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SUMMARY

We study the least-squares functional of the canonical polyadic tensor decomposition for third order tensors
by eliminating one factor matrix, which leads to a reduced functional. An analysis of the reduced functional
leads to several equivalent optimization problem, like a Rayleigh quotient or a projection. These formulations
are the basis of several new algorithms: the Centroid Projection method for efficient computation of
suboptimal solutions and fixed-point iteration methods for approximating the best rank-1 and the best rank-R
decompositions under certain nondegeneracy conditions. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 1927, Hitchcock [1, 2] introduced the idea that a tensor is decomposable into a sum of a
finite number of rank-1 tensors. Today, this decomposition is referred to as the canonical polyadic
(CP) tensor decomposition (also known as CANDECOMP [3] or PARAFAC [4]). CP tensor
decomposition reduces a third order tensor to a linear combination of rank-1 tensors, i.e.,

(A)ijk =
R∑
r=1

airbjrckr, (1.1)

where A ∈ RI×J×K , ar = (air)Ii=1 ∈ RI ,br = (bjr)Jj=1 ∈ RJ and cr = (ckr)Kk=1 ∈ RK . The
column vectors ar,br and cr form the so-called factor matrices A ∈ RI×R, B ∈ RJ×R and
C ∈ RK×R. The tensorial rank [2, 5] is the minimum R ∈ N such that T can be expressed as a
sum of R rank-1 tensors.

The problem of interest is to find – if it exists – the best approximate tensor representable in a
CP format with a tensorial rank R from a given (possibly noisy) tensor T ∈ RI×J×K . A standard
approach for this task is to minimize the Frobenius norm of the residual tensor in the least-square
sense:

J(A,B,C) =
∑
i,j,k

(
(T )ijk −

R∑
r=1

airbjrckr

)2

. (1.2)
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A popular iterative method for approximating the given tensor T via its factors (A,B,C) is called
the Alternating Least-Squares (ALS) technique [6, 7, 8]. Independently, ALS was introduced by
Carol and Chang [3] and Harshman [4] in 1970. The ALS method is an application of the nonlinear
block Gauss-Seidel algorithm [9] where the nonlinear optimization (1.2) is reduced into several
least-squares subproblems which are solved iteratively with subsequent updates of the minimizing
factors.

In this paper, the analysis is based on the minimization of the objective function (1.2) through
an elimination of one factor, that is factor A, and thereby a reduction to a minimization over the
factors B and C. This analysis is motivated by the ALS algorithm. The discussion is restricted to
third order tensors, but some of the analysis applies to higher order tensors.

The reduced functional is the basis for an analysis and several numerical algorithms for the
minimization problem (1.2). In Section 3, we define the reduced functional and investigate some of
its properties. The corresponding minimization problem allows reformulations into several forms:
as a Rayleigh quotient type functional and a weighted projection onto the Khatri-Rao range of B
and C. We state necessary conditions for the non-existence of minimizers, derive the optimality
conditions and state some equivalent functionals in the case R = 1, 2. The analysis on the reduced
functional leads to several numerical methods to compute suboptimal or optimal solutions in some
special cases.

In Section 4 we lay the mathematical foundation for some new optimization algorithms and
illustrate the theory with some elementary examples. In Section 5 we describe the corresponding
algorithms, which are useful in different situations: the Centroid Projection Algorithm is a simple
method to compute suboptimal solutions to the least squares minimization problem related to (1.2).
In Section 4.2, we propose an algorithm, FP-R1 (Fixed Point iteration for Rank-1 decomposition),
for the rank-1 least squares problem. The main idea for this algorithm arises from the optimality
conditions for the reduced functional. A globalization strategy applied to FP-R1 with the goal to
compute all stationary points leads to two variants of this algorithm, FP-R1(RIG) (FP-R1 with
Random Initial Guess) and FP-R1(APIG) (FP-R1 with A-Priori Initial Guess). Furthermore, we
derive another numerical method, FP-EX (Fixed Point iteration for EXact decomposition of rank-
R tensors) which is designed to solve the least squares minimization problem when the minimal
value is 0, i.e., when a rank-R decomposition exists. We additionally prove some a-priori estimates
allowing us to use this algorithm for the computation of reasonable suboptimal solutions in the
general case (Algorithm FP-INEX (Fixed Point iteration for INEXact decomposition)).

Finally in Section 6, we perform some numerical experiments for the proposed algorithms.

2. PRELIMINARIES

We denote the scalars in R with lower-case letters (a, b, . . .) and the vectors with bold lower-
case letters (a,b, . . .). The matrices are written as bold upper-case letters (A,B, . . .) and the
symbol for tensors are calligraphic letters (A,B, . . .). The subscripts represent the following scalars:
(A)ijk = aijk, (A)ij = aij , (a)i = ai.

The order of a tensor refers to the cardinality of the index set. A matrix is a second-order tensor
and a vector is a first-order tensor. The scalar product of T , R ∈ RI×J×K is defined as

〈T ,L〉 =
∑
ijk

(T )ijk(L)ijk.

The Frobenius norm of A ∈ RI×J×K is defined as

‖A‖2F =
I∑
i=1

J∑
j=1

K∑
k=1

|aijk|2 = 〈A,A〉,

which is a direct extension of the Frobenius norm of a matrix. Furthermore, we denote by · the usual
matrix product.
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Definition 2.1
The Khatri-Rao product of A ∈ RI×R and B ∈ RJ×R is defined as

A�B = [a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR] ∈ RIJ×R

when A = [a1 a2 . . . aR] and B = [b1 b2 . . . bR].

Here, a⊗ b denotes the Kronecker product of two vectors a ∈ RI , b ∈ RJ yielding a vector of
size IJ with entries that are all possible products of the entries in a and b.

Definition 2.2 (Tucker mode-n product)
Given a tensor T ∈ RI1×I2×I3 and matrices A ∈ RI1×J1 , B ∈ RI2×J2 and C ∈ RI3×J3 , then the
Tucker mode-n products are the following:

T •1 A := (T •1 A)j1i2i3 =

I1X
i1=1

Ti1i2i3ai1j1 , ∀j1, i2, i3 (mode-1 product)

T •2 B := (T •2 B)i1j2i3 =

I2X
i2=1

Ti1i2i3bi2j2 , ∀j2, i1, i3 (mode-2 product)

T •3 C := (T •3 C)i1i2j3 =

I3X
i3=1

Ti1i2i3ci3j3 , ∀j3, i1, i2 (mode-3 product).

Moreover, the Tucker mode products can be combined as in this example:

T •2,3 (B,C) := (T •2,3 (B,C))i1r :=
I2∑
i2=1

I3∑
i3=1

Ti1i2i3bi2rci3r

where B ∈ RI2×R and C ∈ RI3×R.

Definition 2.3 (outer product of vectors)
For vectors a ∈ RI , b ∈ RJ the outer product a ◦ b is the I × J matrix with entries

(a ◦ b)i,j = aibj , ∀i, j

similarly, the outer product of three vectors a ∈ RI , b ∈ RJ , c ∈ RK is the I × J ×K tensor

(a ◦ b ◦ c)i,j,k = aibjck, ∀i, j, k.

3. THE REDUCED OBJECTIVE FUNCTIONAL

We state the reduced objective functional obtained by eliminating one matrix in J. This is one of the
main tools for our analysis. We note that such a functional has already been considered in [10].

Recall the least-squares objective functional in (1.2):

J(A,B,C) =

∥∥∥∥∥T −
R∑
r=1

ar ◦ br ◦ cr

∥∥∥∥∥
2

F

(3.1)

where ‖ · ‖F is the Frobenius norm. The goal is to find minimizers A, B and C of the problem

inf
A,B,C

J(A,B,C).

It is well-known that this infimum is not necessarily attained see, e.g., [11].



4 S. KINDERMANN AND C. NAVASCA

Lemma 3.1
Let B,C be fixed. The solution to the minimization problem

Ã[B,C] := argminA∈RI×RJ(A,B,C) (3.2)

exists. In fact, a minimizer is given by

Ã[B,C] = T •2,3 (B,C) ·G†, (3.3)

where G† is the pseudo-inverse of G which is defined as

G = (B�C)T · (B�C) ∈ RR×R. (3.4)

Proof
With B,C being fixed, (3.2) is a usual finite dimensional linear least squares problem for which it
is well-known that a solution exists. The optimality condition

A ·G = T •2,3 (B,C)

lead to (3.3).

From the definition (3.4), it follows that G is a Gramian matrix for the vectors br ⊗ cr,
r = 1, . . . R, as well as the Hadamard product of BT ·B and CT ·C. Note that G depends on
B and C but we omitted this dependence to avoid exuberant notation. It follows easily that G is
symmetric, and thus so is G†. Moreover, the pseudo-inverse satisfies the Moore-Penrose equation
G† ·G ·G† = G†.

By minimizing the original objective functional over A, we now define the reduced objective
functional as

Jred(B,C) := J(Ã[B,C],B,C) (3.5)

where Ã[B,C] is a minimizer in (3.2). This definition is not dependent on the minimizer we take.
Also, considering the reduced functional does not alter the original problem.

Let {Bn,Cn} be a sequence. We say that {Bn,Cn} is a minimizing sequence for Jred if

Jred(Bn,Cn) n→∞−→ inf
B,C

Jred(B,C).

Proposition 3.2
If {Bn,Cn} is a minimizing sequence for Jred, then {Ã[Bn,Cn],Bn,Cn} is a minimizing
sequence of J and the equality,

inf
A,B,C

J(A,B,C) = inf
B,C

Jred(B,C),

holds. In particular, if (B∗,C∗) are minimizers of Jred, then (Ã[B∗,C∗],B∗,C∗) are minimizers
of J.

Proof
This is a straightforward consequence of the fact that Ã[B,C] in (3.3) always exists.

3.1. Analysis of the reduced objective function

The introduction of Jred reduces the number of unknown factors by one. In this section, we
explicitly calculate Jred. We now define a symmetric 4th-order tensor (and its matricization) which
plays a similar role as ATA in the theory of the singular value decomposition for linear operators.

Definition 3.3
Let us define the fourth order tensorM∈ RJ×K×J×K as

Mαβγδ :=
∑
i=1

TiαβTiγδ ∈ RJ×K×J×K . (3.6)
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The matricization ofM∈ RJ×K×J×K is denoted by M ∈ RJK×JK such that

(M)ij = (M)αβγδ (3.7)

where i = [α+ (β − 1)J ] and j = [γ + (δ − 1)J ]. Clearly M is symmetric. Now, we find the
eigendecomposition:

M = V · S̄ ·VT

where V is an orthogonal matrix and S is a diagonal matrix in which the eigenvalues (λi)JKi=1 =
diag(S̄) are in nonincreasing order. The matricization of the column vectors of V = (v1, . . .vJK) ∈
RJK×JK are denoted by Vi ∈ RJ×K , i.e.,

(vi)[α+(β−1)J] = (Vi)α,β ,

and the rank of M is denoted by RM .

Remark 3.4
Here we defined M and the corresponding singular vectors by contracting over the first mode (of
size I). Of course, the same can be done by contracting over the second or third. Which of these
possibilities is appropriate, depends on the dimension. In general, we think that it is best to contract
over the mode of largest dimension. This has the effect that the complexity of our algorithms (which
depends on the product of the remaining dimensions) is smaller than otherwise.

Remark 3.5
It was shown in [12] that due to the isomorphic group structures between the sets of invertible
matrices and tensors, structures like symmetry and eigendecomposition are preserved through a
matricization.

In accordance with the notation of Section 2 we also use the Tucker product for fourth order
tensors, e.g.,

M•1,2,3,4 (a,b, c,d) :=
∑

α,β,γ,δ

Mαβγδaαbβcγdδ ∈ R.

Lemma 3.6
The reduced objective functional can be expressed in the following form:

Jred(B,C) = 〈T , T 〉 − Tr(G† · (B�C)T ·M ·B�C) (3.8)

=

(
‖T ‖2F −

R∑
r,s

(G†)srM•1,2,3,4 (br, cr,bs, cs)

)
(3.9)

where M∈ RJ×K×J×K is defined in (3.6), G† is the the pseudo-inverse of G in (3.4) and Tr
denotes the matrix trace.

Proof
Expanding (3.1) yields

J(A,B,C) = 〈T , T 〉 − 2〈T , (B�C) ·AT 〉+ 〈(B�C) ·AT , (B�C) ·AT 〉.

Using (3.3), the symmetry of G, and (3.7) this reduced to

Jred(B,C) = J(Ã[B,C],B,C) = 〈T , T 〉 − 〈T , (B�C) ·A[B,C]T 〉
= 〈T , T 〉 − Tr(T •2,3 (B,C) ·G† · T •2,3 (B,C)T )
= 〈T , T 〉 − Tr(G† · (B�C)T ·M ·B�C).

It can be seen that the reduced functional only depends on the matrix range of B�C (the so-
called Khatri-Rao range defined below in Definition 3.21) and not on B and C itself, as the following
Lemma shows.
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Lemma 3.7
Let U,Σ,W be the matrices in the singular value decomposition of (B�C), i.e., (B�C) =
U ·Σ ·WT ∈ RJK×R with U ∈ RJK×JK orthogonal, Σ ∈ RJK×R diagonal and W ∈ RR×R
orthogonal. Then,

Jred(B,C) =

‖T ‖2F − R̄∑
r=1

〈uk,Muk〉


where M is the matricization of M in (3.6) and R̄ = rank(Σ) = rank(B�C) and uk is the k-th
column of U.

Proof
Starting from (3.8) it follows that

Jred(B,C) = 〈T , T 〉 − 〈PB�C,M〉 (3.10)

with
PB�C = (B�C)G†(B�C)T . (3.11)

From the Moore-Penrose equations, it follows that P is the orthogonal projector onto the range of
B�C,

PB�C =
R̄∑
k=1

uk ◦ uk, (3.12)

which proves the Lemma.

The previous lemma allows us to rewrite the minimization problem for Jred into a Rayleigh
quotient type problem.

Theorem 3.8
The minimization problem for Jred(B,C) is equivalent to the following maximization problem

sup
u1,...,uR̄

R̄∑
r=1

〈ur,Mur〉, (3.13)

where u1, . . . ,uR̄ is an orthonormal basis of range(B�C) with R̄ = rank(B�C). Equivalence
holds in the following sense: if (B,C) are (approximate) minimizers of Jred(B,C), then any
orthonormal basis of range(B�C) is a(n) (approximate) maximizer of (3.13). Conversely, if
u1, . . .uR̄ are (approximate) maximizers of (3.13), then the associated (B,C) are (approximate)
minimizers of Jred(B,C).

Proof
The only fact to proof is that in (3.13) we may take any orthogonal basis of the range of B�C, but
this follows immediately from the orthogonal invariance of the trace.

The new problem formulation (3.13) indicates why the least squares problem might not have
a solution. Clearly, the functional

∑R̄
r=1〈ur,Mur〉 is continuous with respect to u1, . . .uR̄. Also

recall that these orthonormalized vectors lie in a compact set. However, the dependence of ui on the
matrix entries does not necessarily have to be continuous [13, Example 5.3]. The reason for a non-
existing minimum is due to the fact that the space of matrices B�C with rank R is not closed. In
fact, a problem arises when the rank of the Khatri-Rao product decreases for a minimizing sequence.

Proposition 3.9
Let (Bn,Cn) be a minimizing sequence of Jred (and thus (Ã[Bn,Cn],Bn,Cn) a minimizing
sequence of J) such that Bn

‖Bn‖ and Cn

‖Cn‖ converges to matrices B and C, respectively. If the
following rank condition

lim inf
n→∞

rank(Bn �Cn) ≤ rank(B�C) (3.14)
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holds, then (B,C) is a minimizer of Jred and (Ã[B,C],B,C) is a minimizer of J. In particular, a
solution to the least squares problem exists.

Proof
Denote by wi the left singular vectors and by σi the ordered singular values of (B�C). Define
B̃n := Bn

‖Bn‖ , C̃n := Cn

‖Cn‖ , and denote by (un
1 , . . . ,u

n
JK) the left singular vectors of B̃n � C̃n,

and by σni the corresponding (ordered) singular values. Since the singular vectors have norm 1,
by compactness, we can find a converging subsequence (again denoted by subscript n) with some
vectors zi as limit

un
i→zi i = 1, . . . JK, as n→∞. (3.15)

It is clear that rank(Bn �Cn) = rank(B̃n � C̃n). By taking another subsequence (again denoted
by subscript n) we can replace the lim inf in (3.14) by a lim and assume that

lim
n→∞

rank(B̃n � C̃n) =: lim
n→∞

Rn =: R∗ ≤ rank(B�C) = R. (3.16)

Moreover, a scalar multiplication of a matrix does not alter its singular vectors, thus from Lemma 3.7
it follows that (B̃n, C̃n) is a minimizing sequence of Jred as well, hence using Lemma 3.7 and
Theorem 3.8 we can also assume by the definition of a minimizing sequence that

lim
n→∞

Rn∑
i=1

〈un
i ,Mun

i 〉 = N, (3.17)

where N is the supremum in (3.13). By assumption, it hold that B̃n → B and C̃n → C, as n→∞,
by continuity of the singular values (cf., e.g., [14, Weyl’s Theorem]) we have that

lim
n→∞

σni → σi ∀i = 1, . . . JK, (3.18)

and by definition of the rank, σi > 0 for i = 1, . . . R.
We now show that the limit vectors zi, i = 1, . . . R∗ are the firstR∗ left singular vectors of B�C

and that they are maximizers in (3.13). Indeed, the left singular vectors uni are also eigenvectors of
(B̃n � C̃n)(B̃n � C̃n)T . Thus, by (3.15), (3.18), and the positivity of the first R singular values σi
we find that

zi = lim
n→∞

uni = lim
n→∞

1
(σni )2

(Bn �Cn)(Bn �Cn)Tun
i =

1
σ2
i

(B�C)(B�C)T zi ∀i = 1, . . . R∗.

Which means that in particular zi = wi for i = 1, . . . R∗. By this result, (3.15), the minimization
property (3.17), (3.16) and R∗ ≤ R, we find that

N = lim
n→∞

Rn∑
i=1

〈un
i ,Mun

i 〉 =
R∗∑
i=1

〈wi,Mwi〉 ≤
R∑
i=1

〈wi,Mwi〉 ≤ N,

where the last inequality follows from the definition of N as the supremum. Hence, equality has to
hold in the previous formula, R∗ = R, and the vectors (w1, . . .wR∗) are maximizers of (3.13). By
Theorem 3.8 the corresponding matrices (B,C) are minimizers of Jred.

Remark 3.10
Note that by compactness we can always find a subsequence of any minimizing sequence for which

Bn

‖Bn‖ and Cn

‖Cn‖ converge.
It follows from the proof that the strict inequality in (3.14), i.e., R∗ < R, cannot happen. This

could also be deduced from the fact that the rank is a lower semicontinuous function.

Converse to these propositions is the following corollary for the case of non-existing minima.
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Corollary 3.11
Suppose (1.2) does not have a minimum. Then there exists a minimizing sequence (An,Bn,Cn)
where Bn and Cn converge such that

lim inf
n→∞

rankBn �Cn > rank lim
n→∞

Bn �Cn. (3.19)

Proof
The assumption imply that a minimum of Jred does not exist either. By the invariance with
respect to the Khatri-Rao range, a normalization of a minimizing sequence Bn,Cn remains a
minimizing sequence. By compactness a converging subsequence exists. If (3.19) does not hold,
then Proposition 3.9 implies an existence of a minimizer in (1.2) which contradicts the initial
assumption.

In the setting of the previous corollary, at least one singular value of (Bn �Cn) tends to 0. It
follows that the pseudo-inverse G† becomes unbounded, and thus, the norm of Ãn[Bn,Cn] may
become unbounded. This reflects the well-known fact of diverging summands in the case of non-
existing minima; see the examples on the degenerate CP cases [15, 11, 16].

3.2. Reduced functional in projection form

We now derive an alternative form of the reduced functional Jred as a weighted distance to the
Khatri-Rao range. This form will be useful in the next section to design a simple algorithm for
finding suboptimal solution or initial guesses to the optimization algorithm for (1.2).

Based on Lemma 3.7 we can simplify the reduced functional taking into account the
diagonalization of M. A reformulation of Lemma 3.7 in terms of the eigenvalue decomposition
of M yields:

Lemma 3.12
Using the notation of Lemma 3.7 and Definition 3.3, we have

Jred(B,C) =
JK∑
i=1

λi

‖v̄i‖2 −
R̄∑
r=1

〈v̄i,ur〉2
 =

JK∑
i=1

λi

1−
R̄∑
r=1

〈v̄i,ur〉2
 . (3.20)

Now we define the Khatri-Rao range, i.e., the range of the matrix B�C. This range is a subset
of RIJ ; for later use it is convenient to define the Khatri-Rao range by matricizing this range. As
usual we denote the columns of the matrices B and C by bi and ci:

Definition 3.13
Let us define the Khatri-Rao range as

KR(B,C) :=

{
X =

R∑
i=1

µibi ◦ ci ∈ RJ×K | where µi ∈ R,

}
(3.21)

It is obvious that X ∈ RI×J is in the Khatri-Rao range X ∈ KR(B,C) if and only if its vectorized
version Xvec ∈ RIK is in the range of B�C:

Xvec = (B�C) µ.

We can rephrase the reduced functional in projection form as follows.

Theorem 3.14
Using the notation of Definition 3.3 we have

Jred(B,C) =
JK∑
i=1

λi
(
‖Vi −KR(B,C)‖F

)2
, (3.22)

where ‖Vi −KR(B,C)‖F denotes the distance of Vi to the Khatri-Rao range KR(B,C)

‖Vi −KR(B,C)‖F = inf
X∈KR(B,C)

‖Vi −X‖F .
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Proof
Let PB�C be the orthogonal projector onto range(B�C), defined in (3.12). From the well-known
fact about orthogonal projections,

‖vi‖2 − ‖PB�Cvi‖2 = ‖v̄i −PB�Cvi‖2 = inf
X∈range(B�C)

‖vi −X‖2,

Lemma 3.12 and a matricization, the result follows.

A simple consequence of the previous theorem is the following.

Corollary 3.15
If B̄, C̄ and B,C are matrices that span the same Khatri-Rao range,

KR(B̄, C̄) = KR(B,C),

then
Jred(B̄, C̄) = Jred(B,C).

Remark 3.16
If this corollary is applied to the case when min J = 0, we obtain – as a special case – a
uniqueness condition. The CP decomposition (A,B,C) is called unique up to permutation and
scaling if any alternative decomposition (Ā, B̄, C̄) satisfies Ā = A ·Π ·Λ1, B̄ = B ·Π ·Λ2 and
C̄ = C ·Π ·Λ3 where Π is anR×R permutation matrix and Λj are nonsingular matrices such that∏n
j=1 Λj = IR. Certainly, if B̄ = B ·Π ·Λ2 and C̄ = C ·Π ·Λ3, then KR(B̄, C̄) = KR(B,C)

and thus, Jred(B̄, C̄) = Jred(B,C). From Corollary 3.15 we find that if a CP decomposition is
unique up to scaling and permutation then KR(B̄, C̄) = KR(B,C) can only hold when B̄ and C̄
is a scaled and permuted version of B and C. The remaining matrix Ã[B,C] is uniquely defined if
and only if B�C has full rank. Thus, it is possible to rephrase a uniqueness condition purely in
terms of B,C: the CP decomposition (A,B,C) is unique up to permutation and scaling if and only
if B�C has full rank and the Khatri-Rao range KR(B,C) uniquely determines B,C up to scaling
and permutation.

Remark 3.17
With minor modifications, Theorem 3.8 and Theorem 3.14 remain valid in the case of the CP-
decomposition of higher order tensors. For instance, for fourth order tensors

(A)ijkl =
R∑
r=1

airbjrckrdlr,

the Khatri-Rao range KR(B,C) there has to be replaced by the analogous set

KR(B,C,D) =

{
X =

R∑
i=1

µibi ◦ ci ◦ di ∈ RJ×K×L | where µi ∈ R,

}
.

3.3. Some special cases and optimality condition

We can deduce some (partly well-known) result from the previous analysis. A particular simple
case is the rank-1 approximation problem, i.e., R = 1 in (1.2). In this case, the rank of B�C is
always one (ignoring the trivial case of zero matrices). From Proposition 3.9 it follows that the rank
condition is satisfied, hence a minimizer always exists. (Again, this is a well-known fact). Since an
orthonormal basis of the Khatri-Rao range can be obtained by b⊗ c with the vectors normalized to
1, we find that the rank-1 minimization problem is equivalent to the maximization problem [17]:

max
‖b‖=1,‖c‖=1

〈b⊗ c,M(b⊗ c)〉. (3.23)
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Remark 3.18
Using Morse-theory it can be shown that generically there are always additional stationary points
for the optimization problem (3.23) besides the global maxima and minima. It is easy to see that
the ALS-algorithm saturates at such points, which means that the ALS algorithm is not guaranteed
to converge to a global solution of (1.2). Local convergence of the ALS method has been shown in
[18].

Theorem 3.8 can be used to find an equivalent functional also in the case R = 2. Here we have
that

B�C = [b1 ⊗ c1 b2 ⊗ c2].

Without loss of generality, we can assume that all the column vectors bi, ci are normalized to 1,
since a column-wise scaling does not change the Khatri-Rao range and hence also not the functional
by Corollary 3.15. If the rank of B�C is 2, an orthogonal basis of B�C can be obtained by a
Gram-Schmidt procedure yielding

u1 = b1 ⊗ c1

u2 =
1√

1− γ2
(b2 ⊗ c2 − γb1 ⊗ c1)

γ = 〈b1,b2〉〈c1, c2〉
1 = ‖bi‖ = ‖ci‖ i = 1, 2.

The condition rank(B�C) = 2 is equivalent to |γ| < 1. This yields the following equivalent
functional

K(b1,b2, c1, c2) =
1

1− γ2
(〈b1 ⊗ c1,M(b1 ⊗ c1)〉+ 〈b2 ⊗ c2,M(b2 ⊗ c2)〉

−2γ〈b1 ⊗ c1,M(b2 ⊗ c2)〉) , (3.24)
γ = 〈b1,b2〉〈c1, c2〉). (3.25)

In the case that γ = 1, the matrix B�C is rank deficient (i.e., it has rank 1, ignoring the trivial
case of zero rank), hence its range is spanned by one of the column vectors. The corresponding
functional is, however, then identical to the R = 1 case:

Proposition 3.19
In the case R = 2, the optimization problem (3.13) is equivalent to the problem

max

{
sup‖b1‖,‖b2‖,‖c1‖,‖c2‖=1K(b1,b2, c1, c2) |(〈b1,b2〉〈c1, c2〉)| < 1
max‖b‖=1,‖c‖=1〈b⊗ c,M(b⊗ c)〉 otherwise

A similar result can be derived for higher ranks, however the equations quickly become more
complicated than the formulas above.

Additionally, we now state an optimality condition for the reduced functional for the case that a
minimizer exists and its Khatri-Rao product has full rank.

Proposition 3.20
Let B,C be a minimizer of Jred (and thus (Ã[B,C],B,C) minimizers of (1.2)), and assume that
B�C has full rank R. Then B,C satisfy

〈(I−PB�C) ·M · (B�C) ·G†, δB�C + B� δC〉 = 0 ∀δB, δC. (3.26)

Proof
Under the given assumptions we have that G is invertible, and hence differentiable with respect
B,C. Using (3.10) with

PB�C = (B�C) · ((B�C)T ·B�C)−1 · (B�C)T ,
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a tedious but straightforward calculation using the formula for the derivative of inverses dA−1 =
−A−1 · dA ·A−1, yields that

Jred(B + δB,C + δC)− Jred(B,C)

= 2〈(I−PB�C) ·M · (B�C) ·G†, (B + δB)� (C + δC)−B�C〉+O(‖δB, δC‖2)

Expanding this up to linear order yields the directional derivative, which has to vanish at an extremal
point.

Note that (I−PB�C) is the orthogonal projector onto the orthogonal complement of the range
(which equals the nullspace of (B�C)T ). Since we have

〈(I−PB�C) ·M · (B�C) ·G†, δB�C + B� δC〉
= 〈M · (B�C) ·G†, (I−PB�C) · (δB�C + B� δC)〉

it can be seen that only those perturbation δB, δC contribute to a change of the functional (in
leading order), which have that δB�C and B� δC are not in the range of B�C. This again
reflect the invariance of the reduced objective functional with respect to the Khatri-Rao range
(Corollary 3.15). It might also partially explain the observed bad convergence properties of many
minimization algorithms, the so called swamping [19, 15, 20, 21].

Remark 3.21
The reduced functional has been already considered in [10]. Also, some of the results provided are,
of course, well-known, namely Corollary 3.15 as a consequences of (3.9), Theorem 3.8 (for R = 1)
and Theorem 3.14 (for R = 1).

Tendeiro et al. [10] used Lagrange multipliers for the analysis of the reduced objective functional
while our approach avoids Lagrange multipliers and eliminates the occurrence of A directly to
derive the functional Jred.

The advantage of our approach is that we obtain an optimization problem over compact sets due
to the scaling invariance of the Khatri-Rao range: as it was done before, we can always consider
the optimization problem being performed over matrices with columns having norm one. This set
of matrices with normalized columns is closed and bounded, i.e., a compact set. The price to pay is
the possibility of a discontinuous Jred at some points where the rank of B�C decreases. Another
advantage is that we can work with the symmetric tensorM (or the self-adjoint positive semidefinite
matrix M). This is useful from a theoretical as well as a numerical point of view since the structure
of the eigenvalue decomposition is well-known and its numerical computation is stable.

4. APPROXIMATE AND EXACT LEAST-SQUARES MINIMIZATION

In this section we set the stage for several computational schemes using the results of the previous
sections with the aim to compute either suboptimal or exact minimizers for special cases.

At first we study a method to obtain suboptimal (i.e., approximate) minimizers for the general
least-squares problem (1.2). This is done by finding a new functional which serves as an upper bound
for Jred. The new functional has minimizers that are easily computable. The Centroid Projection
yields a suboptimal solution which can be used as initial guess to further minimization algorithms
for J. Moreover, we also find useful a-posteriori error estimates.

4.1. Bounds on Jred and suboptimal solutions

Here we prove lower and upper bound on Jred using Theorem 3.14. Moreover, we will also define
a majorizing functional L, whose minimizers can be calculated by standard linear algebra methods.

In Theorem 3.14 we use the Eckart-Young theorem to obtain lower bounds. Recall that M =
V · S̄ ·VT

.
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Corollary 4.1
For all matrices (B,C), a lower bound of Jred is calculated as

inf
(B,C)

Jred(B,C) ≥
JK∑
i=1

λi

min(J,K)∑
k=R+1

(σik)2

 (4.1)

with σik being the k-th singular values of Vi.

Proof
The Eckart-Young Theorem gives the infimum by the truncated SVD, i.e.,

inf
rank(X)=R

‖Vi −X‖F =

min{J,K}∑
k=R+1

(σik)2

 1
2

.

Also, observe that KR(B,C) contains matrices with rank at most R, hence, by Theorem 3.14

inf
(B,C)

Jred(B,C) ≥
JK∑
i=1

λi inf
X∈KR(B,C)

(
‖Vi −X‖F

)2 ≥ JK∑
i=1

λi inf
rank(X)≤R

(
‖Vi −X‖F

)2
≥

JK∑
i=1

λi

min(J,K)∑
k=R+1

(σik)2

 .

This corollary can be used to find lower bounds on the distance of a tensor to its best rank-R
approximation. In particular, if a tensor has rank R, it must hold that

JK∑
i=1

λi

min(J,K)∑
k=R+1

(σik)2

 = 0.

Note that this a-priori lower bound can be calculated by the standard EVD of M followed by an
SVD of each of the Vi.

The next result establishes an upper bound using a majorizing functional.

Lemma 4.2
Define the functional

L(B,C) := inf
X∈KR(B,C)

JK∑
i=1

λi‖Vi −X‖2F , (4.2)

then we have that

inf
B,C

Jred(B,C) ≤ inf
B,C

L(B,C) = inf
rank(X)≤R

JK∑
i=1

λi‖Vi −X‖2F . (4.3)

Proof

inf
(B,C)

Jred(B,C) = inf
(B,C)

JK∑
i=1

λi inf
X∈KR(B,C)

‖Vi −X‖2F

≤ inf
(B,C)

inf
X∈KR(B,C)

JK∑
i=1

λi‖Vi −X‖2F = inf
rank(X)≤R

JK∑
i=1

λi‖Vi −X‖2F .

The last equality follows from the fact that KR(B,C) contains matrices with rank ≤ R. Moreover,
for any matrix X of rank at most R, it follows that X ∈ KR(B,C) where B, C are formed by the
columns of the orthogonal matrices in the SVD of X.
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In contrast to Jred, calculating a minimizer of L can be done easily. First, define the centroid
matrix of Vi.

V̄C :=
JK∑
i=1

ξiVi where ξi =
λ̄i∑JK
j=1 λ̄j

, i = 1, . . . JK. (4.4)

Theorem 4.3
Let yk, zk be the left and right singular vectors in the SVD of V̄C defined in (4.4) with σk(V̄C) the
associated singular values in descending order. Then,

BC = [y1 . . .yR] CC = [z1 . . . zR]

is a minimizer of L(B,C). Moreover,

inf
B,C

L(B,C) = L(BC,CC) =

(1− ‖V̄C‖2F
)(JK∑

i=1

λi

)
+

(
JK∑
i=1

λi

)min{J,K}∑
k=R+1

σk(V̄C)2

 .
(4.5)

Proof
Expanding the square using ‖Vi‖2F = 1 yields

JK∑
i=1

λ̄i‖Vi −X‖2F =

(
JK∑
i=1

λi‖Vi‖2F

)
− 2

〈
JK∑
i=1

λiVi,X

〉
+

(
JK∑
i=1

λi

)
〈X,X〉

=

(
JK∑
i=1

λi

)(
1− 2〈V̄C ,X〉+ 〈X,X〉

)
=

(
JK∑
i=1

λi

)(
1− ‖V̄C‖2F

)
+

(
JK∑
i=1

λi

)
‖V̄C −X‖2.

Using the Eckart-Young Theorem, we see that a minimizer X is found through the truncated SVD
of V̄C and (4.5) is obtained.

Computing minimizers of L in Theorem 4.3 yields matrices BC and CC (and AC via (3.3)) which
in turn approximate the minimizers of Jred. The corresponding algorithm, the Centroid Projection
(CePr), is sketched in Algorithm I in the next section.

The Centroid Projection also provides computable bounds for the optimal value of the least
squares functional: combining Corollary 4.1 and Theorem 4.3 yields the following a-posteriori
bounds on the quality of the output of the Centroid Projection Algorithm.

Corollary 4.4
Let BC and CC be computed by the Centroid Projection as in Theorem 4.3. Then with ξi as in (4.4),

|Jred(BC,CC)− inf
(B,C)

Jred(B,C)| ≤ ‖T ‖2F

(
JK∑
i=1

ξi

(
R∑
k=1

(σik)2

)
−

R∑
k=1

σk(V̄C)2.

)
(4.6)

Proof
This is a combination of Theorem 4.3 and Lemma 4.2. Note that

∑JK
i=1 λi = Tr(M) = ‖T ‖2.

Remark 4.5
Since V̄C =

∑
ξiVi, the positivity of the right hand side in this estimate is a consequence of the

convexity of the sum of the squares of the largest singular values (the Schatten norm). We notice
that the right-hand side is an a-posteriori bound on the quality of the suboptimal solutions BC,CC

that is easy to compute because σk(V̄C) is known (Sc in step 3 of Algorithm I).
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The Centroid Projection yields a “good” (but not necessarily optimal) solution to the general least
squares problem 1.2. It is a simple method and can, for instance, be used to find starting values for
more advanced algorithm such as ALS. At times the standard methods (for example ALS) for CP are
initialized with random guesses, but this often leads to a slowed convergence rate. More commonly,
CP algorithms are started with initial guesses (A0,B0,C0) that are obtained from the SVD of the
matricized tensor in all modes (e.g. in HOSVD). The initialization methods of [22, 23, 24] are
based on the generalized eigenvalue problem (see Van Loan’s GEVD [25]) through a slab-wise
representation of the Khatri-Rao products. The direct methods, Direct TriLinear Decomposition
(DTLD) [22] and the Generalized Rank Annihilation Method (GRAM) [23], also give poor CP
solutions, but provide good starters.

4.2. Best Rank-1 Fit

In this section we study the least squares functional (1.2) for the case R = 1, i.e., when we seek
the best approximating rank-1 decomposition. Note that we do not assume that T is a rank-1 tensor
itself. It turns out that we can use a similar idea as in the Centroid Projection method, but with
different ξi in (4.4).

If T is a rank-1 tensor, then it is not difficult to compute its decomposition. In fact, the Centroid
Projection algorithm of the previous section will do the job. This can easily be seen because then
only one eigenvalue λi is different from zero. The matrix V̄C is identical to V1, ξ1 = 1 and it is
quite clear that the right hand side of (4.6) is zero.

The more challenging task is to compute the best approximating rank-1 decomposition for
arbitrary tensors T . In this case, of course, the least squares functional will not necessarily be zero at
a minimum. Moreover, using Theorem 3.14 with normalized vectors (while preserving the Khatri-
Rao range), the minimization problem for the reduced functional can be expressed as

min
‖b‖=1,‖c‖=1

Jred(b, c) = min
‖b‖=1,‖c‖=1,(µ1,...µRM

)∈RRM

RM∑
i=1

λi‖Vi − µib⊗ c‖2, (4.7)

where RM is the rank of M. This yields the following lemma

Lemma 4.6
Solutions (b, c) of the minimization problem (4.7) satisfy

(b, c) ⊂

{
(b(ξ), c(ξ)) | ξi ∈ RRM ,

RM∑
i=1

ξ2
i = 1

}
, (4.8)

where (b(ξ), c(ξ) denotes the left and right singular vectors corresponding to a largest singular value
of V(ξ) :=

∑RM

i=1 ξiVi. Moreover with µ = (µ1, . . . µRM
) it holds that

min
(µ1,...µRM

)∈RRM

J̃(µ) :=
JK∑
i=1

λi(1 + µ2
i )− 2σmax(

RM∑
i=1

λiµiVi) (4.9)

= min
‖b‖=1,‖c‖=1

Jred(b, c),

where σmax denotes the largest singular value.

Proof
We know that a solution (b, c) and µ := (µ1, . . . µRM

) to (4.7) exists. Keep µ fixed. Using the
normalizations of (b, c) and Vi, solutions to (4.7) minimize also

Jred(b, c) =
RM∑
i=1

λi
(
1 + µ2

i − 2〈µiVi,b⊗ c〉
)

=
RM∑
i=1

λi(1 + µ2
i ) + ‖

RM∑
i=1

λiµiVi − b⊗ c‖2 − 1−
RM∑
i=1

λ
2

iµ
2
i
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over the set of normalized vectors. Thus, by the Eckart-Young theorem, b⊗ c must be the rank-1
best approximation to

∑RM

i=1 λiµiVi, which shows the first statement. Note that the singular vectors
are invariant under scaling of the underlying matrix, thus we can normalize the ξi as it is done in the
lemma.

Taking such b, c gives the equality

‖
RM∑
i=1

λiµiVi − b⊗ c‖2 =
RM∑
k=2

σk(
RM∑
i=1

λiµiVi)2 + (σmax(
RM∑
i=1

λiµiVi)− 1)2

= ‖
RM∑
i=1

λiµiVi)‖2 + 1− 2σmax(
RM∑
i=1

λiµiVi).

The orthogonality of Vi establishes the second assertion.

By this lemma, the rank-1 problem (4.7) is equivalent to the RM -dimensional optimization
problem (4.9) for µ. Using (4.9) we can also find the necessary optimality conditions.

Theorem 4.7
Solutions b, c of the minimization problem (4.7) satisfy (4.8), with

ξi =
λiµi√∑RM

j=1 λ
2

jµ
2
j

, i = 1, . . . , RM ,

where µ = (µ1, . . . , µRM
) ∈ RRM is a solution to the optimization problem (4.9). All such µ satisfy

µi = 〈Vic(µ),b(µ)〉, i = 1, . . . , RM , (4.10)

where c(µ), b(µ) denote the left and right singular vectors corresponding to a σmax(
∑RM

i=1 λiµiVi).

Proof
First consider the case that the optimal µ in (4.9) corresponds to a unique largest singular value.
Then (4.10) is a consequence of the well-known formula for the derivative of eigenvalues of
symmetric matrices. Note that the singular values are smooth functions in this case. We have with
K(µ) =

∑RM

i=1 λiµiVi and c(µ),b(µ) the singular vectors corresponding to the largest singular
value

∂

∂µj
σmax(

RM∑
i=1

λiµiVi) =
∂

∂µj

√
λmax(K(µ)TK(µ))

=
1

2σmax(K(µ))

(
〈 ∂
∂µj

K(µ)TK(µ)c(µ), c(µ)〉
)

=
1

σmax(K(µ))

〈
K(µ)c(µ),

∂

∂µj
K(µ)c(µ)

〉
= 〈b(µ), λjVjc(µ)〉,

which proves the result in the simple case. In the case of multiple singular values, we notice that
each branch corresponding to a different singular value is a smooth function of µi [13]. We then
have with µε = µ + εej and ej being the j-th unit vector that

J̃(µε)− J̃(µ) = 2λjµjε+O(ε2)− 2 max
r=1,...ζ

[
ε〈Vjcr(µ),br(µ) +O(ε2)

]
≥ 0,

where cr(µ),br(µ) are the singular vectors associated to the multiple singular value
σmax(

∑RM

i=1 λiµiVi). By a case distinction ε > 0, ε < 0 and letting ε→ 0 we get

µj − max
r=1,...ζ

〈Vjcr(µ),br(µ)〉 ≥ 0

µj − min
r=1,...ζ

〈Vjcr(µ),br(µ)〉 ≤ 0.



16 S. KINDERMANN AND C. NAVASCA

However, this can only be the case if max and min are identical, which yields the result also in this
case.

Remark 4.8
The optimality condition (4.10) could have been obtained equally well using the Rayleigh quotient
form (3.13), (3.23) comparable results were in fact obtained in [26]. However, by using the Rayleigh
quotient, it is not clear a-priori that an optimal decomposition is obtained from the fixed points of
(4.10) where c(µ),b(µ) correspond to the largest singular value. Starting from (3.23) one can
only derive (4.10) where c(µ),b(µ) corresponding to some (not necessarily the largest) singular
value. For this reason we used Theorem 3.14 here. For further algorithms and results for the rank-1
approximation, in particular for the case of an orthogonal decomposition, we refer to [26, 27].

This theorem is the basis of computational algorithms for finding optimal rank-1 decompositions,
by solving the optimality condition (4.10) by a fixed-point iteration, see Algorithm II (FP-R1(local))
and its globalized variants, Algorithm III (FP-R1(RIG)) and Algorithm IV (FP-R1(APIG)).

For a slight improvement of our algorithms, we later need the following lemma, which yields an
a-priori guess for µ.

Lemma 4.9
Let µopt be a solution to minimization problem (4.9). Then it holds that

RM∑
i=1

λi(µopt)
2
i − 2λi|(µopt)i|σmax(Vi) ≤ − max

k=1,...RM

λkσmax(Vk)2 (4.11)

Proof
Note that σmax is the spectral norm for matrices, thus the triangular inequality immediately gives
that for any µ

J̃(µ) ≥
RM∑
i=1

λi(1 + µ2
i )− 2λi|µi|σmax(Vi)

On the other hand with µ = τek, where ek is the k-th unit vector and τ is a real parameter, we have

J̃(µopt) ≤ min
τ∈R

J̃(τek) =
RM∑
i=1

λi − λkσmax(Vk)2.

Choosing that k that minimizes this upper bound yields the result.

4.3. Reconstruction of the tensor decomposition

In this section we consider the case that there exists a tensor decomposition of rank R such that the
infimum of the least squares functional (1.2) is zero. In other words, for a given tensor T we assume
the existence of an unknown rank-R decomposition T =

∑R
r=1 ar ◦ br ◦ cr and we want to find the

corresponding factor matrices A,B,C.
Equivalently, we can assume that with a fixed R

inf
B,C

Jred(B,C) = min
B,C

Jred(B,C) = 0. (4.12)

We have the following result:

Lemma 4.10
Assume (4.12) with (B,C) as minimizers. Let RM be the rank of M, then there exists vectors
η1, . . . ηRM

such that
vi = (B�C)ηi, i = 1 . . . RM , (4.13)

moreover, R ≥ rank(B�C) ≥ RM .
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If R = RM , then the set of matrices Vi are an orthogonal basis of the Khatri-Rao range
KR(B,C). Moreover, in this case there exists a matrix Z ∈ RRM×RM such that with (Z)i,r = zi,r

RM∑
i=1

zi,rVi = br ⊗ cr, r = 1, . . . RM . (4.14)

Proof
The first part follows immediately from Theorem 3.14. If R = rank(B�C) = RM , then there
exists a matrix Y ∈ RRM×RM such that

(v1 . . . vRM
) = (B�C)Y,

and Y must have full rank. With Z = Y−1, (4.14) follows.

Numerical experiments indicate that in many practical situations R = RM holds true. Thus, if
(4.12) and the rank condition R = RM apply, the task of reconstructing the tensor decomposition
reduces to finding the matrix Z in (4.14). This can be done by similar methods as in the previous
section.

Theorem 4.11
Let (4.12) andR = RM hold, then the column vectors br, cr of the minimizers B,C in (4.12) are the
left and right singular vectors corresponding to the largest singular value of the matrix

∑RM

i=1 zi,rVi,
where each zr := (zi,r)RM

i=1 is a solution to the optimization problem

max
‖z‖=1

σmax(
RM∑
i=1

ziVi) (4.15)

with σmax(
∑RM

i=1 ziVi) = 1.

Proof
From the previous lemma it is clear that there exists RM vectors zr, r = 1, . . . RM , such that (4.14)
holds. By orthogonality, we have for arbitrary z with ‖z‖2 = 1 that

1 = ‖z‖2 = ‖
RM∑
i=1

ziVi‖2F =
RM∑
k=1

σk

(
RM∑
i=1

ziVi

)2

≥ σmax

(
RM∑
i=1

ziVi

)2

.

However, if z = zr such that (4.14) holds, then the corresponding matrix
∑RM

i=1 zi,rVi is rank one,
hence only the maximal singular value is nonzero. Thus

σmax

(
RM∑
i=1

zi,rVi

)2

= 1,

which shows that zr is a solution to the optimization problem with objective value 1.

This theorem leads to an algorithm similar to that of the previous section to compute the
composition if the assumptions in the theorem holds. One has to find all global solutions of the
optimization problem (4.15). Since the structure of this problem is the same as (4.8), we can derive
the optimality conditions as before and use a fixed-point iteration. Analogous to (4.10) we obtain:

Lemma 4.12
The solution vectors z to the maximization problem (4.15) satisfy the optimality condition

zi = γ〈Vic(z),b(z)〉 i = 1, . . . RM , (4.16)

where b(z), c(z) are right and left singular vectors corresponding to the largest singular value of∑RM

i=1 ziVi, and γ ∈ R is a normalization constant such that ‖z‖ = 1.
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Algorithm V in the next section is based on (4.16) and attempts to compute approximations to the
following set with R = RM

SolR := {z ∈ RR | z solves (4.16) with ‖z‖ = 1 such that σmax(
R∑
i=1

ziVi) = 1},

where all elements in SolR are pairwise not collinear. Note that SolR can be empty, discrete, or a
continuum.

The following theorem indicates, when the approach to compute an exact decomposition using
the optimization of (4.15) will be successful, namely for the case that R = RM and SolR contains
more than R linear independent solutions.

Theorem 4.13
The following assertions are equivalent

1. (4.12) holds with R, B, C that satisfy R = RM
2. there exists a set of RM linearly independent vectors (zr)RM

r=1 in SolRM
.

Proof
Theorem 4.11 and Lemma 4.12 is the statement 1.→ 2. For the converse we observe that as in
the proof of Theorem 4.11, zr ∈ SolRM

imply that
∑RM

i=1 ziVi is a rank one matrix, hence the
collection of the vectors zr from SolRM

satisfy (4.14), and since the vectors zr are assumed to
be linear independent, rank(B�C) = RM . The inverse of the corresponding matrix Z yields RM
vectors such that (4.13) holds and thus (4.12).

Following the same line of proof, we can also find in some situations an exact tensor
decomposition if the rank condition is not satisfied, i.e.,R > RM , namely if we find enough linearly
independent solutions in SolR.

Corollary 4.14
Let R > RM and suppose that at least R linearly independent vectors (zr)Rr=1 in SolR exist. Then
(4.14) holds with some vectors br, cr, r = 1, . . . , R, and the corresponding matrices B, C yield an
exact rank-R decomposition (4.12)

Before we discuss the numerical results, we explain the previous theoretical result at some
concrete (small sized) examples, where we can do the calculations analytically.

Example I Consider the “KHL”-data [28, 29, 10]. This is a 2× 2× 2 tensor with top and bottom
slices given by

T1,∗,∗ =
(

1 0
0 −1

)
T2,∗,∗ =

(
0 1
1 0

)
.

Kruskal showed that the KHL tensor has a tensorial rank ofR = 3 (over R). Using our methodology,
we can prove that KHL tensor does not have an exact decomposition for R = 1 and R = 2. The
associated tensorM in (3.6) (contracting over the first mode) is reordered into a 4× 4 matrix M

M =


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .

This matrix has rank RM = 2 and an eigenvalue decomposition

(λi)4
i=1 = (2, 2, 0, 0) and V =

1√
2


1 0 1 0
0 1 0 −1
0 1 0 1
−1 0 1 0

 .
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The columns in the matrix V correspond to the normalized eigenvectors of M. By Lemma 4.10 it
always holds that R ≥ RM = 2, hence there is no exact rank-1 decomposition.

Is there an exact rank-2 decomposition? If this is the case, then the rank condition in Theorem 4.11
holds with R = 2 and hence, there must be at least two linear independent solution in Sol2.
Moreover, the matrix in the maximization (4.15) is (rearranging the first two eigenvectors of M
into matrices)

2∑
i=1

ziVi = z1
1√
2

(
1 0
0 −1

)
+ z2

1√
2

(
0 1
1 0

)
=

1√
2

(
z1 z2

z2 −z1

)
.

With the constraint z2
1 + z2

2 = 1, the matrix
∑2
i=1 ziVi has determinant − 1

2 , thus, no normalized
vector (z1, z2) exists yielding a rank-1 matrix, which means that (4.14) cannot hold for such vectors.
Hence, Sol2 is empty in this case, which means no exact rank-2-decomposition exists.

However, we can find a rank-3 decomposition using Corollary 4.14. Set R = RM + 1 = 3, i.e.,
we add an eigenvector of M corresponding to the 0-eigenvalue to the sum

∑
i ziVi. For instance,

we may add V3 yielding a matrix

3∑
i=1

ziVi =
1√
2

(
z1 + z3 z2

z2 −z1 + z3

)
and maximize the first singular value over the vectors z = (z1, z2, z3) normalized to one. We obtain
a rank-1 matrix with σmax

(∑3
i=1 ziVi

)
= 1 if z3 = ± 1√

2
and z2

1 + z2
2 = 1

2 . Thus, this describes the
set Sol3, which is a continuum here. Out of this set, we can easily extract three linear independent
vectors; e.g., for any t 6= 0

z1 =
1√
2

(1, 0, 1), z2 =
1√
2

(1, 0,−1), z3 =
1√
2

(cos(t), sin(t), 1).

For these choices of the vectors, we obtain the matrices
∑3
i=1 ziVi (each one of rank 1):(

1 0
0 0

)
,

(
0 0
0 −1

)
,

1
2

(
1 + cos(t) sin(t)

sin(t) 1− cos(t)

)
.

The singular vectors of the matrices corresponding to the singular value 1 are u1 = v1 = (1, 0)T ,
u2 = v2 = (0, 1)T , u3 = v3 = (cos( t2 ), sin( t2 ))T , respectively. Collecting these vectors gives for
any t 6= 0 the factor matrices B,C of a rank-3 decomposition:

B = C =
(

1 0 cos( t2 )
0 1 sin( t2 )

)
,

with

A =

(
1 −1 0

− cos( t
2 )

sin( t
2 )
− sin( t

2 )

cos( t
2 )

1
cos( t

2 ) sin( t
2 )

)
.

Another interesting aspect is the rank-1 least squares minimization problem for the KHL tensor.
Using Lemma 4.6, the functional in (4.9) is

J̃(µ) = 4 + 2(µ2
1 + µ2

2)− 2σmax(
√

2
(
µ1 µ2

µ2 −µ1

)
) = 4 + 2(µ2

1 + µ2
2)− 2

√
2
√
µ2

1 + µ2
2,

which has minimizers µ1 and µ2 such that
√
µ2

1 + µ2
2 = 1√

2
with minµ J̃(µ) = 3. It can be

calculated that the corresponding singular vectors associated to each value of (µ1, µ2) satisfies the
optimality condition (4.10). Thus, the rank-1 least squares problem for this tensor has a continuum
of solutions.
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Example II Let us consider a second example T ∈ R2×2×2 with the following entries:

T1,∗,∗ =
(

0 1
1 0

)
, T2,∗,∗ =

(
1 0
0 0

)
∈ R2×2×2. (4.17)

This is an example of a degenerate tensor, i.e., it has a tensorial rank of 3, but it can be approximated
arbitrary well by rank-2 tensors [11]. Hence, this is the case where the infimum of the R = 2 least
squares approximation is 0 but no minimum exists. The corresponding matrix M can be calculated
to

M =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 .

The eigensystem is given by

(λi)4
i=1 = (2, 1, 0, 0) and V =


0 1 0 0
1√
2

0 0 − 1√
2

1√
2

0 0 1√
2

0 0 1 0

 .

We might try to find a R = 2 decomposition. Since RM = 2 we can again use Theorem 4.11. The
matrix of interest is

2∑
i=1

ziVi =

(
z2

1√
2
z1

1√
2
z1 0

)
.

This matrix is of rank 1 (and its largest singular values is 1) if and only if z1 = 0. Hence, we have
the only possible maximizers z = (0,±1)T in Sol2. Since they are clearly linearly dependent, we
see that we cannot find 2 linear independent maximizer in this case, which shows that a rank-2
decomposition does not exist. We observe that the maximizers are degenerate in the sense that at
z = (0, 1)T not only the first derivative but also the second one of σmax(

∑2
i=1 ziVi) vanishes (e.g.,

by taking the derivative of the functional with z = (sin(t), cos(t))T with respect to t at t = 0.).
We conjecture that it is a general feature (at least in the situation R = RM ) of degenerate

problems, i.e., when the infimum in (4.12) is 0 but no minimum exists, that the maximizers in
(4.15) appear with multiplicities.

4.4. Inexact tensor decomposition

Since the previous results are based on an optimization problem (4.15) is is clear that it can be
modified to compute suboptimal solutions to the minimization problem (1.2). We consider now the
case that (4.12) does not hold with a small R, and the objective is to find reasonable factor matrices
that make (1.2) small.

Then, the modifications to the previous case are twofold and simple: firstly, we replace RM in
Theorem 4.11 by a smaller value RC < RM and secondly we are satisfied with suboptimal (i.e. not
necessarily maximizers) of the optimization problem (4.15)

Let us describe the difference to the case of an exact decomposition in the previous subsection.
If we replace RM by RC and thus only consider expression of the form σmax(

∑RC

i=1 ziVi) in
Theorem 4.11, this has the same effect as replacing the original tensor T with one T ′ that has a
corresponding matrix M with only RC nonzero eigenvalues. This can be thought of as performing
a kind of spectral cutoff. It is easy to see that we can estimate the norm of the difference by

‖T − T ′‖2 =
JK∑

i=RC+1

λ
2

i . (4.18)

Concerning the second modification of a relaxation of the condition for a maximizer in
Theorem 4.11, σmax(

∑R
i=1 ziVi) = 1, we have the following estimate.
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Proposition 4.15
Let RM = RC , and (zr) be a set of RC normalized linearly independent vectors that form the
columns of a matrix Z ∈ RRC×RC and which satisfy

σmax(
RC∑
i=1

zi,rVi) = 1− αr with αr ≥ 0 ∀r = 1, . . . RC ,

Then if br, cr are the left and right singular vectors corresponding to the matrix
∑RC

i=1 zi,rVi, and
if we take B = (br)r=1,...RC

and C = (cr)r=1,...RC
we have the following estimate

Jred(B,C) ≤ σmax(Z−1Λ)2
RC∑
i=1

α2
r (4.19)

with Λ = diag(
√
λ1, . . .

√
λRC

) ∈ RRC×RC .

Proof
By construction, with σi being the singular values of

∑RC

i=1 zi,rVi we have using orthogonality

‖
RC∑
i=1

zi,rVi − br ⊗ cr‖2F =
IK∑
i=2

σ2
i + (1− σ1)2 = ‖

RC∑
i=1

zi,rV‖
2

F
+ α2

r − 1 = α2
r.

Thus, using Theorem 3.14 we get (with V = (v1| . . .vRC
))

Jred(B,C) ≤
RM∑
i=1

λi‖vi − (B�C)Z−1)
i−th column‖

2
RJK

=
RC∑
i=1

λi‖ (VZ−B�C) (Z−1)
i−th column‖

2
RJK

= ‖ (VZ−B�C) (Z−1Λ)‖2F ≤ σmax(Z−1Λ)2‖ (VZ−B�C) ‖2F

≤ σmax(Z−1Λ)2
RC∑
r=1

α2
r.

Thus, good approximate minimizers arise from a compromise between the objective (4.15) with
value almost 1 and the need for linear independence characterized by the norm of Z−1.

We utilize Proposition 4.15 for the tensor T ′ which is obtained by cutting off the eigenvalues in
M which are larger than RC . In this situation we obtain a matrix M which has rank RM = RC and
Proposition 4.15 can be applied.

Altogether we obtain that such a decomposition agrees with a given tensor T up to computational
bound that depends on RC and α: let Z be a linear independent RC-tuple of vectors satisfying the
assumptions of Proposition 4.15 which form the columns of a RC ×RC matrix Z, let B,C, be the
corresponding matrices in Proposition 4.15 and A given by (3.3) and Λ as in Proposition 4.15, then

J(A,B,C) ≤

√√√√ JK∑
i=RC+1

λ
2

i +
√
σmax(Z−1Λ)2RCα2

2

. (4.20)

Finally, let us emphasize that Proposition 4.15 does not require zr to be solutions of the fixed
points equation (4.16). They could have been obtained by any other method as well.
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Example II (continued) Above, we showed that the tensor in (4.17) does not have a rank-2
decomposition. However, using Proposition 4.15 with RC = RM = 2 we may show that it can be
approximated arbitrary well by a rank-2 tensor and hence the infimum in (4.12) is 0. Let us take a
small perturbation of the maximum in Example II, z = (0, 1),

z1 = (sin(ε), cos(ε))T z2 = (− sin(ε), cos(ε))T .

These two vectors are linearly independent for ε > 0 and approximate the maximum. By a Taylor
series, we can find αr in Proposition 4.15 as

α1 = α2 =
1
8
ε4 +O(ε6)

The matrix Z having columns z1, z2 has an inverse

Z−1 =
1
2

(
1

sin(ε)
1

cos(ε)

− 1
sin(ε)

1
cos(ε)

)
.

For small ε we obtain that

σmax(Z−1Λ) = σmax(Z−1diag(
√

2, 1)) =
1

sin(ε)
.

Thus, the bound in Proposition 4.15 can be estimated to

Jred ≤
1
64
ε8 +O(ε10)

sin(ε)2
∼ O(ε6),

which shows that inf Jred = 0 we can approximate the tensor arbitrary well by rank-2 tensors.

5. ALGORITHMS

In this section we explain several algorithm which implement the theoretical concepts of the
previous section. In particular, we describe the following methods: the Centroid Projection
Algorithm (CePr) for finding suboptimal solutions to the general least squares problem (1.2), cf.
Algorithm I, based on Theorem 4.3. The fixed point algorithm (FP-R1(local)), cf. Algorithm II
for the computation of the best rank-1 approximation, based on Theorem 4.7 and the fixed point
equation (4.10). This algorithm will be coupled with a globalization strategy yielding Algorithms III
and IV, (FP-R1(RIG)) and (FP-R1(APIG)). Moreover, we discuss the methods for computing an
exact rank-R decomposition, based on Theorem 4.11 using again a fixed-point iteration (FP-EX),
cf. Algorithm V. Finally we sketch a method for computing a (suboptimal) general decomposition
using the ideas of Section 4.4 and Proposition 4.15. The corresponding algorithm is Algorithm VI,
(FP-INEX).

5.1. Suboptimal solutions: the Centroid Projection Algorithm

In Theorem 4.3 we proposed a way to calculate the matrices BC and CC, which are supposed to
be reasonable minimizers (with explicit bounds given in Corollary 4.4) of the general minimization
problem (1.2) using the reduced functional. The corresponding algorithm is described in Algorithm I
as a pseudo-code on the left column and as a MATLAB-pseudocode on the right-hand side.

The output of this algorithm is considered a suboptimal solution to the minimization problem
for (1.2). In the MATLAB-pseudocode on the right, katrao is a user-defined function to build
the Khatri-Rao product. For computational efficiency, we note that it is not necessary to form the
matrix M (compare the code in step 1) because the eigenvectors vi are the singular vectors of a
matrix unfolding of T . The same step is also part of the HOSVD algorithm [30].

If CePr is used as an initial guess for an ALS iteration, step 4 can be omitted, because it is already
the first iteration of the ALS. The SVD and the matrix inversion in step 4 are the computationally
most expensive parts.
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Algorithm I. Centroid Projection Algorithm (CePr)

Input: Tensor T ∈ RI×J×K , R ∈ N, 1 ≤ R ≤ min(J,K)
1. Compute the eigensystem (λi,vi) of M [V,D,U]=svd(reshape(T,[I J*K])’)
2. Compute V̄C xi=diag(D.ˆ2)./sum(diag(D.ˆ2))

Vc=reshape(V*xi,J,K)
3. Compute the first R left and right [Uc,Sc,Vc]=svd(Vcentroid)

singular vectors of V̄C , and form Bc=Uc(:,1:R)
the matrix BC and CC from them. Cc=Vc(:,1:R)

4. Compute AC := Ã[BC,CC] Ac=reshape(T,[I J*K])/...
(from (3.2)) khatrao(Bc,Cc)

Output: AC, BC, CC return Ac, Bc, Cc

Remark 5.1
The complexity of the Centroid Projection algorithm can roughly be estimated as follows (SVD
denotes the numerical complexity of a singular value decomposition).

ComplexityCePr ∼ SVD(for matrix of size I × JK) + SVD(for matrix of size J ×K)
(+solving linear equation of size JK × JK) ,

where the last term can be omitted if the Centroid Projection is used as an initial guess for ALS.
The complexity of this algorithm is comparable to the HOSVD algorithm, which needs three
singular value decompositions of matrices of sizes I × JK, J × IK and K × IJ . Without the
matrix inversion, CePr requires less work than HOSVD. In Section 6 we compare the running time
of CePr with other algorithms.

5.2. Best rank-1 fit by the fixed-point iterations

In Theorem 4.7 we derived the optimality conditions (4.10) for the general minimization problem
(1.2) in the rank-1 case R = 1 utilizing the reduced functional. Our algorithm is based on a fixed-
point iteration for solving these optimality conditions which yields Algorithm II (FP-R1(local)):
starting with an initial guess µ0, we try to compute solutions of (4.10) by a fixed-point iteration
until some convergence criteria (defined by the input parameter Nmax, εstop) is satisfied. The
corresponding output vectors b(µk), c(µK) are supposed to satisfy the optimality conditions of
the R = 1 least squares minimization problem for Jred.

For an actual implementation of FP-R1(local), the code in Algorithm II should be modified to
take into account that µ and ξ are only of size RM , and the value of RM should be precomputed.
(For the sake of a simpler presentation, the MATLAB pseudocode is slightly inconsistent in this
point.) Moreover, it is assumed here that svd stores the largest singular values at the first diagonal
entry of D. This is not necessarily always true in MATLAB and should be checked as well. Finally,
there are other options for the stopping criteria (step 6), which in our case terminates the iteration if
‖µk − µk−1‖ ≤ εstop or the maximal number of iterations Nmax is reached.

Remark 5.2
The main contribution to the numerical complexity is the singular value decomposition of Vξ, which
has to be done once for each iteration. The total number of iterations is not known a-priori, so we
can only roughly sketch the numerical complexity as

ComplexityFP−R1(local) ∼ SVD(for matrix of size I × JK)

+ SVD(for matrix of size J ×K) ∗ number of iterations.

The fixed point iteration will only converge locally at best. Moreover, a limit of a convergent
iteration is only a solution of the first order optimality condition (4.10) of (4.7) and thus only a
stationary point, but not necessarily a global minimum. (This problem is not specific to the fixed
point iteration, but appears as well for the ALS algorithm, see Remark 3.18).
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Algorithm II. Fixed Point Algorithm for Rank-1 Minimization (FP-R1(local))

Input: Tensor T ∈ RI×J×K , initial guess µ0 ∈ RRM , stopping parameters εstop > 0,
maximal number of iteration Nmax

1. Compute the eigensystem [V,D,U]=svd(reshape(T,[I J*K])’)
(λi,vi) of M mu=mu0;noconv=1

2. Fixed point iteration:
for k = 0 until convergence while(noconv)

3. Compute ξ by ξki = λi (µk)i√P
(λi (µk)i)2

xi=diag(D).*mu

xi=xi./norm(xi)
4. Form Matrix Vξ =

∑RM

i=1 ξiVi [Bxi,Dxi,Cxi]=...
and compute b(µk), c(µk) svd(reshape(V*xi,J,K))
from singular vectors B=Bxi(:,1);C=Cxi(:,1)
corresponding to the larges singular muold=mu
value of Vxi

5. Update µ according to (4.10) for i=1:length(mu)
mu(i)=B’*(reshape(V(:,i),J,K)*C)
end
k=k+1

6. If not converged, goto step 3 noconv=(norm(mu-muold)>eps)...
&&(k<Nmax)

end
Output: b(µk),c(µk) return B,C

In order to fix these problems, we use some globalization strategies. In the first approach, we
simply run FP-R1(local) for several randomly generated initial guesses µ0. For each of these
guesses, we obtain several vectors b, c as outputs of FP-R1(local). The final decomposition is taken
as that pair of vectors b, c for which Jred(b, c) has the minimal value amongst all outputs. Note that
because the singular vectors do not change when scaling a matrix by a factor, the initial guess can
also be scaled and, in particular, chosen as a point on the ellipsoid

∑RM

i=1((µ0)iλi)2 = 1. This yields
Algorithm III (FP-R1(RIG)).

Algorithm III. FP-R1 with random initial guess (FP-R1(RIG))

Input: Tensor T ∈ RI×J×K , number of random initial guesses NIG
stopping parameters εstop > 0, maximal number of iteration Nmax

1. Compute RM = rank(M)
2. Iterate from i = 1 To NIG
3. Generate random vectors µ0 ∈ RRM with

∑RM

i=1((µ0)iλi)2 = 1,
4. Run (FP-R1(local)) with µ0 as initial guesses; output: bi, ci
5. Compute function value Ji = Jred(bi, ci) using output of step 4.
6. If Ji < Jmin

then b, c = bi, ci, Jmin = Ji
7. Goto Step 2.
Output: b, c

Instead of using random initial guesses µ0 we can incorporate some a-priori information.
According to Lemma 4.9, the values of |(µopt)i| lie in an ellipsoid in RRM . Now, an alternative
to algorithm FP-R1(RIG) is to use initial guesses that are the “centers” of these ellipsoids. They are
obtained by minimizing the lower bound (4.11) over µopt, which yields that |µ0| =

(
σmax(Vi)

)RM

i=1
.

Here, however, we do not have any information on the sign of the components of µ0, so we use all
possible combination of signs and run FP-R1(local) for each of them. This gives Algorithm IV:
FP-R1(APIG), quite similar to FP-R1(RIG).
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Algorithm IV. FP-R1 with a-priori guess (FP-R1(APIG))

Input: Tensor T ∈ RI×J×K ,
stopping parameters εstop > 0, maximal number of iteration Nmax

1. Compute the eigensystem (λi,vi) of M and RM ,
2. Compute the vectors µi = (σmax(Vi))RM

i=1 ,
where Vi is the matricized version of vi in step 1.

2. For all s ∈ {1,−1}RM

3. Set (µ0)i = siµi, i = 1, . . . , RM
4. Run (FP-R1(local)) with µ0 as initial guesses; output: bi, ci
5. Compute function value Ji = Jred(bi, ci) using output of step 4.
6. If Ji < Jmin

then b, c = bi, ci, Jmin = Ji
7. End
Output: b, c

Remark 5.3
The complexity of the algorithm (FP-R1(RIG)) is clearly ∼ NIG ∗ ComplexityFP−R1(local), where
NIG is the number of random initial guesses. Hence, for the performance, NIG is important. If it is
too large, the computation time is too high, if it is too small, we might miss the global minimum.
We cannot give a practically useful value for NIG; this depends on the behavior of the fixed point
algorithm. We note that this algorithm becomes problematic for high values of RM , which is the
dimension of the initial guesses. To have an equally dense net of initial guesses in any dimensions,
one would have to choose NIG ∼ Const.RM , i.e., exponentially increasing in RM .

Comparing this with the algorithm (FP-R1(APIG), we observe that there we need 2RM runs of
FP-R1(local), which is still of exponential order in RM , but the number of runs is not an input
parameter. In the later section, we see that at least for small RM we get comparable results.

For Algorithm IV, there is no guarantee, that a global minimum is found. However, the numerical
experiments show that in many situations (FP-R1(APIG)) yields similar results than (FP-R1(RIG))
with less computational effort. In this sense, it is a practically useful tool, whose theoretical
convergence properties are still open.

5.3. Exact rank-R decomposition

In Theorem 4.11 we have found an equivalent way of computing the factor matrices of a rank-R
tensor (4.12) if the rank-condition R = RM is satisfied. By solving the optimization problem (4.15)
we can find the column vectors br, cr from the singular vectors of

∑RM

i=1 ziVi. The optimality
conditions for (4.15) are stated in Lemma 4.12 and the idea is to apply a fixed-point iteration —
similar as in the rank-1 case — to (4.16). Thus, we try to compute (approximations) to the set
SolRM

.
However, it is not enough to find one solution of (4.16) but we have to look for all global maxima

(in view of Theorem 4.13 we need at least RM linearly independent solutions for a success). We try
to achieve this in a similar manner as for the rank-1 fit, by starting with randomly selected initial
guesses, performing the fixed point algorithm for each initial guess and eliminating those solution
with are not maxima. This leads to Algorithm V (FP-EX).

The parameter εstop, Nmax play the same role of stopping parameters for the fixed point iteration
as they do in the Algorithm FP-R1(local). The value NIG is the number of random initial guesses
similar as in FP-R1(RIG). The parameter α is used to numerically test for σmax(

∑RM

i=1 ziVi) = 1. If
exact computations would be available it can be set to α = 0, otherwise it can be set to the numerical
accuracy of the singular value decomposition. The parameter εtest is used to rule out antipodal pairs
in the solution set. Note that z∞ is always normalized to 1, so that the inner product abs(z∞, zsol)
in step 4 is a measure of the cosine of the angle spanned by these two vectors. New solutions z∞

are removed from the solution set if they form an angle close to 0 or π with any of the previously
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Algorithm V. Fixed Point Algorithm for Rank-R tensors (FP-EX)

Input:Tensor T ∈ RI×J×K ,
tentative rank of decomposition R > 1
stopping parameters for fixed point iteration εstop > 0,
maximal number of iteration Nmax
parameter to test for linear independence εtest
parameter to test for optimality of function value α > 0
number of random initial guesses NIG

1. Compute the eigensystem (λi,vi) of M
2. Outer iteration FOR OUTER=1:NIG

Generate a random initial guess z=rand(R,1);z=z./norm(z)
z0 ∈ RR with ‖z0‖ = 1 Sol=[];BSol=[];CSol=[];

3. Fixed point iteration k = 0, . . . while(noconv)
Compute singular vectors [Bz,Dz,Cz]=...

c(zk),b(zk) svd(reshape(V*z,J,K))
B=Bz(:,1),C=Cz(:,1)
FOR i=1:R

z̃k+1
i = 〈Vic(zk),b(zk)〉 z(i)=B’*(reshape(V(:,i),J,K)*C)

END
zk+1 = 1

‖z̃k+1‖ z=z./norm(z)

until convergence; %Converg. test (epsstop, Nmax)
If converged, set z∞ = zk+1 zinf=z

4. Test if σmax(
∑RM

i=1 z
∞
i Vi) = 1 and IF(Dz(1,1)>1-alpha)&&...

for linear independence of z∞ to all (abs(zinf’*zsol)>1-epstest)
previously computed solutions z∞ for all zsol in Sol
if test passed, add z∞ to solution set Sol=[Sol zinf];
and corresponding singular vectors Bsol=[Bsol B];Csol=[Csol C];

END %End of if-test
5. End of outer iteration END

Output:
Sol, the set of z∞ which passed test
and the corresponding singular vectors return Sol,Bsol,Csol

computed solutions. In principle, this test is not needed, but it is used because for any solution to
the fixed point equation, z∞, its antipode, −z∞ is a solution as well. Thus, by this test we obtain a
smaller output Sol than without it.

Remark 5.4
The numerical complexity of this algorithm is mainly determined by the singular value
decompositions to find c(zk),b(zk), and it is comparable to that of FP-R1(RIG)

ComplexityFP−EX ∼ NIG ∗ (no. of fixed point iterations) ∗ SVD(for matrix of size J ×K).

If we use the same rule-of-thumb as for FP-R1(RIG), NIG ∼ ConstR, this indicates that the
algorithm is only useful for small values of R.

Remark 5.5
The exponential scaling of the complexity of tensor decompositions has been observed in literature,
e.g., in [31]. There, a multigrid approach using so-called reduced HOSVD algorithms was proposed
for an orthogonal Tucker approximation having linear complexity bounds in the grid size and ranks.

Algorithm FP-EX requires some postprocessing and a choice of the input value R, the tentative
rank of T (which is not know a-priori). The postprocessing involves testing for linear independent
elements in SolR. In the MATLAB code, Sol is a matrix of size RR×S , with S the number of



TENSOR DECOMPOSITION BASED ON A REDUCED FUNCTIONAL 27

z∞ that passed the test in step 4. We can easily test if there is an R-tuple of linear independent
columns in Sol by testing the rank of Sol. In view of Theorem 4.13 and because RM can easily
be computed we therefore propose to start FP-EX with R = RM . We sketch the processing scheme
for an exact decomposition in the following table.

I. Run FP-EX with R = RM
Ia. If rank Sol= R then a solution exists.

(if Sol∈ RR×R a unique solution exists)
(if Sol∈ RR×S , S > R possibly multiple solutions exit)

Ib. If rank Sol< R, then no RM -decomposition exists
set R = RM + 1 and goto step II.

(test for degeneracy)
II. Run FP-EX with R > RM (ambiguity in Algorithm FP-EX !)

IIa. rank Sol= R then a solution exists.
IIb. rank Sol< R then set R = R+ 1 and goto step II.

Let us comment on this scheme: The case that Ia. yields a solution (if exact computations would
be available) is the statement of Theorem 4.13. The case S > R, i.e., that we have more than R
vectors in SolR is no problem, but it indicates that multiple solution to the rank decomposition exist.
In fact, here any R-tuple of linear independent vectors in SolR (columns in Sol) gives a solution
by Theorem 4.13. The corresponding matrices B,C can be read from the output Bsol, Csol of
FP-EX . In the case 1b), by Theorem 4.13, no solution exists. However, it should be noted that we
can use our algorithm to test for a possible degeneracy, i.e., when the infimum in (4.12) is 0 but
no minimum exists with R = RM . Above we expressed the conjecture that this is the case when
some extrema of the optimization problem (4.15) appear with multiplicities such that higher order
derivatives of the functional in (4.15) vanishes. If our conjecture is true, then testing for degeneracy
only requires computing higher order derivatives of (4.15) at all z in Sol.

In case Ib. we propose to increase the tentative rank by one and rerun the algorithm again (step II.).
We are then in the situation of Corollary 4.14. However, the reader should be cautioned, because
in this case the algorithm is not well-defined: if R > RM , then in step 3 in FP-EX we have to
take the first RM singular vectors but also a number of R−RM singular vectors c(zk),b(zk)
corresponding to singular values with σi = 0. In this step it is not clear which one of them we
should choose. For instance if R = RM + 1 we have to add one pair of singular vectors out of
the max{J,K} −RM possibilities corresponding to the zero singular values. If R = RM + 2 we

have
(

max{J,K} −RM
2

)
possibilities. It is possible to modify Algorithm FP-EX accordingly

to test for all these possibilities, but soon this becomes computationally unfeasible. Hence, unless
the tensor rank R of T satisfies R = RM + 1, or R = RM + 2, continuing with step II. in the
above scheme is not really practically. Note, however, that the MATLAB code does run without
any problem even for R > RM because numerically the singular values are never 0 and MATLAB
always returns an ordered vector of singular values, such that everything is well-defined.

Still if we were able to compute R linear independent solutions in (step IIa.), by Corollary 4.14
a solution to the decomposition problem exists. Even if we were able to run step II. for all
R = RM , . . .max{J,K}, we do not yet have a full understanding if we would always find a solution.
We leave this issue to future work.

We suggest to view Algorithm FP-EX mainly as a method to compute exact solutions in the
“nice” case rank(T ) = RM .

5.4. Inexact tensor decomposition

As it was indicated in Section 4.4, Algorithm FP-EX can be modified to compute approximate
solutions to the general least squares problem even if (4.12) does not hold. By using a cutoff-
index RC for the spectrum and a relaxation parameter α for the optimality condition we come
to Algorithm VI, which output might not be a solution of the least squares problem, but at least it
satisfies the bounds in (4.20).
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Algorithm VI. Inexact Fixed Point Algorithm tensors (FP-INEX)

Input: RC < RM , a cutoff index of the singular value decomposition
α > 0, threshold parameter,
εstop, Nmax, εtest, NIG

1. Run FP-EX with R = RC < RM and α > 0
2. If Sol has rank R Stop

Else modify R and α and goto step 1
Output: Sol, Bsol, Csol

As before, FP-INEX, requires some pre- and postprocessing: an initial value RC can be found
by looking at the eigenvalues of M with the objective that the bound on the right of (4.18) is small
and RC is small as well. Moreover, α is chosen sufficiently small. If in step 2 of FP-INEX a rank-
R = RC matrix Sol was found, the algorithm run successfully. Otherwise we have to modify R
and α. It can happen, that the initial value of α was too small, but with a larger choice of α we find a
rank-R output Sol. In this case we succeeded again. However, it can be the case that because there
are too few fixed-points, Sol does not have sufficiently many linear independent vectors, even with
increasing α. In this case we have to modifyR: we can try a value ofR given by the rank of Sol and
run FP-INEX again. However, it is not guaranteed that such a modification always gives a success
in the sense of a rank-R matrix Sol. In this case, we can modify R again or admit that FP-INEX
fails.

In case of a success of FP-INEX we might have an output Sol containing more than one linear
independent R-tuple of vectors. In this case, we have many optimal solutions satisfying the above
bound (4.20). Unfortunately, FP-INEX does not tell which R-tuple of vectors in Sol we should
pick. We can look for one which have small value of σmax(Z−1Λ), but we are not aware of an
algorithm that can do this, other than testing all R-tuples in Sol.

6. NUMERICAL RESULTS

We performed several numerical experiments for the algorithms presented here: the Centroid
Projection method (CePr), the fixed point iteration for rank-1 minimization (FP-R1) (and its
variants) and the fixed point iteration for exact and approximate reconstruction of a rank-R
decomposition (FP-(IN)EX). All the computations were done in MATLAB on an Intel Xeon 2.8
GHz processor.

Comparison of CePr and FP-R1. We first study the performance of CePr and FP-R1 on small-sized
tensors. We randomly generate 6400 tensors of size I × J ×K with zero-mean Gaussian entries.
We let the dimensions run from I, J,K = 3, . . . 6. For each fixed tuple (I, J,K), a sample of 100
random tensors was generated yielding a total of 6400 tensors. For each tensor, the factor matrices
A,B,C are computed by various methods listed in Table I for different choices of R. We then
calculate the relative deviation of J(A,B,C) from the optimal functional value Jopt defined as

dev :=
(J(A,B,C)− Jopt)

Jopt
.

The optimal value Jopt is computed by the ALS iteration [32]. We used three variants of ALS, which
differ only in the way how the initial guess is chosen (ALS+HOSVD ALS+CePr, ALS+Random, see
below). The value Jopt is taken as the minimal residual of the output of these three ALS iterations.
Of course, we cannot guarantee here that the output is a global minimum because it could be just
a stationary point as well, but the results are consistent with the assumption that Jopt is a global
minimum in the sense that no smaller values J (up to numerical tolerances) were observed by the
alternative optimization routines (dev was always positive). For advanced method to improve this
situation for ALS we refer to [33, 34].
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For the case of R = 1, Jopt is computed by FP-R1. For all test cases, we first calculated and
contracted M over the first mode; i.e., M is of size JK × JK. The parameters for FP-R1(RIG)
and FP-R1(APIG) are set as follow: εstop = 10−6, NIG = Nmax = 100. The ALS iteration was
stopped when the norm of the difference between the factor matrices of two successive iterations
is less than 10−6 times the norm of the initial matrices. Table I compares several methods tested
on the random tensors through the following variables: the mean value of the deviation, dev, the
median, med(dev) (both scaled by a factor 10−2), and the mean of the computation time, time,
in 10−3 seconds. The first two lines show the results for the CePr method. CePrinit refers to the
Centroid Projection algorithm where the factor matrix AC is not computed (see the discussion on
the complexity); this method only differs in computation time from CePr. The next lines refer to
the HOSVD and DTLD methods, followed by the two variants of the fixed-point algorithm FP-R1
(which are only meaningful for R = 1). In the last three lines, we run the ALS algorithm once for
each tensor with an initial guess that is obtained either from HOSVD method, CePrinit or by a
random choice (ALS+Random).

Table I. Comparison of deviation of optimality of the algorithms for randomly generated tensor

R = 1 R = 2 R = 3

Method dev med(dev) time dev med(dev) time dev med(dev) time

CePr 7.40 6.27 1.1 30.8 26.5 1.1 94.5 68.7 1.1
CePrinit 0.4 0.4 0.4

HOSVD 16.45 14.43 0.9 64.1 56.3 0.9 176.7 132.4 0.9

DTLD 5.86 3.83 30.6 4.0 0.0 20.7 30.1 15.5 30.6

FP-R1(RIG) 0 0 1496.0

FP-R1(APIG) 1.13 0 498.0

ALS+HOSVD 0.2 0 12.1 0.5 0.0 100.4 0.9 0.0 245.4

ALS+CePr 1.2 0 13.6 1.1 0.0 111.7 0.8 0.0 249.0

ALS+Random 1.4 0 14.2 1.2 0.0 109.2 1.1 0.0 255.5

The results in Table I show that CePr outperforms the HOSVD method. CePrinit is about twice
as fast as HOSVD and yields residuals smaller than that of HOSVD. In the rank-1 case with R = 1,
we also observe that CePr already yields a small residual without using any further processing; its
function value is on average only 7.40% higher than the optimal value. However, when using ALS
with CePr as an initial guess, the ALS+HOSVD method is slightly faster because it requires less
iterations. The reason for this strange behavior is unclear to us. Nevertheless, the ALS with all three
starters are comparable. (Note that the deviation in the table is given in %.)

A comparison of DTLD to both CePr and HOSVD shows that DTLD gives better results but
it requires more time. DTLD’s performance is in between the fast approximate methods (CePr,
HOSVD) and the slower minimization methods of ALS-type.

In our experiments, FP-R1(RIG) always finds the optimum in the rank-1 case, while FP-
R1(APIG) is faster but fails to find the optimum in a few cases (the method still converges to
a stationary point). However for both methods, the computation time is much higher than the
ALS method. Although the fixed point iterations in FP-R1 converge quite fast (usually less than
10 steps), the globalization procedures makes the algorithm computationally very expensive. The
results below indicate that a reduction in the number of initial guesses, NIG, can reduce the running
time, but probably this is not enough to beat ALS.

Exact/Inexact decomposition for different tensor ranks and sizes. In the second example, we
investigate the numerical performance for an exact reconstruction of the fixed point method FP-EX.
We generate 6400 tensors from random factor matrices A,B,C of size I × 3, J × 3 and K × 3. By
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construction, each tensor is of rank at most 3. Similarly as before, we generate 100 tensors from the
factor matrices for each modal dimension I, J,K = 3, . . . 6, adding up to 6400 test tensors. We run
FP-EX with parameters α = 10−1, εstop = 10−6, εtest = 10−3 NIG = Nmax = 100 and R = 3. In
all of these cases, FP-EX is able to obtain a very good least squares fit. We find a fit with relative
least squares norm less than 10−5 in 89% of the cases, 10−3 in 93% of the cases and 10−1 in 98%
of the cases. The average computation time is one second (comparable to FP-R1(RIG) in Table I).
Note that FP-EX fails if the output does not contains R linearly independent solutions in SolR. This
was no problem for the tensors created by random factor matrices; FP-EX always run successfully.

Furthermore, we compare FP-EX and FP-INEX with ALS for tensors of larger sizes to investigate
the performance for practically relevant problems. The results are displayed in Table II. Here we
use tensors with a certain rank (rank T ) and size (I, J,K) by generating one random set of factor
matrices A,B,C of size (I, rank T ), (J, rank T ), and (K, rank T ). We run FP-INEX and FP-EX
against ALS+HOSVD for different choices of R (see first column of II). When the tensorial rank of
T is R, FP-INEX is equal to FP-EX, and thus, both methods are displayed in the same column. The
parameter setup for the fixed point iterations is the same as in the previous paragraphs; in particular,
we use a fixed number of random initial guesses, NIG = 100. In the case R is less than the tensorial
rank of T , FP-INEX successfully computes R fixed points if α is sufficiently small. (Note that
varying α does not need extra work as this can be done after the fixed point iterations). For the case
R = rank T , FP-EX runs successfully with the choice α = 10−1.

The table gives the relative residual and the computation time (in seconds) of the respective
methods. We observe that each of the two methods recover the rank correctly as indicated by a zero
residual in the last row. Also, the residuals are comparable but it can be seen that the computation
time for FP-(IN)EX is longer than for ALS. Note that ALS is extremely fast when R is equal to
the rank of T . We cannot explain this phenomenon at this point. For the fixed point methods, the
computation time is rather independent of R because we use a fixed number of initial guesses NIG.
The results are good results, but it also indicate more room for improvements (see also the next
example). Obviously, the difference in the running time between ALS and FP-(IN)EX is smaller for
the case of JK being small which is favorable for FP-(IN)EX.

FP-INEX for examples from tensor database. Finally, we investigate the performance of the fixed
point algorithms for more practical and relevant problems. In particular, we consider applying FP-
INEX to experimental tensor data. Here we used two datasets from Bro’s tensor database [35]: the
amino acid data [36, 35] of size 5× 201× 61 and the “Kojima Girls“ data [37] of size 153× 4× 20.
At first we considered the amino acid data which has a suitable fit when R = 3 according to [35].
As this is a 5× 201× 61 tensor, we did all the computations by contracting over the largest mode
J = 201 (cf. Remark 3.4).

Note that FP-INEX requires some non-automatic pre- and postprocessing methods. We describe
the procedures as follows. First of all, we have to select a suitable value of RC . This can be
found by looking at the eigenvalues of M and finding an appropriate cutoff value. Here the choice
RC = 3 seems to be useful, because if we calculate the relevant error in (4.18) we observe that

1

λ
2
max

∑IK
i=RC+1 λ

2

i < 10−7 for RC = 3 while it is of order 10−2 for RC = 2. This dramatic drop
indicates RC = 3 to be a good choice. We then run FP-INEX with parameter setup: Nmax = 100,
εstop = 10−6, εtest = 10−3, α = 10−1. The output Sol contains exactly 3 fixed points, hence this
is a well-behaved case when the second condition in Theorem 4.13 is satisfied. The corresponding
residual (see the last line in Table III) is of the same order as that obtained by ALS with the same
setup as above. This shows that the two methods yield comparable results.

In order to compare the computation times, we test how the output changes when the number
of initial guess NIG changes. Since a small number NIG yields a faster method, it is of interest to
reduce this number. So we test the algorithm for the choicesNIG = 10, 30, 70, 100: the running time,
the number of computed fixed points (i.e., the number of columns in Sol) and the corresponding
relative residual are displayed in Table III.

The table indicates that the output (3 fixed points and a similar residual) is almost the same for
all the choices of NIG, but the running time can be reduced using a smaller number of NIG. It can
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Table II. Comparison of FP-INEX/FP-EX and ALS for different dimensions and ranks

rank T = 5
(I, J,K) = (30, 30, 30)

rank T = 15
(I, J,K) = (30, 30, 30)

R residual time residual time
ALS FP-(IN)EX ALS FP-(IN)EX ALS FP-(IN)EX ALS FP-(IN)EX

1 252.58 252.94 3.14 42.20 610.34 614.52 3.12 41.42
2 169.10 187.51 3.66 47.28 536.97 550.54 3.66 49.59
3 100.00 111.12 4.15 48.68 480.25 538.31 4.10 52.28
4 45.06 51.23 4.54 48.03 419.74 487.30 4.52 51.25
5 0.00 0.00 0.08 48.37 372.95 424.06 5.07 49.53

14 12.72 13.88 10.48 48.30
15 0.00 0.00 0.20 48.00

rank T = 5
(I, J,K) = (100, 10, 10)

rank T = 12
(I, J,K) = (100, 10, 10)

R residual time residual time
ALS FP-(IN)EX ALS FP-(IN)EX ALS FP-(IN)EX ALS FP-(IN)EX

1 123.79 124.00 1.14 6.38 263.62 270.49 1.14 5.93
2 76.55 80.06 1.43 6.95 194.28 194.83 1.43 6.38
3 29.31 29.32 1.72 7.27 152.19 152.39 1.72 6.52
4 7.46 7.47 1.99 7.42 122.60 153.19 1.98 8.67
5 0.00 0.00 0.07 7.29 99.53 101.22 2.31 8.51

11 8.47 15.15 4.51 9.39
12 0.00 0.00 0.21 8.16

Table III. Comparison of FP-INEX and ALS for amino acid data using different numbers of initial guesses

FP-INEX
NIG = 10

FP-INEX
NIG = 30

FP-INEX
NIG = 70

FP-INEX
NIG = 100 ALS

time 6.4 s 18.8 s 43.3 s 62.8 s 12.8
|Sol| 3 3 3 3

rel. res. 0.68. 10−3 0.68. 10−3 0.68. 10−3 0.68. 10−3 0.62. 10−3

be observed that for the choice NIG = 10, FP-INEX is actually faster (by a factor of 2) than ALS.
This shows that with some tuning, FP-INEX is competitive to traditional methods at least when R
and IK are sufficiently small.

We did the same computation using RC = 4. In this case, the choice NIG = 10 was not enough
to compute 4 fixed points. However, with NIG = 30, FP-INEX successfully gives 4 fixed points
and the relative residuals were: relative residualFP−INEX = 0.52. 10−3, relative residualALS =
0.55. 10−3 (timeFP−INEX = 18.6s, timeALS = 14.4s).

The second example out of this database is called the “Kojima Girls”, originally by H. Kojima
[37]. The data is given by a 153× 4× 20 tensor, thus a contraction over the first index is used
in the computations. According to the data source, this tensor has a degeneracy. A first look at the
eigenvalues of M indicates no clear cutoff valueRC to choose since the eigenvalues decay smoothly
and there is no sudden “drop” to 0. We therefore test FP-INEX for increasing values of RC with the
same parameter setup as for the amino data (in particular NIG = 100 is the same for all values of
RC). For ALS we use a random initial guess, because HOSVD cannot be used for R > min(J,K).
The algorithm FP-INEX runs successfully in the sense that in each case, the number of fixed points
in Sol is larger than the input value R, which indicates a multiplicity of solutions. In Table IV we
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Table IV. Comparison of FP-INEX and ALS for Kojima Girls data

R rel. residual time |Sol|
ALS FP-IN. ALS FP-IN.

2 0.0158 0.0164 2.34 6.74 28
3 0.0121 0.0131 2.80 6.82 33
4 0.0103 0.0120 3.26 6.95 41
7 0.0072 0.0084 4.93 7.37 46

12 0.0049 0.0068 8.08 8.05 49
18 0.0036 0.0046 13.19 8.64 50
25 0.0025 0.0036 21.54 9.70 50

display the residuals, computation time and the number of computed fixed points in Sol (= |Sol|).
Since in this situation, there were more fixed points than the value of R, we simply took the first R
columns in BSol, CSol to extract the factor matrices B, C.

It can be seen that the obtained residuals of the two method are comparable (with ALS having a
slightly smaller residual) and that FP-INEX actually is faster than ALS for larger values of R. This
is because we are in the case that the tensor has one large dimension and two rather small ones.
Moreover, since we took NIG constant, the computation time does not increase with R but it does
so for ALS. What is also important is that we find in any case more fixed points in Sol than R,
which indicates a sort of nonuniqueness of the optimal decomposition.

To demonstrate this nonuniqueness we considered the case R = 3 in detail. Recall that if |Sol|
is larger than R, we can take any linear independent R-tuple of vectors in |Sol| to compute the
corresponding matrices B, C as in Proposition 4.15. However, only those tuples which have a
small value of σmax(Z−1Λ) yield a small residual according to (4.19). Unfortunately, FP-INEX
does not give information which tuples satisfy this condition. So we test all 3-tuples in |Sol|

(these are
(

33
3

)
= 5456 possibilities). Out of these tuples, we select those which have a value of

σmax(Z−1Λ) smaller than a certain threshold. Then, for each of them we calculate the corresponding
residual. We found 6 solutions that have the same or a slightly smaller (within 0.1%) residual than
that one computed by ALS. Moreover, 58 solutions had a residual with less than 1%. Further analysis
shows that these solutions are independent, in the sense, that they cannot be transformed into another
by scaling or permutations. This shows that this data is problematic, because it has a multiplicity of
(almost) optimal solutions.

7. CONCLUSION

We investigated the three components CP decomposition based on the reduced functional. The
corresponding optimization problem was reformulated into several equivalent forms: the Rayleigh
quotient form and the projection form. The latter formula focuses on the Khatri-Rao range of the
factors rather than the factor matrices. The analysis led to several new algorithms relying only on
basic matrix decompositions.

The first one, the Centroid Projection method (CePr), allows us to compute suboptimal solution
for the general least squares minimization problem for CP decomposition together with suitable
a-posteriori estimates. The numerical tests show that CePr is competitive to the traditional methods
such as HOSVD. In many cases, it is faster and gives more accurate solutions than the standard
techniques, in particular, for small R. It can also provide initial guesses to iterative methods such as
ALS.

The second method, FP-R1, (with the variants FP-R1(RIG), FP-R1(APIG)) is a fixed-point
method which is derived from the optimality condition of the rank-1 reduced least squares
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minimization problem. Numerically, we observed that it does compute the optimal solutions in our
test cases, but it is slow for many problems. The main obstacle in the efficiency is the globalization
strategy and the number of initial guesses, NIG. The method FP-R1 attempts to compute all local
minima of the rank-1 least squares problem. This is in contrast to the conventional methods where
only one solution is computed at a time. In this sense, it delivers more information than standard
methods.

Finally, the third method is also based on a fixed point algorithm which recovers a rank-R
decomposition (Algorithm FP-EX) or finds good solution for the general minimization problem
(1.2) (using FP-INEX). The method FP-EX works if the condition R = RM is satisfied (or for
R−RM ∈ {1, 2} with some limitations). The numerical results indicate that for random tensors
this condition seems to hold generically. Although its computation time is, in general, longer than
the required time for ALS. For the case when one of the mode has a large dimension in comparison
to the other two factors, the method is competitive with ALS and the fixed point methods can be
tuned to improve performance and become faster than ALS.

Similar conclusions apply to the inexact method FP-INEX, which obtains (sub)optimal solution
to the general least squares minimization problem (1.2). Its success depends on a condition such
that a sufficiently large number of linear independent fixed points have to exist. By some tuning of
NIG, we can obtain residuals up to the ALS precision. In addition, if the dimensions I, J,K and
rank R are appropriate, then it can beat ALS.

The main difference between the algorithms presented and the traditional methods is that
our methods yield more qualitative information on the solutions. The fixed point method gives
indications if the least squares problem has a unique solution or many solutions. Moreover, a
degenerate problem can be detected. Neither of these characterizations can be done with traditional
algorithms immediately. Furthermore, our algorithms are based on variational formulations with
a-posteriori estimates on the quality of the computed solutions.

The understanding of the role of some important parameters, in particular NIG, can hopefully be
enhanced in future work. Moreover, since the basis of the computation are on the functionals (4.9)
and (4.15), there is still plenty of room for improvement to our methods. For instance, alternative
optimization routines can improve the fixed-point methods.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous referees for their valuable comments.

REFERENCES

1. F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6: 164–189.
2. F. L. Hitchcock. Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7:

39–79.
3. J.D. Carroll, J.J. Chang. Analysis of individual differences in multidimensional scaling via an N-way generalization

of ‘Eckart-Young’ decomposition. Psychometrika 1970; 35: 283–319.
4. R.A. Harshman. Foundations of the PARAFAC procedure: models and conditions for an ”explanatory” multi-modal

factor analysis. UCLA working papers in phonetics 1970; 16: 1–84.
5. T. Kolda, B.W. Bader. Tensor decompositions and applications. SIREV 2009; 51: 455–500.
6. P. Comon, X. Luciani, A.L.F. de Almeida. Tensor decompositions, altenating least squares and other tales. J.

Chemometrics 2009; 23: 393–405.
7. M. Rajih, P. Comon. Enhanced line search: A novel method to accelerate Parafac. in the 13th Proceedings of the

European Signal Processing Conference, Antalya, Turkey, September 2005.
8. P. Paatero. The Multilinear Engine - a table-driven least squares program for solving multilinear problems,

including the n-way Parallel Factor Analysis model. J. Comput. Graph. Stat. 1999; 8: 854–888.
9. N. Li, S. Kindermann, C. Navasca. Some convergence results of a regularized alternating least-squares method for

tensor decomposition, Linear Algebra Appl. 2013; 438: 796-812.
10. J. Tendeiro, M. B. Dosse, J. M. F. ten Berge. First and second-order derivatives for CP and INDSCAL,

Chemometrics and Intelligent Laboratory System 2011; 106: 27–36.
11. V. de Silva, L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J.

Matrix Anal. Appl. 2008; 30: 1084–1127.
12. M. Brazell, N. Li, C. Navasca, C. Tamon. Tensor and matrix inversions and applications. Preprint,

http://arxiv.org/abs/1109.3830
13. T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin, 1995.

http://arxiv.org/abs/1109.3830


34 S. KINDERMANN AND C. NAVASCA

14. R. Bhatia. Matrix Analyis. Springer, New York, 1996.
15. W.P. Krijnen, T.K. Dijkstra, A. Stegeman. On the non-existence of optimal solutions and the occurrence of

”degeneracy” in the Candecomp/Parafac model. Psychometrika 2008; 73: 431–439.
16. A. Stegeman, L. De Lathauwer. A method to avoid diverging components in the Candecomp/Parafac model for

generic I × J × 2 arrays. SIAM J. Matrix. Anal. Appl. 2009; 30: 1614–1638.
17. L. De Lathauwer, B. De Moor, J. Vandewalle. On the best rank-1 and rank-(R1, R2, ..., RN ) approximation of

higher-order tensors. SIAM J. Matrix Anal. Appl. 2000; 21: 1324–1342.
18. A. Uschmajew. Local convergence of the alternating least squares algorithm for canonical tensor approximation,

Preprint #112, DFG-SPP 1324, University Marburg, 2011.
19. P. Paatero. Construction and analysis of degenerate PARAFAC models. J. Chemometrics 2000; 14: 285–299.
20. A. Stegeman. Degeneracy in Candecomp/Parafac explained for p× p× 2 arrays of rank p + 1 or higher.

Psychometrika 2006; 71: 483–501.
21. A. Stegeman. Low-rank approximation of generic p× q × 2 arrays and diverging components in the

Candecomp/Parafac model. SIAM J. Matrix. Anal. Appl. 2008; 30: 988–1007.
22. A. Lorber. Features of quantifying chemical-composition from two-dimensional data array by the rank annihilation

factor-analysis method. Anal. Chem. 1985; 12: 2395–2397.
23. E. Sanchez, B.R. Kowalski. Tensorial resolution: a direct trilinear decomposition. J. Chemometrics 1990; 4: 29–45.
24. S.E. Leurgans, T. Ross, R.B. Abel. Decomposition for Three-Way Arrays. SIAM J. Matrix Anal. Appl. 1993; 14:

1064–1083.
25. C.F. Van Loan. A general matrix eigenvalue algorithm. SIAM J. Num. Anal. 1975; 12: 819–834.
26. T. Zhang, G. H. Golub. Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 2001; 23:

534–550.
27. T. Kolda. Orthogonal tensor decomposition. SIAM J. Matrix Anal. Appl. 2001; 23: 243–255.
28. J.B. Kruskal, R. A. Harshman, M. E. Lundy. Some relationsships between Tucker’s three-mode factor analysis and

PARAFAC/CANDECOMP. Paper Presented at the annual Meeting of the Psychometric Society, Los Angles, 1983.
29. J. M. F. Ten Berge, H. A. L. Kiers, J. De Leeuw. Explicit CANDECOMP/PARAFAC solutions for a contrived

2× 2× 2 array of rank three, Psychometrica 1988; 53: 579–583.
30. L. De Lathauwer, B. De Moor, J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal.

Appl. 2000; 21: 1253–1278.
31. B. N. Khoromskij and V. Khoromskaja. Multigrid accelerated tensor approximation of function related

multidimensional arrays. SIAM J. Sci. Comput. 2009; 31: 3002–3026.
32. C. Navasca, L. De Lathauwer, S. Kindermann. Swamp reducing technique for tensor decomposition, in the 16th

Proceedings of the European Signal Processing Conference, Lausanne, August 2008.
33. E. Acar, D. M. Dunlavy, T. G. Kolda. A scalable optimization approach for fitting canonical tensor decompositions.

J. Chemometrics 2011; 25: 67-86.
34. H. de Sterck. A nonlinear GMRES optimization algorithm for Canonical Tensor Decomposition. SIAM J. Sci.

Comput. 2012; 34: A1351–A1379.
35. R. Bro. Public data sets for multivariate data analysis, http://www.models.kvl.dk/datasets.
36. R. Bro. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 1997; 38: 149–

171.
37. H. Kojima. Inter-battery factor analysis of parents and children reports of parental behavior. Japanese

Psychological Bulletin 1975; 17: 33–48.

http://www.models.kvl.dk/datasets

	1 Introduction
	2 Preliminaries
	3 The reduced objective functional
	3.1 Analysis of the reduced objective function
	3.2 Reduced functional in projection form
	3.3 Some special cases and optimality condition

	4 Approximate and Exact Least-Squares Minimization
	4.1 Bounds on Jred and suboptimal solutions
	4.2 Best Rank-1 Fit
	4.3 Reconstruction of the tensor decomposition
	4.4 Inexact tensor decomposition

	5 Algorithms
	5.1 Suboptimal solutions: the Centroid Projection Algorithm
	5.2 Best rank-1 fit by the fixed-point iterations
	5.3 Exact rank-R decomposition
	5.4 Inexact tensor decomposition

	6 Numerical Results
	7 Conclusion

