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ABSTRACT

In this report, we investigate a method for anomaly detection
in surveillance video in a tensor framework. We treat a video
as a tensor and utilize a stable PCA to decompose it into two
tensors, the first tensor is a low rank tensor that consists of
background pixels and the second tensor is a sparse tensor
that consists of the foreground pixels. The sparse tensor is
then analyzed to detect anomaly. The proposed method is a
one-shot framework to determine frames that are anomalous
in a video.

Index Terms— Anomaly detection, Surveillance Video,
Stable PCA, and Tensor.

1. INTRODUCTION

There are a growing interest in anomaly or unusual detec-
tion in computer vision and other fields. In computer vision,
Zhao et al. [1] proposed to detect anomalous events in video
based on a sparse code reconstruction of an dynamic dictio-
nary. Their method uses the first segment of a video to build
a dictionary and dynamically updating the dictionary for new
observations. An unusual event is flagged when the recon-
struction error is larger than a pre-defined threshold.

Benezeth et al. [2] incorporated spatio-temporal co-
occurrences for abnormal event detection. A simple back-
ground substraction is first applied to a video to extract the
motion and spatial position of foreground objects. An MRF
model distribution accounts for speed, size, and position of
the object are combined in learning co-occurrence relation-
ship. This distribution is then used to classify anomalous
event based on a pre-defined threshold.

Our work follows the direction of Wen et al. [3] and
mainly motivated by Sun et al. [4]. Sun introduced several
tensor decomposition methods for anomaly detection in net-
work monitoring based on network flows. Wen used the same
framework proposed by Sun for anomaly detection in surveil-
lance video. The work proposed by Wen is based on a back-
ground modeling that is obtained by low dimensional tensor
decomposition. The anomaly detection is alarmed when the
reconstruction error passed an threshold.

It is difficult for us to do a survey on anomaly detection
and tensor decompositions in this short report. We introduced
papers that are most relevant with our work. We refer the
reader to the work of [5, 6, 7] for tensor decompositions and
applications. The remainder of report is organized as follows:
section 2 introduces preliminaries of mathematics, section 3
presents our model, section 4 shows numerical results, and
section 5 concludes this report.

2. PRELIMINARIES

We denote the scalars inR with lower-case letters(a, b, . . .)
and the vectors with bold lower-case letters(a,b, . . .). The
matrices are written as bold upper-case letters(A,B, . . .) and
the symbol for tensors are calligraphic letters(A,B, . . .). The
subscripts represent the following scalars:(A)ijk = aijk,
(A)ij = aij , (a)i = ai. The superscripts indicate the dimen-
sion size.

A matrix T ∈ RI×J is a second order tensor which has
an SVD ofT = UΣV′ whereΣ = diag{σ1, σ2, ∙ ∙ ∙ , σp}
where p = min{I, J} andU andV are orthogonal ma-
trices. The Frobenius norm ofT is defined as‖T‖F =√
σ21 + σ

2
2 + ∙ ∙ ∙+ σ2p while the trace class norm is the sum

of its singular values, i.e.‖T‖∗ = σ1 + σ2 + ∙ ∙ ∙ + σp.
Moreover, the1-norm ofT is ‖T‖1 =

∑
ij |Tij |. A rank

r matrix T̂ of T, i.e. r < p = rank(T), is defined as
T̂ = UrSrV

′
r =

∑r
i=1 σi ∙ uiv

′
i.

2.1. Tensor Basics and Tensor SVD

The order of a tensor refers to the cardinality of the index set.
A matrix is a second-order tensor and a vector is a first-order
tensor.

Definition 2.1 (Tucker mode-n product) Given a tensor
T ∈ RI×J×K and the matricesU1 ∈ RÎ×I , U2 ∈ RĴ×J

and U3 ∈ RK̂×K , then the Tucker mode-n products are
as follows: (T •1 U1)î,j,k =

∑I
i=1 TijkAîi (mode-1 prod-

uct), (T •2 U2)ĵ,i,k =
∑J
j=1 TijkBĵj (mode-2 product) and

(T •3 U3)k̂,i,j =
∑K
k=1 TijkCk̂k, (mode-3 product).



The tensor SVD is also referred to multilinear SVD (or
higher-order SVD).

Theorem 2.1 (Multilinear SVD [8]) A third order tensor
T ∈ RI×J×K can be represented as a product

T = S •1 U1 •2 U2 •3 U3

whereU1 ∈ RI×I , U2 ∈ RJ×J andU3 ∈ RK×K are or-
thogonal matrices. The core tensorS ∈ RI×J×K are the
matricized subtensorsS1i=α ∈ R

J×K , S2j=α ∈ R
I×K and

S3k=α ∈ R
I×J with the following properties:

• all-orthogonality:

〈Snin=α,S
n
in=β
〉 = (σ(1)α )

2
δα,β , α, β = 1, . . . , In,

• ordering:
‖Snin=1‖F ≥ ‖S

n
in=2
‖F ≥ ∙ ∙ ∙ ≥ ‖Snin=In‖F ≥ 0

where‖Snin=α‖F = σ
(n)
α for α = 1, . . . , In (I1 = I, I2 =

J, I3 = K andi1 = i, i2 = j, i3 = k).

The usual inner product of matrices,A,B ∈ RI×J is denoted
by 〈A,B〉 =

∑
ij bijaij . For a third order tensor, there are

three sets of singular values:σ(1)α ’s are mode-1 singular val-
ues,σ(2)α ’s are the mode-2 singular values andσ(3)α ’s are the
mode-3 singular values. The corresponding mode-1, mode-2
and mode-3 singular vectors areu1α, u2α andu3α, respec-
tively.

The following matrix representations of tensor SVD is ob-
tained by unfolding the third-orderT andS tensors in [8]:

T1 = U1S
1(U2 ⊗U3)

T , T2 = U2S
2(U3 ⊗U1)

T ,

T3 = U3S
3(U1 ⊗U2)

T (1)

We denoteT1 = TI×JK ,T2 = TJ×KI ,T3 = TK×IJ and
similarly for Sn. In general,Tn andSn are mode-n matrix
representation ofT andS.

3. MODEL

In surveillance video, stationary cameras are often used to
monitor the scene for security threats. It is normal for us to as-
sume that the background pixels remain unchanged through-
out the video. This enable us to use only the foreground pixels
to detect frames that are anomalous unlike the work proposed
by [3] which relies on the background pixels.

In our model, we define a frame as anomalous when the
activities in the current frame standout when compared to
the activities in the previous frames. Given that we have
N frames in the video, we only consider the most currentR
frames to determine whether the current frame is anomalous.
The number of frames used to determine whether the current
frame is anomalous is a small fraction of the total number
frames in the video. This approach analogous to having a for-
getting factor that weights more on recent activities and less
on past activities.

3.1. Video Representation

The proposed method represents a video as a tensorX and
find the low multi-linear rankX (i)L and sparseX (i)S tensors
for modei = 1, 2, 3. The process of converting a tensorX ∈
RI×J×K to matrix X1 ∈ RJK×I is known as theunfolding
process. The reverse process of converting a matrix back into
a tensor is known as the folding process. There are more than
one way to arrange the columns of the matrix whenunfolding
a tensor. Our methodunfoldsa tensor into a matrix by slicing
a tensor into slices where each slice represent a matrix. Each
slice is then vectorized into a column vector and stores in the
matrix in chronological order.

For example, a video can be represented as a tensorX ∈
RI×J×K , whereI andJ are the spatial dimensions of a video
frame andK is the total number of frames.Unfoldingthe ten-
sorX into mode-3 matrixX3 ∈ RIJ×K is done by slicing out
one frame at a time, vectorizes each frame into a column vec-
tor and store each vector at the column corresponding to its
frame position of the tensor. This setup easily obtain an anal-
ysis of how spatial information change in time in our model.
Theseunfoldedtensors satisfy the equations in (1) w.r.t. SVD.

In comparison to the work of [1], which computes salient
feature points of a video by using the cuboid feature points
extractor [9], we use the foreground pixels as our salient fea-
ture data. The feature data in our method is more reliable than
cuboid points. This is due to each cuboid point is a 3D moving
corner and they are rare in a video. Moreover, cuboid points
are inadequate to represent anomalous activities in a video
since each cuboid point only captures part of an activity. Our
main idea is to extract the foreground pixels accurately and
analyze the foreground pixels to determine the frames that
are anomalous.

3.2. Stable Principal Component Pursuit

Stable principal component pursuit PCP [10] is a convex pro-
gramming method for separating a tensor data into a sum of
low rank and sparse frames. The following optimization,

minimize‖L‖∗ + λ‖S‖1
subject toM = L− S

achieves the separation. The algorithm above is based on an
augmented Lagrange multiplier ALM [11, 12] with the aug-
mented Lagrangian as

l(L,S,Y) = ‖L‖∗+λ‖S‖1+〈Y,M−L−S〉+
μ

2
‖M−L−S‖2F

with multiplierY. The steps in the algorithm coincide with
the alternating minimization ofl(L,S,Y) w.r.t. L and S
while also updatingY. In Fig. 1, letSλ

μ
: R → R is the

shrinkage operator defined asSλ
μ
= sgn(x)max(|x| − λ

μ
, 0)

andDλ−1(X) = USλ−1(Σ)V′ with X = UΣV′ is the sin-
gular value thresholding operator.



(a) Original Image (b) Mode-1 Low Rank Image (c) Mode-2 Low Rank Image Im-
age

(d) Mode-3 Low Rank Image

(e) Mode-1 Sparse Image (f) Mode-2 Sparse Image (g) Mode-3 Sparse Image

Fig. 2. An illustration of PCP decomposition of each mode. Note that each of the low rank and sparse matrices shown above
are reshaped for demonstration purpose. Beside mode-3, the other two modes have no visual interpretation.

Fig. 1. PCP

3.3. Low Multilinear Rank and Sparse Tensors

For each mode, weunfold the tensor into a mode-i matrix by
taking one slice at a time in chronological order, satisfying
(1). Each slice is then a matrix, and the matrtix is vectorized
into a column vector to store it at a column inXi. Although
the ordering is not important in general, we should point out
that when dealing with time data, it is important to have the
data in chronological order. Then for each matrixXi we ap-
ply the PCP algorithm:

minimize‖Li‖∗ + λ‖S
i‖1

subject toXi = Li − Si

The low rank tensors are discarded after the tensors decom-
position step.

To detect anomaly, we calculate the mean of Frobenius
norms of each framet of X iS and apply the following criteria
to detect anomaly:

3∑

i=1

eit ≤
3∑

i=1

[
mean

(
eij |
t
j=t−R

)
+ 2 ∙ std

(
eij |
t
j=t−R

)]
, (2)

where
eit = ‖X

i,t
S ‖

2
F .

When the error of a frame is greater than two standard devi-
ations from the mean, the frame is an outlier and labelled as
an anomalous frame. We only used the previousR frames
instead of all of the frames to determine whether the current
frame is anomalous.

4. NUMERICAL EXPERIMENTS

We downloaded two videos from AVSS and ViSOR datasets
to demonstrate our algorithm. We used 150 frames of a man
walking down in a subway station and created a tensor by
stacking up the frames. We thenunfolded the tensor to 3
modes and applied PCP to decompose the data into a low rank
and sparse matrices for each model. The matrices arefolded
back into sparse and lower rank tensors for each mode. An
illustration of the PCP tensor decomposition is shown in Fig.
2. The top left image is an original frame in a video and the
other columns are the decomposed into low rank and sparse
matrices of the same frame of the video.

Our method is a one shot method for determining a set of
frames that are anomalous based on the criteria of (2). Our
result is illustrated in Fig. 4 of a man waiting for a subway
to arrive. He then leaves the scene with his belonging behind.
The proposed algorithm was able to determine this and la-
belled those frames as anomalous due to a sudden change in
the foreground tensors.

The ViSOR video is captured in a laboratory of people
walking around with a person opening a locker. A sample of



these frames are illustrated in Fig. 5. The criteria of (2) is also
used to determine outliers. Fig. 3 shows the Frobenius norm
of each frame and the frames with Frobenius norm above the
red line are consider outliers and anomalous. The frames in
this sequence labelled as anomalous are shown in Fig. 6.

Fig. 3. Plot of Frobenius norm of sparse tensor of ViSOR data
set. The frames above the red line are outlier and consider
outlier and anomalous.

5. CONCLUSION

In this report, we proposed a video anomaly detection algo-
rithm via low-rank and sparse decompositions. Our work fo-
cuses on extracting the foreground pixels accurately and ana-
lyze the foreground tensors for frames that are anomalous in
a one shot framework. We plan to extend this framework to
subspace anomaly detection for events instead of frames.
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Fig. 4. The figures above are a sequence of frames of a man waiting for the subway to arrive. He leaves his belonging behind to
exit the slight of the camera. Our anomaly detection algorithm observed this by analyzing the foreground tensors. The figures
with red boundary are classified as anomalous.

Fig. 5. The images above are a sample of frames from ViSOR dataset. It captured a lab of people walking around and a person
open a lock to get items from the locker.
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Fig. 6. The images above are a sample of frames from ViSOR dataset. It captured a lab of people walking around and a person
open a lock to get items from the locker.


