
ITERATIVE METHODS FOR SYMMETRIC OUTER PRODUCT
TENSOR DECOMPOSITION

NA LI∗, CARMELIZA NAVASCA† , AND CHRISTINA GLENN‡

Abstract. We study the symmetric outer product for tensors. Specifically, we look at de-
composition of fully (partially) symmetric tensor into a sum of rank-one fully (partially) symmetric
tensors. We present an iterative technique for the third-order partially symmetric tensor and fourth-
order fully and partially symmetric tensor. We included several numerical examples which indicate a
faster convergence rate for the new algorithms than the standard method of alternating least squares.

Key words. multilinear algebra, tensor products, factorization of matrices

AMS subject classifications. 15A69, 15A23

1. Introduction. In 1927, Hitchcock [15][16] proposed the idea of the polyadic
form of a tensor, that is, expressing a tensor as a sum of a finite number of rank-one
tensors. Today, this is called the canonical polyadic (CP) decomposition; it is also
known as CANDECOMP or PARAFAC. It has been extensively applied to many prob-
lems in various engineering and science disciplines [26, 27, 1, 13, 28, 18]. Specifically,
symmetric tensors are ubiquitous in many signal processing applications [6, 8, 12]. In
this paper, we look at the symmetric outer product decomposition (SOPD), a sum-
mation of rank-one fully (partially) symmetric tensors. More specifically, we provide
some iterative methods for approximating the sum of rank-one symmetric tensors for
a given symmetric tensor.

SOPD is common in independent component analysis (ICA) [17, 7] or blind source
separation (BSS), which is used to separate the true signal from noise and interference
in signal processing [8, 12]. When the order of the tensor is three and it is symmetric
in two mode dimensions, this is called the individual differences scaling (INDSCAL)
model introduced by Carrol and Chang [5, 29].

There are very few numerical methods for finding SOPD. For unsymmetric ten-
sors, a well-known method for finding the sum of rank one terms is the Alternating
Least-Squares (ALS) technique [5, 14]. Since SOPD is a special case of CP decom-
position, the ALS method can be applied to obtain SOPD. However, this approach is
not efficient and is not guaranteed to work since all alternating least squares subprob-
lems lead to the same equation. In addition, the subproblems are now nonlinear least
squares problems in the factor matrices. A different method proposed by Comon [3] for
SOPD reduces the problem to the decomposition of a linear form. For the fourth-order
fully symmetric tensor, De Lathauwer in [12] proposed the Fourth-Order-Only Blind
Identification (FOOBI) algorithm. Schultz [25] numerically solves SOPD using the
best symmetric rank-1 approximation of a symmetric tensor through the maximum
of the associated homogeneous form over the unit sphere. In this paper, we study the
SOPD for the third-order partially symmetric tensors and the fourth-order fully and
partially symmetric tensors and propose a new method called Partial Column-wise
Least-squares (PCLS) to solve the SOPD. It obviates the nonlinear least-squares sub-

∗Department of Mathematics, Clarkson University, Potsdam, NY 13699.
†Department of Mathematics, University of Alabama at Birmingham, 1300 University Boulevard,

Birmingham, AL, 35294 (cnavasca@uab.edu).
‡Department of Mathematics, University of Alabama at Birmingham, 1300 University Boulevard,

Birmingham, AL, 35294.

1



2 N. LI, C. NAVASCA AND C. GLENN

problems through some tensor unfoldings and a root finding technique for polynomials
in estimating factor matrices.

2. Preliminaries. We denote the scalars in R with lower-case letters (a, b, . . .)
and the vectors with bold lower-case letters (a,b, . . .). The matrices are written as
bold upper-case letters (A,B, . . .) and the symbols for tensors are calligraphic letters
(A,B, . . .). The subscripts represent the following scalars: (A)ijk = aijk, (A)ij = aij ,
(a)i = ai. The r-th column of a matrix A is ar.

Definition 2.1 (Mode-n matricization). Matricization is the process of reorder-
ing the elements of a tensor of N th order into a matrix. The mode-n matricization
of a tensor T ∈ RI1×I2×···×IN is denoted by T(n) and arranges the mode-n fibers as
the columns of the resulting matrix. The mode-n fiber, ti1···in−1:in+1···iN , is a vector
obtained by fixing every index with the exception of the nth index. For example,
a third-order tensor X ∈ RI×J×K has the following mode-1, mode-2 and mode-3
matricizations of X :

X(1) = [x:11, . . . ,x:J1,x:12 . . . ,x:J2, . . . ,x:1K , . . . ,x:JK ],

X(2) = [x1:1, . . . ,xI:1,x1:2 . . . ,xI:2, . . . ,x1:K , . . . ,xI:K ], (2.1)

X(3) = [x11:, . . . ,xI1:,x12: . . . ,xI2:, . . . ,x1J:, . . . ,xIJ:],

respectively. These matricizations can be attained through these matlab commands:
X(1) = reshape(X, I, J*K),X(2) = reshape(permute(X, [2 1 3]), J, K*I) and
X(3) = reshape(permute(X, [3 2 1]), K, J*I).

Definition 2.2 (square matricization). For a fourth-order tensor T ∈ RI×J×K×L,
the square matricization is denoted by mat(T ) ∈ RIJ×KL and is defined as

T = mat(T )⇔ (T)(i−1)J+j,(k−1)L+l = Tijkl. (2.2)

See [4] for the generalizations of square matricization in terms of tensor blocks. This
is equivalent to the matlab command: T = reshape(T, I*J, K*L).

Definition 2.3 (unvec). Given a vector v ∈ RI2 , unvec(v) = W is a square
matrix of size I × I obtained from matricizing v through its column vectors wj ∈ RI ,
j = 1, 2, . . . , I; i.e.

wij = v((j − 1) · I + i), i = 1, 2, . . . , I

and

unvec(v) =
[
w1 w2 . . . wI

]
.

3. Symmetric Outer Product Decomposition. Definition 3.1. Let x,y ∈
Rn. The outer product of x and y is

M =


x1y1 x1y2 · · · x1yn

x2y1

...
...

...
xny1 ynyn

 . (3.1)

If x = y, then we see that M is a symmetric matrix.



TENSOR SYMMETRIC OUTER PRODUCT 3

The outer product of the vectors x,y, z ∈ Rn is the following:

(x⊗ y ⊗ z)ijk = xiyjzk. (3.2)

The outer product of three nonzero vectors is a third-order rank-one tensor; the outer
product of k nonzero vectors is a kth-order rank-one tensor. Given T = x⊗ y⊗ z. If
x = y = z, then we say T is a symmetric third-order rank-one tensor. We say T is a
partially symmetric third-order rank-one tensor if either x = y, x = z or y = z holds.

Definition 3.2 (Rank-one tensor). A kth order tensor T ∈ RI1×I2×···×Ik is
called rank-one if it can be written as an outer product of k vectors; i.e.

Ti1i2···ik = a
(1)
i1
a

(2)
i2
· · · a(k)

ik
, for all 1 ≤ ir ≤ Ir.

Conveniently, a rank-one tensor is expressed as

T = a(1) ⊗ a(2) ⊗ · · · ⊗ a(k),

where a(r) ∈ RIr with 1 ≤ r ≤ k.
Definition 3.3 (Partially symmetric rank-one tensor). A rank-one kth-order

tensor T ∈ RI1×I2×···×Ik is partially symmetric if it can be written as an outer product
of k vectors and if there exist modes l and m such that a(l) = a(m) where 1 ≤ l,m ≤ k
and l 6= m in

T = a(1) ⊗ a(2) ⊗ . . .⊗ a(k)

with a(r) ∈ RIr . Moreover, the equivalent mode indices form into disjoint subsets Si
of subindices where ∪k̄i=1Si = {1, 2, . . . , k} and ∩k̄i=1Si = ∅.

Remark 3.1. If a third-order tensor T is partially symmetric tensor with a(1) =
a(2), then

Ti1i2i3 = Ti2i1i3 .

Definition 3.4 (Symmetric rank-one tensor). A rank-one kth-order tensor T ∈
RI×I×···×I is symmetric if it can be written as an outer product of k identical vectors;
i.e.

T = a⊗ a⊗ · · · ⊗ a︸ ︷︷ ︸
k

where a ∈ RI .
Symmetric rank-one tensor is a special partially rank-one tensor where for any

l ∈ {1, 2, . . . , k}, a = a(l).
Remark 3.2. We say a tensor is cubical if the modal dimensions have equal

length. Symmetric tensors are cubical. A fully symmetric tensor is invariant under
all permutations of its indices. Let the permutation σ be defined as σ(i1, i2, . . . , ik) =
im(1)im(2) . . . im(k) where m(j) ∈ {1, 2, . . . , k}. If T is a symmetric tensor, then

Tσ = Tim(1)im(2)...im(k)

for all permutation σ on the index set {i1, i2, . . . , ik}.



4 N. LI, C. NAVASCA AND C. GLENN

A kth-order tensor T can be decomposed into a sum of outer products of vectors
if there exists a positive number R such that

T =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(k)
r︸ ︷︷ ︸

k

(3.3)

exists. This is called the Canonical Polyadic (CP) decomposition (also known as
PARAFAC and CANDECOM). This decomposition first appeared in the papers of
Hitchcock [15, 16]. The notion of tensor rank was also introduced by Hitchcock.

Definition 3.5. The rank of T ∈ RI1×···×Ik is defined as

rank(T ) := min
R

{
R
∣∣∣T =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(k)
r

}
Define Tk(Rn) as the set of all order-k dimensional n cubical tensors. A set of

symmetric tensors in T(Rn) is denoted as Sk(Rn).
Definition 3.6. If T ∈ Sk(Rn), then the rank of a symmetric T ∈ RI1×···×Ik is

defined as

rankS(T ) := min
S

{
S
∣∣∣T =

S∑
s=1

as ⊗ as ⊗ · · · ⊗ as︸ ︷︷ ︸
k

}

Lemma 3.7. [6] Let T ∈ Sk(Rn), there exist x1,x2, · · · ,xS ∈ Rn linearly inde-
pendent vectors such that

T =

S∑
i=1

xi ⊗ xi ⊗ · · · ⊗ xi︸ ︷︷ ︸
k

has rankS(T ) = S.
Note that Sk(Rn) ⊂ Tk(Rn). We have that R(k, n) ≥ RS(k, n) where R(k, n) is

the maximally attainable rank in the space of order-k dimension-n cubical tensors
Tk(Rn) and RS(k, n) be the maximally attainable symmetric rank in the space of
symmetric tensors Sk(Rn). In [6, 20], there are numerous results on symmetric rank
over C. For example in [6], for all T

• rankS(T ) ≤
(
n+k−1

k

)
• rank(T ) ≤ rankS(T )

We also refer the readers to the book by Landsberg [20] on some discussions on
partially symmetric tensor rank and the work of Stegeman [29] on some uniqueness
conditions for a minimum rank of the symmetric outer product.

4. Alternating Least-Squares. Our goal is to approximate a minimum sum
of rank-one kth-order symmetric tensors from a given symmetric tensor T . The
unsymmetric general problem is given a kth-order tensor T ∈ RI1×I2×...×Ik , find the
best minimum sum of rank-one kth-order tensor

min
R
‖T − T̃ ‖2F (4.1)

where T̃ =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(k)
r . The ALS method is a popular method for this

general problem.



TENSOR SYMMETRIC OUTER PRODUCT 5

ALS is a numerical method for approximating the canonical decomposition of
a given tensor. For simplicity, we describe ALS for third-order tensors. The ALS
problem for third order tensor is the following

min
A,B,C

∥∥∥∥∥T −
R∑
r=1

ar ⊗ br ⊗ cr

∥∥∥∥∥
2

F

where T ∈ RI×J×K . Define the factor matrices A, B and C as the concatenation
of the vectors ar, br and cr, respectively; i.e., A = [a1 a2 . . .aR] ∈ RI×R, B =
[b1 b2 . . .bR] ∈ RJ×R and C = [c1 c2 . . . cR] ∈ RK×R.

Matricizing the equation

T =

R∑
r=1

ar ⊗ br ⊗ cr

on both sides, we obtain three equivalent matrix equations:

T(1) = A(C�B)T,

T(2) = B(C�A)T,

T(3) = C(B�A)T.

where T(1)
I×JK , T(2)

J×IK and T(3)
K×IJ are the mode-1, mode-2 and mode-3 ma-

tricizations of tensor T . The symbol � denotes the Khatri-Rao product [24]. Given
matrices A ∈ RI×R and B ∈ RJ×R, the Khatri-Rao product of A and B is the
“matching columnwise” Kronecker product; i.e.,

A�B = [a1 ⊗ b1 a2 ⊗ b2 . . .] ∈ RIJ×R.

By fixing two factor matrices but one at each minimization, three coupled linear
least-squares subproblems are then formulated to find each factor matrices:

Ak+1 = argmin
Â∈RI×R

∥∥∥T(1)
I×JK − Â(Ck �Bk)T

∥∥∥2

F
,

Bk+1 = argmin
B̂∈RJ×R

∥∥∥T(2)
J×IK − B̂(Ck �Ak+1)T

∥∥∥2

F
, (4.2)

Ck+1 = argmin
Ĉ∈RK×R

∥∥∥T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T

∥∥∥2

F
.

where T(1), T(2) and T(3) are the standard tensor flattennings described in (2.1). To
start the iteration, the factor matrices are initialized with A0, B0, C0. ALS fixes B
and C to solve for A, then it fixes A and C to solve for B. And then ALS finally fixes
A and B to solve for C. This Gauss-Seidel sweeping process continues iteratively
until some convergence criterion is satisfied. Thus the original nonlinear optimization
problem can be solved with a sequence three linear least squares problems.

Although ALS has been applied extensively across engineering and science disci-
plines. However, ALS has some disadvantages. For non-degenerate problems, conver-
gence may require a high number of iterations (see Figure 4.1) which can be attributed
to the non-uniqueness in the solutions of the subproblems, collinearity of the columns



6 N. LI, C. NAVASCA AND C. GLENN

in the factor matrices and initialization of the factor matrices; see e.g. [9, 23, 30].
The long curve in the residual plot is also an indication of a degeneracy problem.

The ALS algorithm can be applied to find symmetric and partially symmetric
outer product decompositions for third order tensors by setting A = B = C and
A = B or A = C, respectively, in (4.2). The swamps are prevalent in these cases.
Moreover, the factor matrices obtained often do not reflect the symmetry of the tensor.
In addition, when ALS is applied to symmetric tensors, the least-squares subproblems
can be highly ill-conditioned which lead to non-unique solutions. The regularization
methods [22, 21] does not drastically mitigate the requirement for a higher number
of iterations.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−6

10−4

10−2

100

102

104

106

 

 
ALS

number of iterations 

no
rm

 o
f t

he
 re

si
du

al
s 

Fig. 4.1: The long flat curve (swamp) in the ALS method. The error stays at 103

during the first 8000 iterations.

5. Symmetric and partially symmetric tensor decompositions. Here are
the problem formulations: given an order-kth tensor T ∈ RI1×I2×...×Ik ,

(1) find the best minimum sum of rank-one symmetric tensor

min ‖T − T̃ ‖2F (Problem 1)

where T̃ =

R∑
r=1

ar ⊗ ar ⊗ · · · ⊗ ar

(2) find the best minimum sum of rank-one partially symmetric tensor

min ‖T − T̃ ‖2F (Problem 2)

where T̃ =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ . . .⊗ a(k)
r for some modes a

(j)
r = a

(l)
r where 1 ≤

j, l ≤ k and j 6= l.
We refer to these decomposition symmetric outer product decompositions (SOPD).

We describe the decomposition methods for third-order and fourth-order tensors
with partial and full symmetries. Later, we outline on how these methods can be
extended to the general case in our future line of research.



TENSOR SYMMETRIC OUTER PRODUCT 7

5.1. SOPD for Third-order Partially Symmetric Tensor. Given a third-
order tensor T ∈ RI×I×K with tijk = tjik, Problem 2 becomes

min
A,C

∥∥∥∥∥∥T −
Rps∑
r=1

ar ⊗ ar ⊗ cr

∥∥∥∥∥∥
2

F

, (5.1)

with Rps summands of rank-one partial symmetric tensors and T̂ =
∑Rps

r=1 ar⊗ar⊗cr
. The unknown vectors are arranged into two factor matrices A = [a1 a2 · · · aRps

]

and C = [c1 c2 · · · cRps
] in this case. Matricization of T̂ leads to

T̂(3) = C(A�A)T,

where T̂(3) ∈ RK×I2 is the mode-3 matricization of tensor T̂ . Thus (5.1) becomes

min
A,C

∥∥T(3) −C(A�A)T
∥∥2

F
. (5.2)

If we apply the ALS method, the problem reduces to the following subproblems:

Ak+1 = argmin
Â∈RI×Rps

∥∥∥T(3) −Ck(Â� Â)T
∥∥∥2

F
, (5.3)

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
. (5.4)

Directly applying the ALS method to (5.1) does not work. For symmetric problems,
at least one is a nonlinear least squares problem; e.g. see (5.12). The consequences
of the ALS approach lead to factor matrices that do not satisfy tensor symmetries
and/or it takes a high number of iterations (swamps) if it converges at all.

To obviate this problem, we find an alternative method to solve for the factor
matrix A. Note that once A is solved, then C is solved via linear least squares.
Recall that T(3) = Ck(Â� Â)T can be solved for Â� Â; i.e.

Â� Â = ((Ck)†T(3))
T (5.5)

where (·)† denotes the Moore-Penrose pseudoinverse. Equivalently, (5.5) can be writ-
ten as

âr ⊗ âr = ((Ck)†T(3))
T(:, r)⇔ âr · âT

r = unvec
(
((Ck)†T(3))

T(:, r)
)

(5.6)

where r = 1, 2, . . . , Rps, âr is the rth column of matrix Â and unvec
(
((Ck)†T(3))

T(:, r)
)

is a matrix (I×I) obtained from the vector ((Ck)†T(3))
T(:, r) via column vector stack-

ing of size I. With (5.6), we can obtain Â by calculating each of its column âr at a
time. We call this approach as the partial column-wise least squares (PCLS) method,
a Cholesky-like factorization for a symmetric Khatri-Rao product.

Let x ∈ RI = [x1 x2 · · · xI ]T denote the unknown vector âr and Y = unvec
(
((Ck)†T(3))

T(:, r)
)
∈

RI×I . Then (5.6) becomes
x2

1 x1x2 · · · x1xI
x1x2 x2

2
...

. . .

x1xI x2
I

 = Y.



8 N. LI, C. NAVASCA AND C. GLENN

Notice that the unknown x1 is only involved in the first column and first row, so
we only take the first column and first row elements of Y. Thus, the least-squares
formulation for these elements is

x∗1 = arg min
x1

(y11 − x2
1)2 +

I∑
i=2

[
(yi1 − xix1)2 + (y1i − xix1)2

]
. (5.7)

This cost function in (5.8) is a fourth-order polynomial in one variable x1. Thus
each component xi can be solved in the same manner of minimizing a fourth-order
polynomial.

Generally, for each m = 1, · · · , I, the least-squares formulation at (k + 1)th iter-
ation is

(x∗m)k+1 = arg min
xm

(ymm − (xkm)2)2 +

I∑
i=1
i6=m

[
(yim − xki xkm)2 + (ymi − xki xkm)2

]
.(5.8)

Thus, we have a system of fourth-order optimization problems. See Table 5.1 In
practice, a fast root finding method is used to solve for the zeros of a cubic polynomial.
Specifically, roots in matlab is used in the implementation in the numerical examples
discussed in Section 6. It is fast and more reliable than implementing SVD/EVD. The
SVD/EVD approximations often lead to a high number of iterations for cases where
the numerical experiment converges.

Here are the two subproblems with two initial factor matrices A0 and C0:

ak+1
r = argmin

âr∈RI

∥∥unvec (((Ck)†T(3))
T(:, r)

)
− âr · âT

r

∥∥2

F
,

r = 1, . . . , Rps, (5.9)

and (5.10)

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
(5.11)

for approximating A and C. Starting from the initial guesses, the first subproblem
is solved for each column ar of A while C is fixed; this method is called the itera-
tive Partial Column-wise Least-Squares (PCLS). See Table 5.1. Then in the second
subproblem, we fixed A to solve for C. This process continues iteratively until some
convergence criterion, the upperbound for the residual and the maximum number of
iterations, are satisfied.

For the cases tijk = tikj (B = C) and tijk = tjki (A = C), the optimization
problems are

min
A,C

∥∥∥∥∥∥T −
Rps∑
r=1

ar ⊗ cr ⊗ cr

∥∥∥∥∥∥
2

F

⇐⇒ min
A,C

∥∥T(1) −A(C�C)T
∥∥2

F

and

min
A,B

∥∥∥∥∥∥T −
Rps∑
r=1

br ⊗ ar ⊗ ar

∥∥∥∥∥∥
2

F

⇐⇒ min
A,B

∥∥T(2) −B(A�A)T
∥∥2

F
.



TENSOR SYMMETRIC OUTER PRODUCT 9

Find A∗ = argminA‖T−C(A�A)T ‖2F
%Solve for A ∈ RI×R in A�A = Y where Y = (C†T)T

Input: T ∈ RK×I2 , C ∈ RK×R.
for r=1:R

Matricize column equation: ar ⊗ ar = Y(:, r)→ ar · aTr = unvec(Y(:, r))

%Solve ak+1
r = argmin

âr∈RI

‖unvec(Y)(:, r))− ar · aTr ‖2F
for m=1:I

(ar)
∗
m = arg min(ar)m (ymm − ((ar)m)2)2 +

∑I
i=1
i 6=m

[
(yim − (ar)i(ar)m)2

+(ymi − xi(ar)m)2
]

end
end

Table 5.1: Partial Column-wise Least-Squares (PCLS)

Here are the corresponding subproblems:

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(1) −Ak(Ĉ� Ĉ)T
∥∥∥2

F
,

Ak+1 = argmin
Â∈RI×Rps

∥∥∥T(1) − Â(Ck+1 �Ck+1)T
∥∥∥2

F

and

Ak+1 = argmin
Â∈RJ×Rps

∥∥∥T(2) −Bk(Â� Â)T
∥∥∥2

F
,

Bk+1 = argmin
B̂∈RI×Rps

∥∥∥T(2) − B̂(Ak+1 �Ak+1)T
∥∥∥2

F
.

The advantage of our iterative PCLS over ALS is that it directly computes two
factor matrices. If the ALS method is applied to this problem, then one has to update
three factor matrices even though there are only two distinct factors in each iteration.
In addition, a very high number of iterations is required for this ALS problem to
converge and it also not guaranteed that the solution satisfies the symmetries. The
ALS method solves three linear least squares problems in each iteration, while PCLS
solves one linear least squares and minimizes Rps quartic polynomials one iteration.
This is equivalent to finding the roots of a cubic polynomials. The operational cost
of running PCLS on a third-order tensor is less than the requirement of ALS since
only one linear least-squares is performed with an operational count of O(n3) where
n reflects the size of the system. A root-finding solver for a cubic polynomial is
implemented. Fast numerical methods like Newton’s method could be implemented
with a complexity of O(M(n)) where M(n) is the operational cost for the choice of
multiplication for n-digit precision.

5.2. SOPD for Fourth-order Partially Symmetric Tensors. We can apply
PCLS on the fourth-order partial symmetric tensor. Here we consider the following
cases.



10 N. LI, C. NAVASCA AND C. GLENN

5.2.1. Case 1: two pairs of similar factor matrices. Let us consider the
fourth-order partially symmetric tensor X ∈ RI×I×J×J with xijkl = xjill and xijkl =
xijlk. With the given symmetries, the number of unknown factors have been reduced
to two, A and C, since A = B and C = D. Then, the problem is to find factor
matrices A and C through the following minimization

min
A,C

∥∥∥∥∥X −
R∑
r=1

ar ⊗ ar ⊗ cr ⊗ cr

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and C = [c1 c2 · · · cR]. By using the square matricization,
we obtain

mat(X ) = (A�A)(C�C)T . (5.12)

To solve the equation (5.12) for A and C, we apply PCLS on

ar ⊗ ar = mat(X )((C�C)T )†(:, r), r = 1, . . . R

cr ⊗ cr = mat(X )T ((A�A)T )†(:, r), r = 1, . . . R

iteratively. Again, we only need to solve for the global minima of two fourth-order
polynomials.

Now consider the fourth-order partially symmetric tensor X ∈ RI×J×I×J with
xijkl = xkjil and xijkl = xilkj . The problem is to find factor matrices A and B
through the following minimization

min
A,B

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ ar ⊗ br

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR].
Before matrcizing, we permute the indices of X where the modes are reordered

from 1, 2, 3, 4 to 1, 3, 2, 4. Then, by using the square matricization, we obtain

mat(X ) = (A�A)(B�B)T

which leads to

ar ⊗ ar = mat(X )((B�B)T )†(:, r), r = 1, . . . R

br ⊗ br = mat(X )T ((A�A)T )†(:, r), r = 1, . . . R.

Similarly, for the case when the symmetries, xijkl = xljki and xijkl = xikjl, we
minimize

min
A,B

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ br ⊗ ar

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR]. We permute the indices of X
from [1, 2, 3, 4] to [1, 4, 2, 3] to achieve the matricization,

mat(X ) = (A�A)(B�B)T .



TENSOR SYMMETRIC OUTER PRODUCT 11

5.2.2. Case 2: one pair of similar factor matrices. Consider the fourth-
order partially symmetric tensor X ∈ RI×J×I×K with xijkl = xkjil. Tensor X is
partially symmetric in mode one and mode three. We find factor matrices A, B and
C via

min
A,B,C

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ ar ⊗ cr

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR], B = [b1 b2 · · · bR] and C = [c1 c2 · · · cR].
Before matrcizing, we permute the indices of X where the modes are reordered

from 1, 2, 3, 4 to 1, 3, 2, 4. Then by using the square matricization, we obtain

mat(X ) = (A�A)(B�C)T.

From this matricized equation, we can get two equations:

ar ⊗ ar = mat(X )((B�B)T )†(:, r), r = 1, . . . R (5.13)

and

br ⊗ cr = mat(X )T ((A�A)T )†(:, r), r = 1, . . . R. (5.14)

One can apply PCLS to extract ar from the symmetric Khatri-Rao product (5.13).
A rank-one SVD can be applied to find the decomposition of the asymmetric Khatri-
Rao product (5.14) while rank-one EVD may be used for (5.13). In practice, these
approximations lead to a high number of outer loop iterations.

5.3. SOPD for Fourth-order Fully Symmetric Outer Product Decom-
position. Given a fourth-order fully symmetric tensor T ∈ RI×I×I×I with tijkl =
tσ(ijkl) for any permutation σ on the index set {ijkl}. We want to a find factor matrix
A ∈ RI×Rs such that

min
A

∥∥∥∥∥T −
Rs∑
r=1

ar ⊗ ar ⊗ ar ⊗ ar

∥∥∥∥∥
2

F

, (5.15)

where A = [a1 a2 · · · aRs
].

By using the square matricization, we have

T = (A�A)(A�A)T. (5.16)

Since T is symmetric, then T is a symmetric matrix. Then it follows that there exists
a matrix E such that

T = EET. (5.17)

Comparing the equations (5.16) and (5.17), we know that there exists an orthogonal
matrix Q such that

E = (A�A)Q, (5.18)

where Q ∈ RRs×Rs is an orthogonal matrix. In equation (5.18), the unknowns are A
and Q while E is known.



12 N. LI, C. NAVASCA AND C. GLENN

Therefore, given the the initial guess matrix A0 and any starting orthogonal
matrix Q0, we can update the factor matrix by following subproblems:

Ak+1 = argmin
Â∈RI×Rs

∥∥∥E− (Â� Â)Qk
∥∥∥2

F
, (5.19)

and

P = argmin
Q̂∈RRs×Rs

∥∥∥E− (Ak+1 �Ak+1)Q̂
∥∥∥2

F
. (5.20)

Since the solution in (5.20) is not guaranteed to be orthogonal, we perform a QR
factorization to P to obtain an orthogonal matrix O. Let

Qk+1 = O. (5.21)

where P = OR and R is an upper triangular matrix. To solve equation (5.19), we
apply the PCLS (5.9) to compute A column by column,

ak+1
r = argmin

âr∈RI

∥∥unvec (E(Qk)T (:, r)
)
− âr · âT

r

∥∥2

F
, r = 1, . . . , Rs. (5.22)

We summarize the iterative method via PCLS method for fourth-order fully sym-
metric tensor. Given the tensor T ∈ RI×I×I×I , we first calculate matrix E ∈ RI2×Rs

through T, the matricization of T . Then starting from the initial guesses, we fix Q to
solve for each column ar of A, then A is fixed to compute a temporary matrix P. In
order to make sure the updated Q is orthogonal, we apply QR factorization on P to
obtain an orthogonal matrix and set it to be the updated Q. This process continues
iteratively until the absolute residual ‖T − Test‖F has reached a set tolerance.

6. Numerical Examples. In this section, we compare the performance of ALS
against our iterative method via PCLS for the third-order partially symmetric ten-
sors and the fourth-order fully symmetric tensors. From these numerical examples,
our iterative method outperformed ALS in terms of the number of iterations until
convergence and the CPU time. We prepared three types of examples: (1) third
order partially symmetric tensor, (2) fourth-order fully symmetric tensor and (3)
fourth-order cumulant tensor in blind source separation problem. In the all of the
experiments, the stopping criterion is set at ε = 10−10 in ‖X − Xest‖2F < ε.

We generated our tensor examples by randomly generating factor matrices which
satisfy the symmetric constraints. For example, we create a third-order tensor T ∈
RI×I×K with partial symmetry tijk = tjik by randomly generating a matrices A ∈
RI×R and C ∈ RK×R with i.i.d. gaussian entries in

(T )ijk =

R∑
r=1

(A)ir(A)jr(C)kr.

The random matrices are generated in matlab via A = randn(I,R) and C = randn(K,R).

6.1. Example I: third-order partially symmetric tensor. We generate a
partially symmetric tensor X ∈ R17×17×18 by random data, in which xijk = xjik. In



TENSOR SYMMETRIC OUTER PRODUCT 13

Figure 6.1, we consider SOPD for X with Rps = 17 with two different factor matrices
A ∈ R17×17 and C ∈ R18×17 and the decomposition is

X =

Rps∑
r=1

ar ⊗ ar ⊗ cr.

0 200 400 600 800 1000 1200
10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

 

 
ALS
PCW−ALS

number of iterations 

no
rm

 o
f t

he
 re

si
du

al
s 

(a) good initial guess

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

 

 
ALS
PCW−ALS

number of iterations 
no

rm
 o

f t
he

 re
si

du
al

s 

(b) random initial guess

Fig. 6.1: Plots for the Example 6.1

In the two plots, the stopping criteria for both ALS and our method are satisfied
when the error ‖X − Xest‖2F is less than ε = 10−10 where Xest denotes the obtained
tensor after every iteration. ALS needs three initial guesses, so we set B0 = A0.

In Figure 6.1a, both algorithms work well with a particular initial guesses, but
our iterative method performed better than the ALS algorithm. It required only takes
120 iterations in comparison to that of 1129 ALS iterations. Moreover, our method
is faster than ALS since the CPU time is 3.9919s while ALS took 6.4126s. Figure
6.1b shows that our method did not enter a swamp regime and converged after 205
iterations at an error within 10−10. ALS did not converge after 20000 iterations with
a constant error at 1.

Simulation. We tested the algorithms with 50 different random initial starters
given the same tensor X set-up. Both the ALS and our iterative algorithms are used
to decompose X with rank Rps = 17. The average results in terms of the number of
iterations and CPU time are shown in the Table 6.1.

ALS Iterative PCLS
average CPU time 17.1546s 6.1413s

average number of iterations 3445.0 258.7

Table 6.1: ALS and Iterative PCLS: Mean of the CPU time and the number
of iterations of 50 random initial starters

CPU time vs tensor size. We apply the ALS and our iterative PCLS methods
on the third-order partially symmetric tensors with varying sizes: X1 ∈ R10×10×10

with Rps = 10, X2 ∈ R20×20×20 with Rps = 20, . . . , X9 ∈ R90×90×90 with Rps = 90.
We compare the CPU times of both methods for the same tensor size. For each tensor



14 N. LI, C. NAVASCA AND C. GLENN

Xi, we calculated the mean average of the CPU times and the number of iterations
from each method as in the previous experiments above. The following Figure 6.2
shows that as the tensor size increases, the rate of CPU time of the ALS is faster than
the rate of the iterative PCLS’s CPU time.

D10 D20 D30 D40 D50 D60 D70 D80 D90
0

100

200

300

400

500

600

Dimensions

C
U

P 
Ti

m
e

 

 

ALS
PCW−ALS

Fig. 6.2: Plots of the mean of CPU times vs tensor dimensions

6.2. Example II: fourth-order fully symmetric tensor. The first fully sym-
metric fourth-order tensor example is X ∈ R10×10×10×10 with R = 10. With the given
initial guess A0, both ALS and iterative PCLS are applied to solve the SOPD for this
fourth-order tensor. The following Figure 6.3 shows that the swamp occurs in the
ALS method while the iterative PCLS converges very fast.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

 

 
ALS
PCW−ALS

Fig. 6.3: Plot for the Example 6.2 (first)

The second example is a fully symmetric fourth-order tensor X ∈ R15×15×15×15

with R = 10. Given with the initial guess A0, both ALS and iterative PCLS are
applied to solve the SOPD for this fourth-order tensor. Figure 6.4 shows that both



TENSOR SYMMETRIC OUTER PRODUCT 15

method works well. The CPU time of the ALS method is 27.2149s while the iterative
PCLS method is 4.2763s. The iterative PCLS performed faster than ALS in terms of
CPU time and the number of iterations.

0 100 200 300 400 500 600 700 800
10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106

 

 
ALS
PCW−ALS

Fig. 6.4: Plot for the Example 6.2 (second)

6.3. Example III: blind source separation problem. From a mixture of
signals Z(t) in Figure 6.5, we would like to recover the two original source signals
X(t) [10],

x1(t) =
√

2 sin t

x2(t) =

{
1 if t ∈ [kπ, kπ + π

2 ), k ∈ Z
−1 if t ∈ [kπ + π

2 , (k + 1)π), k ∈ Z.

The goal is to find matrix V so that VZ(t) = X(t). The matrix V ∈ R2×2 can be
obtained from

CZ =

2∑
r=1

(CX)rrrrvr ⊗ vr ⊗ vr ⊗ vr (6.1)

where CZ and CX are fourth-order cumulant tensor of size 2× 2× 2× 2 w.r.t. Z and
X, respectively, and vr is a column of V. Note that CX and V are the unknowns.
The entries of CZ are the following: (CZ)1111 = − 39

32 , (CZ)1112 = (CZ)2111 = (CZ)1211 =

(CZ)1121 = − 9
√

3
32 , (CZ)1122 = (CZ)2121 = (CZ)1221 = (CZ)2211 = (CZ)1212 = (CZ)1122 =

− 21
32 , (CZ)1222 = (CZ)2122 = (CZ)2212 = (CZ)2221 = 5

√
3

32 and (CZ)2222 = − 31
32 . In Fig-

ure (6.5), we apply our iterative PCLS and ALS to find the decomposition (6.1). The
iterative PCLS was able to find the factor matrix V to unmix the source signals.
On the other hand, ALS converged but the factor matrix solution did not unmix the
signals.

7. Conclusion. We presented an iterative algorithm which implements the par-
tially column-wise least-squares (PCLS) for the SOPD for third-order partially sym-
metric tensors and fourth-order fully and partially symmetric tensors. PCLS is a
column-wise approach for factoring symmetric Khatri-Rao product into two similar
factor matrices. For symmetric third-order and fourth-order tensors, these symmetric



16 N. LI, C. NAVASCA AND C. GLENN

Fig. 6.5: Top row: original source signals. Middle 2nd row: mixed signals.
Middle 3rd row: source signals separated via PCLS. Bottom row: source
signals separated via ALS.

Khatri-Rao products are prevalent. With the PCLS method, the nonlinear least-
squares subproblems which are present in the ALS formulation for symmetric tensors
are avoided. We also provide several numerical examples to compare the performance
of the iterative PCLS method to the ALS approach. In these examples, the swamps
are not common when implementing our iterative PCLS as they are present in the
examples where ALS was applied. Future work will focus on the generalization of
SOPD to even-order and odd-order partially and fully symmetric tensors as well as
increasing the speed and efficiency of the current methods.

Acknowledgements. C.N. and N.L. were both in part supported by the U.S.
National Science Foundation DMS-0915100. C.G. is supported by the U.S. National
Science Foundation HRD-325347.

REFERENCES

[1] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener, Multiway analysis of epilepsy
tensors, Bioinformatics, 23 (13) (2007), pp. i10-i18.

[2] G. Beylkin and M.J. Mohlenkamp, Algorithms for numerical analysis in high dimensions.
SIAM Journal on Scientific Computing, 26 (2005), 2133-2159.

[3] J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas, Symmetric tensor decomposition.
Linear Algebra and its Applications, 433(11) (2010), 1851-1872, 2010.

[4] M. Brazell, N. Li, C. Navasca and C. Tamon, Solving Multilinear Systems via Tensor
Inversion. SIAM Journal on Matrix Analysis and Applications, 34(2) (2013), 542-570.

[5] J. Carrol and J. Chang, Analysis of Individual Differences in Multidimensional Scaling via
an N-way Generalization of “Eckart-Young” Decomposition. Psychometrika, 9 (1970),



TENSOR SYMMETRIC OUTER PRODUCT 17

267-283.
[6] P. Comon, G. Golub, L-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor

rank. SIAM Journal on Matrix Analysis and Applications, 30(3) (2008), 1254-1279.
[7] P. Comon, Independent component analysis, a new concept? Signal processing, 36(3) (1994),

287-314.
[8] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent component

analysis and applications. Academic press, 2010.
[9] P. Comon, X. Luciani and A.L.F. De Almeida. Tensor Decompositions, Alternating Least

Squares and other Tales. Journal of Chemometrics, 23 (2009) 393-405.
[10] L. De Lathauwer, B. De Moor and J. Vandewalle, An introduction to independent com-

ponent analysis. Journal of Chemometrics, 14 (2000), 123-149.
[11] L. De Lathauwer, B. De Moor and J. Vandewalle, A multilinear singular value decompo-

sition. SIAM journal on Matrix Analysis and Applications, 21(4) (2000), 1253-1278.
[12] L. De Lathauwer, J. Castaing and J-F. Cardoso, Fourth-order cumulant-based blind iden-

tification of underdetermined mixtures. IEEE Transactions of Signal Processing, 55(6),
June 2007.

[13] M. De Vos, A. Vergult, L. De Lathauwer, W. De Clercq, S. Van Huffel, P. Dupont, A.
Palmini, and W. Van Paesschen, Canonical decomposition of ictal EEG reliably detects
the seizure onset zone. Neuroimage, 37(3) (2007), 844-854.

[14] R. A. Harshman, Foundations of the PARAFAC procedure: Model and Conditions for an
“Explanatory” Multi-code Factor Analysis. UCLA Working Papers in Phonetics, 16 (1970),
1-84.

[15] F.L. Hitchcock, The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics, 6 (1927), 164-189.

[16] F.L. Hitchcock, Multilple invariants and generalized rank of a p-way matrix or tensor.
Journal of Mathematics and Physics, 7 (1927), 39-79.

[17] A. Hyvarinen, J. Karhunen and E. Oja, Independent component analysis. Studies in
Informatics and Control, 11(2) (2002), 205-207.

[18] P.M. Kroonenberg, Applied Multiway Data Analysis. Wiley, 2008.
[19] J. B. Kruskal, Three-way arrays: rank and uniqueness or trilinear decompositions, with

application to arithmetic complexity and statistics. Linear algebra and its applications,
18(2) (1977), 95-138.

[20] J.M. Landsberg, Tensors: Geometry and Applications AMS, Providence, Rhode Island, 2010.
[21] N. Li, S. Kindermann and C. Navasca, Some Convergent Results of the Regularized Alter-

nating LeastSquares for Tensor Decomposition. Linear Algebra and Applications, 438 (2)
(2013), 796-812.

[22] C. Navasca, L. De Lathauwer and S. Kindermann, Swamp reducing technique for tensor
decomposition. Proceedings of the European Signal Processing Conference, Lausanne,
August 2008.

[23] M. Rajih, P. Comon and R. Harshman, Enchanced Line Search: A Novel Method to Accel-
erate PARAFAC SIMAX, 30 (3) (2008), pp. 1148-1171

[24] C.R. Rao and S.K. Mitra, Generalized Inverse of Matrices and Its Applications. Wiley, New
York, 1971.

[25] T. Schultz and H.P. Seidel, Estimating Crossing Fibers: A Tensor Decomposition Approach.
IEEE Transactions on Visualization and Computer Graphics, 14(6) (2008), 1635-1642.

[26] N.D. Sidiropoulos, G.B. Giannakis, and R. Bro, Blind PARAFAC receivers for DS-CDMA
systems. IEEE Trans. on Signal Processing, 48 (3) (2000), 810-823.

[27] N. Sidiropoulos, R. Bro, and G. Giannakis, Parallel factor analysis in sensor array pro-
cessing. IEEE Trans. Signal Processing, 48 (2000), 2377-2388.

[28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sci-
ences. Chichester, U.K., John Wiley and Sons, 2004.

[29] A. Stegeman, On Uniqueness of The Canonical tensor Decomposition with Some Form of
Symmetry. SIAM J. Matrix Anal. Appl., 32(2) (2011), 561-583.

[30] P. Paatero, Construction and analysis of degenerate Parafac models. J. Chemometrics, 14,
(2000) pp. 285-299.


