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Abstract

Algebraic Riccati equations of large dimension arise when using approximations
to design controllers for systems modelled by partial differential equations. For large
model order direct solution methods based on eigenvector calculation fail. In this paper
we describe an iterative method that takes advantage of several special features of these
problems. The algorithm is straightforward to code. Performance is illustrated with a
number of standard examples.

Introduction

A classical controller design objective is to find a control u(t) so that the objective function
∫ ∞

0

〈x(t), Qx(t)〉+ 〈u∗(t)Ru(t)〉dt (1)

is minimized where R is a symmetric positive definite matrix and Q is symmetric positive
semi-definite. As is well-known, the solution to this problem is found by solving an algebraic
Riccati equation

A∗P + PA− PBR−1B∗P = −Q. (2)

for a feedback operator

K = −R−1B′P. (3)
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If the system is modelled by partial differential or delay differential equations then the
state x(t) lies in an infinite-dimensional space. The theoretical solution to this problem
for many infinite-dimensional systems parallels the theory for finite-dimensional systems
[9, 10, 16, 17, e.g.]. In practice, the control is calculated through approximation. The
matrices A, B, C arise in a finite dimensional approximation of the infinite dimensional
system. Let n indicate the order of the approximation, m the number of control inputs
and p the number of observations. Thus, A is n × n, B is n × m and C is p × n. There
have been many papers written describing conditions under which approximations lead to
approximating controls that converge to the control for the original infinite-dimensional
system [3, 10, 13, 16, 17, e.g.]. In this paper we will assume that an approximation has been
chosen so that a solution to the Riccati equation (2) exists for sufficiently large n and also
that the approximating feedback operators converge. Unfortunately, particularly in partial
differential equation models with more than one space dimension, many infinite-dimensional
control problems lead to Riccati equations of large order.

For problems where the model order is small, n < 50, a direct method based on calculating
the eigenvectors of the associated Hamiltonian works well [18]. Due the limitations of the
calculation of eigenvectors for large non-symmetric matrices, this method is not suitable
for problems where n becomes large. Two common methods are Chrandrasekhar [2, 6] and
Newton-Kleinman iterations [12, 15, 25]. Here we use a modification to the Newton-Kleinman
method first proposed by by Banks and Ito [2] as a refinement for a partial solution to the
Chandraskehar equation.

Solution of the Lyapunov equation is a key step in implementing either modified or stan-
dard Newton-Kleinman. The Lyapunov equations arising in the Newton-Kleinman method
have several special features: (1) the model order n is generally much larger than the number
of controls m or number of observations p and (2) the matrices are often sparse. We use a
recently developed method [19, 24] that uses these features, leading to an efficient algorithm.

In the next section we describe the solution method and show convergence. We then
illustrate the approach with a number of standard control examples, including one with
several space variables. Our results indicate that with the Lyapunov solver used here modified
Newton-Kleinman achieves considerable savings in computation time over standard Newton-
Kleinman.

1 Description of Algorithm

One approach to solving large Riccati equations is the Newton-Kleinman method [15]. The
Riccati equation (2) can be rewritten as

(A−BK)∗P + P (A−BK) = −Q−K∗RK. (4)

We say a matrix Ao is Hurwitz if σ(Ao) ⊂ C− If A−BK is Hurwitz, then the above equation
is a Lyapunov equation.

Theorem 1.1 [15] Consider a stabilizable pair (A, B) with a feedback K0 so that A−BK0

is Hurwitz. Define Si = A−BKi, and solve the Lyapunov equation

S∗i Pi + PiSi = −Q−K∗
i RKi (5)
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for Pi and then update the feedback as Ki+1 = −R−1B∗Pi. Then

lim
i→∞

Pi = P

with quadratic convergence.

The key assumption in the above theorem is that an initial estimate, or ansatz, K0, such
that A−BK0 is Hurwitz is available. For an arbitrary large Riccati equation, this condition
may be difficult to satisfy. However, this condition is not restrictive for Riccati equations
arising in control of infinite-dimensional systems. First, many of these systems are stable
even when uncontrolled and so the initial iterate K0 may be chosen as zero. Second, if the
approximation procedure is valid then convergence of the feedback gains is obtained with
increasing model order. Thus, a gain obtained from a lower order approximation, perhaps
using a direct method, may be used as an ansatz for a higher order approximation. This
technique was used successfully in [12, 23, 25].

A modification to this method was proposed by Banks and Ito [2]. In that paper, they
partially solve the Chandrasekhar equations and then use the resulting feedback K as a
stabilizing initial guess. Instead of the standard Newton-Kleinman iteration (5) above, Banks
and Ito rewrote the Riccati equation in the form

(A−BKi)
∗Xi + Xi(A−BKi) = −D∗

i RDi, Di = Ki −Ki−1, (6)

Ki+1 = Ki −B∗Xi.

Corollary 1.1 Consider equation (6) where K0, K1 are chosen so that A−BK0 and A−BK1

are Hurwitz. Then
lim
i→∞

Ki = K

with quadratic convergence.

Proof: Consider two iterations of the Newton-Kleinman method:

(A−BKi−1)
∗Pi−1 + Pi−1(A−BKi−1) = −Q−K∗

i−1RKi−1, , (7)

(A−BKi)
∗Pi + Pi(A−BKi) = −Q−K∗

i RKi. (8)

Subtract (8) from (7) and rearrange, using Ki = R−1B∗Pi−1 to obtain (6) with Xi = Pi−1−Pi.
Convergence follows from convergence of the Newton-Kleinman method.

Solution of a Lyapunov equation is a key step in each iteration of the Newton-Kleinman
method, both standard and modified. Consider the Lyapunov equation

XAo + A∗oX = −DD∗ (9)

where Ao ∈ Rn×n is Hurwitz and D ∈ Rn×r. Factor Q into C∗C and let nQ indicate the rank
of C. In the case of standard Newton-Kleinman, r = m + nQ while for modified Newton-
Kleinman, r = m. If Ao is Hurwitz, then the Lyapunov equation has a symmetric positive
semidefinite solution X. As for the Riccati equation, direct methods such as Bartels-Stewart
[4] are only appropriate for low model order and do not take advantage of sparsity in the
matrices.
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In [2] Smith’s method was used to solve the Lyapunov equations. For p < 0, define
U = (Ao − pI)(Ao + pI)−1 and V = −2p(A∗o + pI)−1DD∗(Ao + pI)−1. The Lyapunov
equation (9) can be rewritten as

X = U∗XU + V.

In Smith’s method [27], the solution X is found by using successive substitutions: X =
limi→∞Xi where

Xi = U∗Xi−1U + V (10)

with X0 = 0. Convergence of the iterations can be improved by careful choice of the parame-
ter p e.g. [26, pg. 297]. This method of successive substitition is unconditionally convergent,
but has only linear convergence.

The ADI method [20, 29] improves Smith’s method by using a different parameter pi at
each step. Two alternating linear systems,

(A∗o + piI)Xi− 1
2

= −DD∗ −Xi−1(Ao − piI) (11)

(A∗o + piI)X∗
i = −DD∗ −X∗

i− 1
2
(Ao − piI) (12)

are solved recursively starting with X0 = 0 ∈ Rn×n and parameters pi < 0. If all parameters
pi = p then equations (11,12) reduce to Smith’s method. If the ADI parameters pi are chosen
appropriately, then convergence is obtained in J iterations where J ' n. The parameter
selection problem has been studied extensively [8, 20, 28, e.g.].

If Ao is sparse, then sparse arithmetic can be used in calculation of Xi. However, full
calculation of the dense iterates Xi is required at each step. Setting X0 = 0, it can be easily
shown that Xi is symmetric and positive semidefinite for all i, and so we can write X = ZZ∗

where Z is a Cholesky factor of X [19, 24]. (A Cholesky factor does not need to be square or
be lower triangular.) Substituting ZiZ∗

i for Xi and setting X0 = 0, we obtain the following
iterates for

Z1 =
√
−2p1(A

∗
o + p1I)−1D

Zi = [
√
−2pi(A

∗
o + piI)−1D, (A∗o + piI)−1(A∗o − piI)Zi−1] (13)

Note that Z1 ∈ Rn×r, Z2 ∈ Rn×2r, and Zi ∈ Rn×ir.
The algorithm is stopped when the Cholesky iterations converge within some tolerance.

In [19] these iterates are reformulated in a more efficient form, using the observation that
the order in which the ADI parameters are used is irrelevant. This leads to the algorithm
shown in Table 2.

This solution method results in considerable savings in computation time and memory.
In calculation of the feedback K, the full solution X never needs to be constructed. Also,
the complexity of this method (CF-ADI) is also considerably less than that of standard
ADI as shown in Table 1. Recall that for standard Newton-Kleinman, r is the sum of the
rank of the state weight nQ and controls m. For modified Newton-Kleinman r is equal to
m. The reduction in complexity of CF-ADI method over ADI is marked for the modified
Newton-Kleinman method.
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Table 1: Complexity of CF-ADI and ADI [19]

CF-ADI ADI
Sparse A O(Jrn) O(Jrn2)
Full A O(Jrn2) O(Jrn3)

Table 2: Cholesky-ADI Method

Given Ao and D
Choose ADI parameters {p1, . . . , pJ} with ((pi) < 0
Define z1 =

√
−2p1(A∗o + p1I)−1D

and Z1 = [z1]
For i = 2, . . . , J

Define Wi = (
√
−2pi+1√
−2pi

)[I − (pi+1 − pi)(A∗o + pi+1I)−1]

(1) zi = Wizi−1

(2) If ‖z‖ > tol
Zi = [Zi−1 zi]
Else, stop.

2 Examples

In this section we test the algorithm with a number of standard examples. All computations
were done within MATLAB on a computer with two 1.2 GHz AMD processors. The relative
error for the Cholesky iterates was set to 10−8. For each example we compare the number
of Newton-Kleinman iterations, Lyapunov solution steps and CPU time for both standard
Newton-Kleinman and modified Newton-Kleinman. The iteration count and CPU time for
modified Newton-Kleinman includes the cost of initially calculating the additional feedback
K1 using one iteration of standard Newton-Kleinman. The cost of calculating K0 is not
included in any counts or CPU times.

One-dimensional Heat Equation

Consider the linear quadratic regulator problem of minimizing a cost functional [2, 7]

J(u) =

∫ ∞

0

(|Cz(t)|2 + |u(t)|2)dt

subject to

∂z(t, x)

∂t
=

∂2z(t, x)

∂x2
, x ∈ (0, 1),

z(0, x) = ψ(x) (14)
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Table 3: 1d Heat Equation with single observation: Standard Newton-Kleinman

n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time
25 11 19,22,23,26,27,29 0.83

30,31,31,31,31
50 11 24,26,28,30,32,34 1.2

35,35,35,35,35
100 11 28,31,32,35,36,38 3.49

39,40,40,40,40
200 11 33,35,37,39,41,43 23.1

44,44,44,44,44

with boundary conditions

∂z(t, 0)

∂x
= u(t)

∂z(t, 1)

∂x
= 0. (15)

We choose R = 1 and Q = C∗C where

Cz(t) =

∫ 1

0

z(t, x)dx. (16)

The solution to the infinite-dimensional Riccati equation is

Kz =

∫ 1

0

k(x)z(x)dx

where k = 1 [3]. Thus, for this problem we have an exact solution to which we can compare
the approximations. The equations (14-16) are discretized using the standard Galerkin
approximation with linear spline finite element basis on an uniform partition of [0, 1]. Both
algorithms converged to the exact solution.

In Tables 3 and 4 we compare the number of Newton-Kleinman and Lyapunov iterations
as well as the CPU time per order n. We use the ansatz k0(x) = 100 for all n. With the
modified algorithm, there are 1 − 2 fewer Riccati loops than with the the original Newton-
Kleinman iteration. Also, the modified Newton-Kleinman method requires fewer Lyapunov
iterations within the last few Newton-Kleinman loops. The computation time with the
modified Newton-Kleinman algorithm is significantly less than that of the original algorithm.
Tables (5) and (6) are similar, except that Q = I. As predicted by the complexity analysis,
the reduction in number of iterations and computation time is greater than for the case of a
single observation.
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Table 4: 1d Heat Equation with single observation: Modified Newton-Kleinman

n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time
25 10 19,22,23,26,27,29 0.66

30,31,29,1
50 10 24,26,28,30,32,34 0.94

35,35,33,1
100 9 28,31,32,35,36,38 2.32

39,40,1
200 9 33,35,37,39,41,43 14.2

44,44,1

Table 5: 1d Heat Equation with Q=I: Standard Newton-Kleinman

n Newton-Kleinman It’s Lyapunov It’s cputime
25 13 23,23,23,26,27,30,32,34 1.48

35,36,36,36,36
50 14 27,27,28,30,32,34,36,38 4.89

40,41,42,42,42,42
100 14 32,32,32,35,36,39,41,43 22.27

45,46,47,47,47,47
200 15 36,36,37,39,41,43,45,47 178.17

49,51,52,53,53,53,53

Table 6: 1d Heat Equation with Q=I: Modified Newton-Kleinman

n Newton-Kleinman It’s Lyapunov It’s cputime
25 12 19,22,23,26,27,30 0.87

32,34,35,35,34,1
50 12 24,26,28,30,32,34 1.35

36,38,40,41,41,1
100 12 28,31,32,35,36,39 4.12

41,43,45,46,46,1
200 11 33,35,37,39,41,43 24.35

45,47,49,51,1
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Two-Dimensional Heating Problem

Define the rectangle Ω = [0, 1] × [0, 1] with boundary ∂Ω. Consider the two-dimensional
partial differential equation [7]

∂z
∂t = ∂2z

∂x2 + ∂2z
∂y2 + 20∂z

∂y + 100z = f(x, y)u(t), (x, y) ∈ Ω
z(x, y, t) = 0, (x, y) ∈ ∂Ω

(17)

where z is a function of x, y and t. Let

f(x, y) =

{
100, if .1 < x < .3 and .4 < y < .6
0, else

.

Central difference approximations are used to discretize (17) on a grid of N × M points.
The resulting approximation has dimension n = N × M : A ∈ Rn×n and B ∈ Rn×1. The
A matrix is sparse with at most 5 non-zero entries in any row. The B matrix is a sparse
column vector. We chose C = B∗ and R = 1.

We solved the Riccati equation on a number of grids, using both standard and modified
Newton-Kleinman methods. The data is shown in Tables 7 and 8. We also investigated the
performance of the algorithm with the same partial differential equation (17) and numerical
approximation, but with control weight R = 100, and cost C = I so that Q = I. The
results are shown in Tables 9 and 10. Modified Newton-Kleinman is clearly much more
efficient. Fewer Lyapunov iterations are required for convergence and there is a significant
reduction in computation time. The advantage of modified Newton-Kleinman over standard
Newton-Kleinman is more pronounced for the case where the state weight is full rank.

We also investigated the use of non-zero initial estimates for K in reducing computation
time. We first solve the Riccati equation on a 12 × 12 grid. Since σ(A) ⊂ C−, K144

0 = 0 is
a possible ansatz. It required 13 Newton-Kleinman iterations and a total of 419 Lyapunov
iterations to obtain a relative error in K of 10−11. Linear interpolation was used to project
this solution to a function on a finer grid, 23× 12, where n = 276. Indicate this projection
by K12×12

proj . On the finer grid 23× 12 where n = 276, we used both zero and K12×12
proj as initial

estimates. As indicated in Table 8, the error of K was 10−12 after only 150 Lyapunov and
54 Newton-Kleinman iterations. The same procedure is applied to generate a guess K529

0

where the mesh is 23 × 23 and n = 529. Neglecting the computation time to perform the
projection, use of a previous solution lead a total computation time over both grids of only
6.3 seconds versus 11.9 seconds for n = 276 and a total computation time of only 27.8 versus
79.5 for n = 529. Similar improvements in computation time were obtained with standard
Newton-Kleinman.

Euler-Bernoulli Beam

Consider a Euler-Bernoulli beam clamped at one end (r = 0) and free to vibrate at the other
end (r = 1). Let w(r, t) denote the deflection of the beam from its rigid body motion at time
t and position r. The deflection is controlled by applying a a torque u(t) at the clamped end
(r = 0). We assume that the hub inertia Ih is much larger than the beam inertia Ib so that
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Table 7: 2-d Heat Equation with single observation: Standard Newton-Kleinman

grid K0 n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time
12× 12 0 144 14 12,44,41,39,36,34,32 4.98

30,28,27,27,27,27,27
23× 12 0 276 15 16,47,45,42,40,38,35,33 22.2

31,30,30,30,30,30,30
23× 12 K12x12

proj 276 6 29,30,30,30,30,30 10.8
23× 23 0 529 16 20,51,48,46,44,41,39,37 139.

35,34,33,33,32,32,32,32
23× 23 K23x12

proj 529 5 33,32,32,32,32 65.7

Table 8: 2-d Heat Equation with single observation: Modified Newton-Kleinman

grid K0 n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time
12× 12 0 144 13 12,44,41,39,36,34,32 2.94

30,28,27,27,27,1
23× 12 0 276 13 16,47,45,42,40,38,35 11.9

33,31,30,30,30,29
23× 12 K12x12

proj 276 4 29,30,30,29 3.36
23× 23 0 529 14 20,50,48,46,44,41,39 79.5

37,35,34,33,33,33,31
23× 23 K23x12

proj 529 4 33,32,32,1 21.5

Table 9: 2-d Heat Equation with C = I: Standard Newton-Kleinman

n×m Initial Guess N Newton-Kleinman It’s Lyapunov It’s cputime
12× 12 K12x12=0 144 7 14,14,14,14,14,14,14 10.73
23× 12 K23x12=0 276 7 18,18,18,18,18,18,18 95.39
23× 12 K23x12

mg = K12x12
proj 276 5 18,18,18,18, 18,18 27.7

23× 23 K23x23=0 529 7 20,21,21,21,21,21,21 585.94
23× 23 K23x23

mg = K23x12
proj 529 5 20,21,21,21,21 461.05

9



Table 10: 2-d Heat Equation with C = I: Modified Newton-Kleinman

n×m Initial Guess N Newton-Kleinman It’s Lyapunov It’s cputime
12× 12 K12x12=0 144 6 12,14,14,14,13,1 1.46
23× 12 K23x12=0 276 6 16,18,18,18,17,1 10.95
23× 12 K23x12

mg = K12x12
proj 276 4 18,18,17,7 10.75

23× 23 K23x23=0 529 6 20,20,21,20,20,1 88
23× 23 K23x23

mg = K23x12
proj 529 4 21,20,20,18 84.49

Ihθ̈ ≈ u(t). The partial differential equation model with Kelvin-Voigt and viscous damping
is

wtt(r, t) + Cvwt(r, t) +
∂2

∂r2

[
CdIbwrrt(x, t) +

EIr

ρA
wrr(r, t)

]
=

ρr

Ih
u(t), (18)

with boundary conditions

w(0, t) = 0

wr(1, t) = 0.

EIwrr(1, t) + CdIbwrrt(1, t) = 0
∂

∂r
[EI(1)wrr(r, t) + CdIbwrrt(r, t)]r=1 = 0.

The values of the physical parameters in Table 2 are as in [1].
Define H be the closed linear subspace of the Sobolev space H2(0, 1)

H =

{
w ∈ H2(0, 1) : w(0) =

dw

dr
(0) = 0

}

and define the state-space to be X = H × L2(0, 1) with state z(t) = (w(·, t), ∂
∂tw(·, t)). A

state-space formulation of the above partial differential equation problem is

d

dt
x(t) = Ax(t) + Bu(t),

where

A =




0 I

−EI
ρ

d4

dr4 −CdI
ρ

d4

dr4 − Cv
ρ



 , B =




0

r
Ih



 ,

with domain

dom (A) = {(φ, ψ) ∈ X : ψ ∈ H and

M = EI d2

dr2 φ + CdI
d2

dr2 ψ ∈ H2(0, 1) with M(L) = d
drM(L) = 0} .
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E 2.68× 1010 N/m2

Ib 1.64× 10−9 m4

ρ 1.02087 kg/m
Cv 2 Ns/m
Cd 2.5× 108 Ns/m
L 1 m
Ih 121.9748 kg m2

d .041 kg−1

Table 11: Table of physical parameters.

Table 12: Beam with measurement of tip position, K0 = 0: Newton-Kleinman

n Newton-Kleinman It’s Lyapunov It’s cputime
48 2 407,407 5.02
72 2 461,461 8.140
96 2 499,499 12.25
120 2 522,522 18.28

We use R = 1 and define C by the tip position:

w(1, t) = C[w(x, t) ẇ(x, t)].

Then Q = C∗C. We also solved the control problem with Q = I.

Let H2N ⊂ H be a sequence of finite-dimensional subspaces spanned by the standard
cubic B-splines with a uniform partition of [0, 1] into N subintervals. This yields an approx-
imation in H2N ×H2N [14, e.g.] of dimension n = 4N. This approximation method yields a
sequence of solutions to the algebraic Riccati equation that converge strongly to the solution
to the infinite-dimensonal Riccati equation corresponding to the original partial differential
equation description [3, 21].

The control problem was solved with several different choices of K0. The results are
shown in Tables 12-19. In all cases, modified Newton-Kleinman converged with a signif-
icant reduction in iterations and CPU time over standard Newton-Kleinman. As for the
other examples, reduction in CPU time is greater for full state observation than for a single
observation.
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