rα(λ)|,
with C = ‖w‖. According to [5], Theorem 4.3, it suffices to find a bound ωµ(α), such
that

λµ|rα(λ)| ≤ ωµ(α) ∀λ ∈ [0, ‖F‖2](21)

to establish the rates

‖u∗α − u†‖ ≤ ωµ(α).

We find that maximum on the left hand side in (21) over λ ∈ R+ is obtained at
λ = 2α2µ

1−2µ for µ ≤ 1
2 , resulting in

ωµ(α) =
{ O(α2µ) µ ≤ 1

2
O(α) µ ≥ 1

2

Hence,

‖u∗α − u†‖ ≤ Cα2µ∗

where µ∗ = min(µ, 1
2 ) for some C > 0.

The previous theorem establishes convergence rates for exact data in terms of the
regularization parameter α. For the case of noisy data it is a general result [5] that no
convergence holds for α → 0. Instead the regularization parameter has to be coupled
to the noise level δ = ‖y − yδ‖. A function α(δ) which relates the regularization pa-
rameter α to the noise level is named a parameter choice rule. Having an appropriate
parameter choice rule the correct notion of convergence (and convergence rates) is to
look for estimates ‖u∗α(δ),δ −u†‖ in terms of δ. Similar as for the noise free case again
a source condition is necessary for this. Following the proofs in [5] we can show that
a certain parameter choice rule gives convergence rates for noisy data:

Theorem 3.2. Given the assumptions in Theorem 3.1. If the data are noisy with
noise level δ, i.e. ‖y − yδ‖ ≤ δ with y ∈ R(F ), and the source condition (20) is
satisfied, then the parameter choice rule α ∼ δ

1
2µ∗+1 yields the the total error

‖u∗α,δ − u†‖ ≤ C̃δ
2µ∗

2µ∗+1

for µ∗ = min(µ, 1
2 ).

Proof: From the Theorem 3.1, we obtain

ωµ(α) = O(α2µ)(22)

and from equation (18) we have

Gα = O
(

1
α2

)
.(23)

By the Corollary 4.4 in [5] the estimates (22-23) suggest an optimal order parameter
choice rule

α ∼ δ
1

2µ∗+1
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for µ∗ = min(µ, 1
2 ). It follows from Theorem (3.1) that

‖u∗α − u†‖ ≤ Cδ
2µ∗

2µ∗+1 .(24)

Hence, by the bound on the propagated data error (19) and the estimate (24), we
obtain the estimate for the total error

‖u∗α,δ − u†‖ ≤ Cδ
2µ∗

2µ∗+1 +
δ√
2α

≤ C̃δ
2µ∗

2µ∗+1

for some C̃ > 0.

The result in Theorem 3.2 gives convergence rates, which are of optimal order
for µ∗ ≤ 1

2 . It also shows that this optimal order result breaks down for µ > 1
2 .

This phenomenon is called saturation; it is quite common in other regularization
methods, such as, Tikhonov regularization [5]. The point of break down is termed
the qualification of the method. Thus our case the qualification is 1

2 .
In the next section we focus on problem 2, the heat equation problem with overde-

termined boundary conditions:

4. Regularization Problem II

4.1. Cauchy Problem for the Heat Equation. Let Ω be a smooth domain, and
Γ1, Γ2 ⊂ ∂Ω where Γ1 ∩ Γ2 = ∅. Consider the homogeneous heat equation problem

(25) wt = ∆w on Ω× [0,∞),

subject to the initial and boundary conditions

w(·, 0) = w0(x)(26)
w(·, t) = 0 on ∂Ω \ Γ2 × [0,∞)(27)

∂
∂nw(·, t) = v(t) on Γ2 × [0,∞)(28)

Suppose Γ2 is part of the boundary which is not accessible, but we can measure
the heat flux on another part Γ1; i.e., the data y(t) for our problem are

y(t) =
∂

∂n
w(·, t) on Γ1 × [0,∞)(29)

The inverse problem is to find v(t) and w(t) such that (25)-(29) are satisfied.
This problem can be formulated within the operator theoretic framework, consider

an operator F which maps

v → ∂

∂n
w(·, t)

from H−1/2(Γ2)× [0,∞) to H−1/2(Γ1)× [0,∞) and w satisfies (25-28). This leads to
the ill-posed operator equation

Fv = y.

Now we could use the previous techniques to tackle this equation by introducing an
artificial time variable and a dynamics. However there is no need for this, as the
problem already has a naturally defined dynamics by the heat equation. Note that
for Problem 1 we used a linear quadratic control problem. This involved a pair of
state and control variable (ε(t), v(t)), a linear evolution equation and a quadratic
functional for them. We use a similar idea here by considering w(t) as state variable
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and z = (v(t), y(t)) as control variable. The dynamics of the system is then governed
by the equation in weak form

(30) (wt, φ) = −(∇w,∇φ) +
∫

Γ1

y(t)φds +
∫

Γ2

v(t)φds ∀φ ∈ Z,

where Z = {φ ∈ H1(Ω) |φ = 0 on Ω \ (Γ1 ∪ Γ2)}. This equation has the similar
structure as (8) where w corresponds to eα and the pair z = (y(t), v(t)) corresponds
to vα. What remains to be found is a functional to minimize. The difference to the
ideas in Section 2 is that the dynamics is already stable, so there is no need to include
a regularization. Instead a penalty term should be included into the functional. The
function w(t) is completely determined by the evolution equation (30) and the initial
conditions (26). The additional condition that we impose on a solution to the problem
is (27). Then, it follows that w is a minimizer of the functional

J(u) :=
1
2

∫ ∞

0

∫

Γ1

w2dx dt.

As mentioned above we add a penalty term involving the control variable z = (v, y)
as a regularization, then we arrive at the new functional

Jα(u) :=
1
2

∫ ∞

0

[∫

Γ1

w2dx +
∫

Γ2

〈z,Rz〉dx

]
dt

=
1
2

∫ ∞

0

〈u, u〉L2(Γ1) + 〈z,Rz〉L2(Γ2) dt.

where

R =
[

I 0
0 αI

]
.

Given the functional Jα in (31) and the heat equation (30) we have the ingredients
for formulating the problem as an optimal control problem in the infinite dimensional
space where w is the state variable and z = (v, y) is the control variable. Summing
up, we now consider the linear quadratic regulator problem of minimizing a cost
functional

J(u) =
∫ ∞

0

〈u, u〉L2(Γ1) + α〈z,Rz〉L2(Γ2) dt(31)

subject to
wt = ∆w

∂
∂nw(., t) = y(t) on Γ1 × [0,∞)
∂

∂nw(., t) = v(t) on Γ2 × [0,∞)(32)
w = 0 on ∂Ω \ (Γ2 ∪ Γ1)× [0,∞).

This has the structure we want and as in Section (2), we can define the feedback
operator K

z = (v(t), y(t)) = Kw(t).

Note that K is independent of the time-variable t, as only to be calculated once by
solving the corresponding Riccati equation. Hence if w(t) is known we can elimi-
nate the control from (30) and solve the resulting equation. This gives an evolution
equation which can be solved progressing in time.
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After a spacial discretization the optimization problem can be written as

Jn,α =
∫ ∞

0

(w, Cw) + (z, R̃z)dt

subject to the constraint

(33) wt = Aw + B1y(t) + B2v(t).

Here, C denotes a matrix corresponding to the discrete trace operator T : w → w|Γ1 ,
B1, B2 correspond to the trace operator, which maps w to the normal derivatives on
Γ1 and Γ2, R̃ is the trace operator which maps z = (y, v) → z|Γ2 . Finally, A is the
discretization of the Laplacian. We denote by the matrix B = [B1 B2]. Then the
feedback operator is obtained by solving the Riccati equation,

A′P + PA + K ′R̃−1K + C = 0(34)

for P where feedback matrix
K = −B′P.

This yields

(35) (y, v) = Kw(t) = (K1w(t),K2w(t))

However, since y(t) is given we only need the values for v(t), leading to the evolution
equation

(36) wt = Aw + B1y(t) + B2K2w.

The unknown control v(t) is now removed from the system and the equation can be
solved for w in a usual way. This equation can be discretized in time by an appropriate
explicit or implicit scheme. The regularized solution for the heat flux on Γ2 can be
found by applying K to the computed solution w(t) at each time step via (35).

In comparison to an operator-theoretic and least-squares approach the heat flux
v can be found by progressing in time. That means that v(t) can be computed
independent of the values of w(t′) for t′ > t. This is in contrast to an usual iterative
regularization scheme using (6) (e.g. Landweber iteration or Conjugate Gradient
Method), where in each iteration step an evolution equation has to be solved.

In the next sections we look at the numerical approximations and results of our
method.

5. Numerical Method For The Riccati Equation

Both ill-posed problems considered in the previous sections require numerical so-
lution of the algebraic Riccati equation. The computational techniques of finite ele-
ment and quadrature rule were used to approximate the functionals in optimization
problems (9-10) and (31-32). The partial differential equations (10) and (32) were
discretized using finite difference schemes. These numerical approximations reduce
the optimization problems to linear-quadratic regulator problems in finite dimensional
space.

The linear-quadratic regulator problem is

V (x) = min
u

1
2

∫ ∞

0

x′Qx + u′Rudt
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subject to the dynamics

ẋ = Ax + Fu

x(0) = x0

where the state variable x ∈ Rn and the control u ∈ Rm. We assume Q is symmetric
and nonnegative matrix and R is symmetric and positive definite matrix. It is well
known that the solution we seek has the following form: the minimum cost is a
quadratic function

V (x) = x′Px(37)

and the optimal control feedback is a linear function

u = Kx(38)

where K is the control law.
Through the dynamic programming technique [1], the solutions (37) and (38) of

the regulator problem are realized through the algebraic Riccati equation,

A′P + PA−K ′RK + I = 0(39)
and

K = −R−1F ′P(40)

Then the Riccati equation (39) can be recasted as a Lyapunov equation

(A′ + K ′F ′)P + P (A + FK) = D′D(41)

where D′ = [PF Q1/2]. If the spectrum of A + FK lies in the left-half complex
plane, C− and D′D is positive definite, then a positive definite solution P exists for
the Lyapunov equation (41).

From the equations (41) and (40), the matrices P and K can be solved simul-
taneously. The well known iterative technique is the Newton-Kleinman method [7].
Other variants of the Newton-Kleinman can be found in [2, 13, 10, 11]. We use an
efficient algorithm [10] to approximate the matrix P solution of the Riccati equation
of high order. Large Riccati equation often arises from approximations of K and P
from partial differential equations. The inverse Problem 1 typically has a large data
size n resulting in a high order Riccati equation in search for the unknown matrix
P whose dimension is n × n. I n practice, the number of unknown states of u is set
to the number of data n. Current methods based on eigenvalue estimation fail to
give good approximation in high dimension because high frequency modes are not
included. The Riccati solver in [10, 11] is based on the Newton-Kleinman iteration
[7] with the Cholesky-ADI scheme Lyapunov solver [14, 9].

The matrix solution P is approximated iteratively using the following scheme:

A′iPi + PiAi = D′
iDi,

where

Ai = (A + FKi),(42)
Ki = −R−1F ′Pi−1,(43)

and
Di = [Pi−1F Q1/2], for i = 0, 1, . . .(44)

Note that the subscript i denotes the iterates. The initial guess K0 is selected such
that σ(A− FK0) ⊂ C−.
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It has been shown in [7] that the iterative scheme above converges quadratically
where the sequence of iterates {Pi}∞i=0 is monotonically decreasing, i.e.

P ≤ Pi+1 ≤ Pi ≤ . . . , for i = 0, 1, . . .

with
lim

i→∞
Pi = P.

Another scheme can be found in [11] where it bypasses the calculation of P and
directly approximates K. For most control problems, only the feedback gain K is
necessary. By directly calculating the gain matrix K, the method describes in [11]
gives considerable amount of savings in computation and memory.

The complexity of the Lyapunov solver for dense A and sparse A are O(JLndn
2)

and O(JLndn), respectively, where JL is the number of Lyapunov iterations, nd is
the number of columns in D, and n is the size of A. The Riccati solver requires
two matrix multiplications per iteration in (42-44). Generally, the number of Riccati
iterations JR << n. Thus, the Cholesky-ADI scheme [14, 9] has a complexity that is
O(n2) for full A and O(n) for sparse A when JL, JR, nd << n.

6. Numerical Results

6.1. Deblurring Problem. We first consider the deblurring problem. This problems
falls into the category of ill-posed equations of problem 1. We take an integral operator
with the mildly smoothing kernel

k(x, y) =

{
1− (x−y)2

0.1 , |x− y|2 ≤ 0.1
0, elsewhere

as the blurring operator. The forward operator F is defined as the integral oper-
ator associated with this kernel. To obtain the discretized F , we use the Galerkin
approximation with piecewise constant basis; i.e. each entries of the matrix is

Fi,j = (φi, Fφj) ∼ 1
n2

k(xi, xj),

where

φi(x) =
{

1, i−1
n ≤ x ≤ i

n
0, elsewhere

Then we derive the associated Riccati equation with this discretized problem. Cal-
culating P , the solution to the Riccati equation, with the solver described in the
previous section, allows us to approximate the regularization operator,

Rα = −F ∗P (Aα − FF ∗P )−1.(45)

Our method is quite robust in sense that the computed Rα is independent of the
data y. This is of course an advantage to the other iterative methods which are data
specific. If only one solution has to be calculated, then the iterative methods are in
general more efficient. We compare our results with Tikhonov regularization because
it is also a multiple data solver. The equation (45) reminds us closely of Tikhonov
regularization, which is defined as

(46) RT = (F ∗F + αI)−1F ∗.

Observe that if P = I and Aα = −αI, then the regularization operator (45) is exactly
the Tikhonov regularization. Since we use an efficient Riccati solver with complexity
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Figure 2. Error vs. α (noisy data)

O(n2) flops our method is dominated mainly by thO(n3) operations in the matrix-
inversion. Thus, our method has the same complexity as of Tikhonov’s method where
matrix-inversion is performed.

We consider the exact solution

u† = 2χ[0.3,0.8]

as a test example where χ denotes the characteristic function.
From Theorem 3.1 the error ‖uα − u†‖ behaves as α2µ. This error is better than

the error of Tikhonov regularization where the order is αµ ([5]). Hence we may choose
a large regularization parameter in (46) which implies that the inversion in (45) is
more stable than the inversion in (46).

Figures 1 and 2 illustrate these results. It shows the error versus the regularization
parameter α for our approach (blue –) and for Tikhonov regularization (red - -) in the
cases of the noise-free data and the noisy data on a log-log scale. In both pictures we
see that the error decreases faster for our method. In figure 2, the optimal parameter
α in the noisy case is larger than the parameter for Tikhonov regularization, which
is in agreement with Theorem 3.1, because an optimal parmeter-choice rule for (46)
is αTR ∼ δ

2
2µ+1 whereas in Theorem 3.1 the parameter-choice rule is α ∼ δ

1
2µ+1 for

µ ∈ [0, 1
2 ]. For Tikhonov regularization, a large parameter-choice α means inverting
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a more stable matrix F ∗F + αI. In summary, we can say that the operator P acts as
a preconditioner for problem 1 with the effect that a more stable operator has to be
inverted than the matrix inverted for Tikhonov regularization.

6.2. Heat Equation. We now turn to the Cauchy problem for the heat equation. We
consider the problem on the unit square Ω = [0, 1]2, where Γ1 is the right boundary
Γ1 = {0} × [0, 1], and Γ2 is the left boundary Γ2 = {1} × [0, 1]. The heat equation is
discretized on a uniform n×n-grid by finite differences. This gives a problem similar
to (33) where all the matrices A,B, C are sparse.

To obtain the feedback operator K so that we can solve equation (36), we first
solve the Riccati equation. This equation is discretized in time by an implicit scheme:

wm+1 = wm + ∆t(Awm+1 + B1y(tm) + B2K2wm+1), tm =
m

∆t
.

The solution to the inverse problem is then obtained by

v(tm) = Kwm.

The first example we want to identify an oscillating function in time and space:

v1(t, x) = sin(20t) sin(2πx)

The second test example is a moving ”hot spot:”

v2(t, x) = exp(−100(x− 0.1 sin(40t)− 0.5)2)

Figure 3. exact and computed solutions for v1

Figure 4. exact and computed solutions for v2
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Figure 3 shows the exact and the computed solution for the first example v1 on
the time interval [0, 0.5]. Figure 4 shows the result for the second example v2.

Figure 5. solution for example 2 with noise

Finally figure 5 shows the result in the case with noisy data. The data are per-
turbed with 5% random noise. The result shows the oscillating pattern of the hot
spot has noisy components in the time direction. The oscillations are expected from
the regularization procedure because this method only penalizes the L2-norm of the
control v; the values of v at different times are hardly correlated. An improvement of
this would be achieved by using a norm which penalizes the time-derivate of v.
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