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Abstract

The Nonnegative Tensor Factorization (NTF) method,
has been shown to separate the mixture of several sound
sources reasonably well. Based on the sparsity of power
spectrogram of signals, we propose to add sparseness
constraints to one factor matrix, which contains fre-
quency basis, to obtain a sparse representation of this
nonnegative factor. Two methods are presented for the
sparse and nonnegative factor matrix. The algorithms
are tested to separate the instrument sources from a two
channel mixtures containing a clarinet, a piano and a
steel drum. Some comparison results of these two NTF-
based methods are then presented.

1 Introduction

The purpose of this paper is to use a new numerical
technique for tensor decomposition. Given a tensor T ∈
RI×J×K , we find the decomposition of T into matrix
factors A ∈ RI×R, S ∈ RJ×R and G ∈ RK×R, such
that,

T ≈ T̂ =
R∑

r=1

Ar ◦ Sr ◦Gr

where T̂ is an approximation to T . Here Gr, Ar and Sr

are the rth column of the matrices G, A and S, respec-
tively. We use the CANDECOMP/PARAFAC (CP) de-
composition that is due to Harshman [11] and Carol
and Chang [6]. In the CP decomposition, the matrices
A ∈ RI×R, S ∈ RJ×R, and G ∈ RK×R are assumed to
exist in which the original tensor T is defined as

Tijk =
R∑

r=1

AirSjrGkr , (1)

for (i, j, k) ∈ [1, I]× [1, J ]× [1,K].

A specific application of CP in signal processing is in
sound source separation. Sound source separation refers
to the problem of synthesizing source signals given a
mixture of those same source signals. For example, the
original tensor T ∈ RI×J×K contains the power spec-
trogram of the multi-channel mixed signals [10]. The
unknown factors are the following: the entries of matrix
G are the gains of each independent source from R chan-
nels and each matrix Ar ◦ Sr

T is a power spectrogram
of a source signal. Due to some properties of the power
spectrogram of signals [10], the data has an inherent
tensor structure and hence, tensor decomposition meth-
ods are applied. The Alternating Least-Squares (ALS)
method introduced in [11, 6] is a well-known method for
approximating the factors of the original tensor T de-
scribed in 1. For sound source separation, it is typical to
add a nonnegativity constraint on all three factors due
to the nature of the data. Thus, each of the subproblem
of the ALS is replaced by a nonnegative matrix factor-
ization subproblem. This method is called the Nonneg-
ative Tensor Factorization (NTF); see [16, 3] for the im-
plementation. There are also various methods for sound
source separation; see the references [7, 18, 10, 17, 8].

In this paper, a two-channel mixture of the source
signals from a clarinet, a piano and a steel drum is con-
sidered. A tensor data consists of the spectrogram of the
input channel signal in one channel. Therefore, in the
case of two channels, we obtain a tensor of size I×J×2.
By using the ALS algorithm, we can obtain the factor
A, S and G with no constraints imposed on the factors.
Thus, we propose two hybrid nonnegative tensor decom-
positions which add sparseness constraint to one of the
nonnegative factors. Unlike the application of the NTF
in [10], all three factors are subjected to nonnegativity
constraints. In our application, the CP decomposition
(1) is used while assuming that the matrix A is sparse
since it represents the signals in the frequency basis.



The proposed methods are optimization based methods
relying on NMF [15, 16] methods and sparsity meth-
ods, namely, compressed sensing for recovering sparse
signals [5, 4] and projection-based technique to handle
sparseness constraints [13].

2 Preliminaries

We denote the scalars in R with lower-case letters
(a, b, . . .) and the vectors with bold lower-case letters
(a,b, . . .). The matrices are written as bold upper-case
letters (A,B, . . .) and the symbol for tensors are calli-
graphic letters (A,B, . . .). The subscripts represent the
following scalars: (A)ijk = aijk, (A)ij = aij , (a)i = ai

and Ar is the rth column of A. The superscripts indi-
cate the length of the vector or the size of the matrices.
For example, bK is a vector with length K and BN×K is
a N×K matrix. In addition, the lower-case superscripts
on a matrix indicate the mode in which it has been ma-
tricized. For example, T(n) is the mode-n matricization
of the tensor T ∈ RI×J×K for n = 1, 2, 3.

Definition 2.1 The Kronecker product of matrices A
and B is defined as

A⊗B =

264 a11B a12B . . .
a21B a22B . . .

...
...

. . .

375 .

Definition 2.2 The Khatri-Rao product is the “match-
ing columnwise” Kronecker product. Given matrices
A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product
is denoted by A � B. The result is a matrix of size
(IJ ×K) defined by

A�B = [A1 ⊗B1 A2 ⊗B2 . . .].

If a and b are vectors, then the Khatri-Rao and Kro-
necker products are identical, i.e., a⊗ b = a� b.

Definition 2.3 (Mode-n matricization)
Matricization is the process of reordering the ele-
ments of an N th order tensor into a matrix. The
mode-n matricization of a tensor T ∈ RI1×I2×···×IN

is denoted by T(n) and arranges the mode-n fibers,
the vectors obtained from fixing every index with the
exception of the nth mode, as the columns of the
resulting matrix.

Definition 2.4 (Rank-one tensor) An N th order
tensor T ∈ RI1×I2×···×IN is a rank-one if it can be writ-
ten as the outer product of N vectors, i.e.,

T = a(1) ◦ a(2) ◦ · · · ◦ a(N),

where a(r) ∈ RIr×1, 1 ≤ r ≤ N . The symbol “ ◦” rep-
resents the vector outer product. This means that each
element of the tensor is the product of the corresponding
vector elements:

ti1i2···iN
= a

(1)
i1
a
(2)
i2
· · · a(N)

iN
, for all 1 ≤ in ≤ In.

3 Optimization Methods

The CP decomposition is the simplest factorization for
representing a given tensor T ∈ RI×J×K into sums of
rank-one tensors; i.e. solve for three factor matrices A ∈
RI×R, SJ×R and GK×R for a fixedR in the optimization
problem:

min
A,S,G

‖T −
R∑

r=1

Ar ◦ Sr ◦Gr‖2F (2)

Through tensor matricization via the Khatri-Rao prod-
ucts, the problem (2) is reformulated into subproblems:

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − bA(Gk � Sk)T‖2F ,

Sk+1 = argminbS∈RJ×R

‖T(2)
J×IK − bS(Gk �Ak+1)T‖2F ,

Gk+1 = argminbG∈RK×R

‖T(3)
K×IJ − bG(Sk+1 �Ak+1)T‖2F .

(3)

This is the Alternating Least-Squares method. This it-
erative technique requires initial guesses A0, S0 and G0.

For sound separation applications, we require addi-
tional constraints on each of the subproblems in the ALS
algorithm: S and G are nonnegative matrices while A
is a sparse nonnegative matrix. To obtain nonnegative
matrices S and G, the last two subproblems in (3) is
replaced by the optimization problem of finding non-
negative factors W and H from a nonnegative matrix
V :

minimize‖V −WH‖2F , subject to W,H � 0 (4)

where � denotes the nonnegative entries of W and
H. This is called Nonnegative Matrix Factorization
(NMF). Several algorithms have been proposed for
NMF, namely, a gradient-based method by Paatero [16]
and a multiplicative updating algorithm by Lee and Se-
ung [15].

3.1 NMF-Sparse vs `1-NMF

For factor A, we have to deal with two constraints: spar-
sity and nonnegativity. We implement two methods dif-
fering in the order of how the constraints are imposed:
NMF with sparse constraints [13] (NMF-Sparse) and `1-
minimization with nonnegative constraints (`1-NMF).

3.1.1 `1-NMF

The first subproblem in (3) is reformulated by first vec-
torizing the equation T(1)

I×JK = Â(Gk�Sk)T into t =
Qâ via column stacking with Q = II×I ⊗ (Gk � Sk) ∈
RIJK×IR, t ∈ RIJK and â ∈ RIR. Then the least-
squares subproblem is replaced by an `1-minimization
with equality constraints [12]:

min‖â‖`1 subject to t = Qâ. (5)



Note that if x ∈ Rn, then ‖x‖`1 =
n∑

i=1

|xi|. The idea

behind this model (5) is to construct sparse and exact
solution vector â which matricizes into a sparse factor
matrix Â satisfying the CP decomposition.

The `1 minimization problem can be recast as linear
program [2]:

min 1′â subject to â ≥ 0 and Qâ = t (6)

with both equality and inequality constraints.
The link between `1 minimization and linear pro-

grams has been known since the 1950’s in the paper
of [14]. Moreover, numerical techniques for solving lin-
ear programs have been well studied. In our codes,
we implement Matlab’s linear programming algorithm
based on the simplex and interior-point methods. To
impose the nonnegative constraint on Â, the approxi-
mation from the linear program is further refined by a
nonnegative least-squares method.

3.1.2 NMF-Sparse

In [13], based on the method proposed in [16] and [15],
Hoyer added a sparseness constraint on the NMF algo-
rithm. Below we summarize the algorithm found in [13]:
for the nonnegative matrix V = T(1)

k−1

1. Initialize W = Ak−1 calculated in a previous ALS
iteration and set H = (Gk−1 � Sk−1)T

2. W←W − µW(WH−V)HT

3. Project each column of W to a vector that is non-
negative with same `2 norm, but the `1 norm is
set to achieve the desired sparseness

where µW = Wia

(WHHT )ia
is small positive multiplicative

step from [15]. In [13], Hoyer provided the projection
operator algorithm find the closest (in the Euclidean
sense) nonnegative vector s for any vector x constrained
to a given the `1 norm and a given `2 norm. The desired
sparsity of the factors, Sω and Sh, are defined as

sparseness(Wi) = Sω, sparseness(Hi) = Sh,

where

sparseness(x) =

√
n− ‖x‖`1

‖x‖`2√
n− 1

.

for a vector x.

4 Numerical Experiments

A two-channel mixture of the sound source signals from
a clarinet, a piano and a steel drum is the time-domain
input signal (see Figure 1). Each channel is a 91136
time sampled signal in 2 seconds and is divided into 89
frames, the power spectrum is calculated within each

frame using the discrete Fourier transform (DFT) for
each channel (see Figure 2a). Then the two spectro-
grams are stacked into a tensor format (see Figure 2b).
The two-channel mixture of the signals is tensor T of
size 1024× 89× 2.
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Figure 1: The two-channel sound signal mixtures

(a) The frequency of the two channels (b) Tensor

Figure 2: Tensor structure: the left frequency is the
top slice and the right frequency is the bottom slice,
obtaining a rotated tensor T ∈ R1024×89×2

According to the previous discussion in Section 3.1.1
and 3.1.2, below we describe the algorithm allowing dif-
ferent constraints on factor A. The algorithm is the
following:

1. CP decomposition is applied to T via ALS (3) to
obtain A, S and G. Choose one from the follow-
ing three methods for factor A and apply the non-
negative matrix factorization method for factors S
and G.

• (NMF)–For nonnegative A, solve the first
subproblem of (3) by NMF.

• (`1-NMF)–For nonnegative sparse matrix A,
use `1 minimization with nonnegative con-
straints (5) as the method for the first least-
squares subproblem.

• (NMF-Sparse)–For nonnegative sparse A,
use NMF with sparseness constraints as a
method by using the algorithm in Section
(3.1.2).

• Nonnegative factor matrices S and G are
solved by NMF.
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(a) Separated waveforms for clarinet
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(b) Separated waveforms for piano
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(c) Separated waveforms for steel drum

Figure 3: Waveforms of original signal, NMF, `1 nonnegative minimization and NMF with sparseness

2. For each 1 ≤ r ≤ R, construct the source spectro-
gram, Fr = A(:, r)S(:, r)T .

3. The matrix G gives the ratios of each signal of the
instrument in two channels. let a vector of size R,
H = log G(1,:).

G(2,:) . Using k-means cluster method [9],
H is divided into 3 clusters, where each is from
an instrument. So, Hr corresponds to Fr which
should be in the same cluster.

4. Apply phase information [1] for the spectrogram
obtained in 2 where the corresponding source sig-
nal up to the clusters is dominant to Fr. Invert
the spectrogram to obtain the time domain wave-
forms. See Figures 3a–3c.

Figure 1 shows the two channel sound signal mixture
input formed into a tensor. We compared these meth-
ods (NMF-Sparse, `1-NMF) and NMF to the original
waveforms in terms of the time domain waveform plots
and frequency plots. Figures 3a, 3b and 3c show the
comparison results, the waveform (top) in each figure
is the original sound signal waveform. The rest of the
waveforms (second from the top to bottom) in Figures
3a, 3b and 3c are NMF, `1-NMF and NMF-Sparse, re-
spectively. It can be seen that all three methods can
capture the main characteristics of the sources.

We measure the distance between two signals w and
v in a least squared error sense [1] by the following equa-
tion:

E =
N∑

i=1

(|wi| − |vi|)2 (7)

where N is the length of the signals. In Figure 4, set 1
is the comparison of the separated clarinet signals, set 2
and set 3 are the separated piano and steel drum signals,
respectively. It shows that `1-NMF (the green bar) is
better than the other two methods in all three sets.

Although both of `1-NMF and NMF-Sparse obtain
a sparse and nonnegative factor matrix A, we have seen
that `1-NMF is better in the least squared error sense.
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Figure 4: Error comparison of the different methods

Figure 5: Spectrograms of the clarinet for the varying
methods, the top left one is the original spectrogram

Let us look at the clarinet spectrogram plots of the sep-
arated and original signals. Figure 5 shows that the



NMF-Sparse method does not capture the spectral den-
sity at frequency between 0 to 0.5×104 and over 4×104

while the higher densities appear in the spectrograms of
the NMF and `1-NMF methods.

5 Conclusion

Two methods for hybrid tensor nonnegative decompo-
sition are presented in the application of sound source
separation. The two methods, the `1-NMF and NMF-
Sparse, are proposed to implement the hybrid tensor
decomposition to obtain a sparse and nonnegative fac-
tor due to the sparsity of power spectral. The numeri-
cal examples show the effectiveness of these techniques.
Moreover, the error comparison plots show the `1 non-
negative minimization (`1-NMF) is better than NMF.
The results of `1-NMF shows that it performs well with
respect to the error and the resulting spectrogram plots
of the separated signals which coincide with the actual
sound. The NMF-Sparse method is the worst accord-
ing to the error comparison. More study is needed to
compare the two methods. Furthermore, we plan to
develop more efficient techniques for sound source sep-
aration with better clustering methods.
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