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Weighted Alternating Least Squares Algorithm 

Here, we introduce an iterative way to solve the receptor model (6). We need to give 

several definitions first. 

Definition 1 (Mode-  fibers): A mode-   fiber of a  th order tensor is a vector defined by 

fixing every index but the  -th one. 

For example, a matrix column is a mode-1 fiber and a matrix row is a mode-2 fiber. 

Third-order tensor have column (mode-1), row (mode-2) and tube (mode-3) fibers, denoted by 

    ,     ,      respectively.  

Definition 2 (Mode-  matricization): Matricization is the process of reordering the elements of 

an  th order tensor into a matrix. The mode-  matricization of a tensor               is 

denoted by                           and arranges the mode-   fibers to be the columns of the 

resulting matrix.  

Definition 3 (Vectorization): The vectorization of a matrix   [     ]      , 

where    is the  -th column of  , is denoted by        which is a vector of size      defined 

by 

       [

  

 
  

]. 
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Notice that the only difference between (1) and (6) is the additional uncertainty tensor, so 

we can work on (1) first and easily have the two variations of (6) by adding on the uncertainty. 

By taking mode-3 matricization on the both sides of the original model (1), we can obtain 

    
              

                                                                         

     [                         ]                           

  [         ]                                                                    

Similarly, we can consider mode-1 matricization on the equation (1). So it becomes  

    
                

                                                                    

where   is a     identity matrix, and    is a Khatri-Rao like product which is defined 

as follows,  

     [         ]                                             

Therefore, if we matricize the uncertainty tensor   to get      and      we can have two 

variations of the cost function (6) according to the equation (7) and (10), : 
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where the ‘/’ denotes element-wise division between two matrices. 

Given initials    and   , we can update   by fixing the factor matrix   in (13), and 

update   by fixing the factor matrix   in (12). So the problem (6) can be solved by the following 

two subproblems: 
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where      and      are the results obtained at the      th iteration. 

In [14], the problem is to minimize the following cost function 
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where          ,        and       . So the WALS algorithm proposed in [14] is 
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As we can see that the WALS method in [14] solved the two factor matrices by using the 

same objective function. Alternatively we are using two objective function    and   . The 

reasoning behind this is that our least squares is more complicated. The factor matrix   cannot 

easily be solved by   , and similarly   cannot be solved by    directly. 

So our task is to solve the subproblems (12) and (13) with non-negativity constraints. 

One way is to treat the each subproblem as a nonlinear optimization with constraints, but 

nonlinear solver is expensive. 

Instead of solving the factor matrix once a time, we can solve it vector by vector. The 

subproblem (14) is used to demonstrate this process. Let    and    denote the  th columns of 

    
  and     

  respectively,  ̂ denote the  th column of  ̂ . So, we have  
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For each             , we define a matrix     as 
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Where       ⁄  is the  th element of the vector   ,           . 

Therefore, for the each item in the summation, we have 
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and problem is to minimize the following function, 
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‖              
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Noticed that the equation (18) is just a least-squares problem with the coefficient matrix 

        
  , where     is defined by (17). So, instead of solving the whole matrix  ̂  once a 

time, we can calculate each column  ̂  by (18). In addition, minimizing the objective function 

(12) in terms of  ̂  with non-negativity constraint is easy to solve in MATLAB. We will use 

standard MATLAB least squares function ‘lsqnonneg’, to impose the non-negativity constraints. 

To stop the algorithm, we need to provide a convergence criterion. Usually the sum of 

squared residual (SSR) is used as convergence criterion. This criterion stops the algorithm if the 



change of objective   between two iterations is less than some small number called the 

tolerance. However, this may not be the best convergence criterion to cope with our problem. 

In [19], a new convergence criterion is introduced. It keeps tracking the change in 

det      from one iteration to the next. Where   is defined by (9) and ‘det’ is the determinant 

of the given matrix. det      is the squared volume of the space spanned by the column space 

of  , it has advantages in the resolution process.  

Therefore, the algorithm will stop if both of the changes (the value of objective function 

  and det     ) between two iterations are sufficiently small (~    ). 

We summarize the algorithm as follows: 

 

 

In Section 3, we introduced the BTD-        model and pointed out it is an another way 

around of the receptor model. So we could theoretically use the BTD-        algorithm to solve 

the problem. On the other hand, it is important to note several advantages in using WALS. First, 

additional decomposition in      
  for each   by using BTD-        does not give additional 

information due to lack of physical interpretation. Second, WALS method is much faster than 

BTD-        because it only solve two factors in each iteration. Lastly, we can easily add 



additional constraints on the WALS algorithm based on some prior information. For example, 

we need constrain both matrices    and    in BTD-        in order to add some constraint on 

the profile matrix. 


