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Abstract— Algebraic Riccati equations (ARE) of large dimen-
sion arise when using approximations to design controllers for
systems modelled by partial differential equations. We use a
modified Newton method to solve the ARE. Since the modified
Newton method leads to a right-hand side of rank equal to
the number of inputs, regardless of the weights, the resulting
Lyapunov equation can be more efficiently solved. A low-rank
Cholesky-ADI algorithm is used to solve the Lyapunov equation
resulting at each step. The algorithm is straightforward to code.
Performance is illustrated with an example of a beam, with
different levels of damping. Results indicate that for weakly
damped problems a low rank solution to the ARE may not
exist. Further analysis supports this point.

INTRODUCTION

A classical controller design objective is to find a control
u(t) so that the objective function

∫ ∞

0
〈x(t), Qx(t)〉+ u∗(t)Ru(t)dt (1)

is minimized where R is a symmetric positive definite matrix
and Q is symmetric positive semi-definite. It is well-known
that the solution to this problem is found by solving an
algebraic Riccati equation

A∗P + PA− PBR−1B∗P = −Q. (2)

for a feedback operator

K = −R−1B′P. (3)

If the system is modelled by partial differential or delay
differential equations then the state x(t) lies in an infinite-
dimensional space. The theoretical solution to this problem
for many infinite-dimensional systems parallels the theory for
finite-dimensional systems [11], [12], [18], [19]. In practice,
the control is calculated through approximation. The matrices
A, B, and C arise in a finite dimensional approximation of
the infinite dimensional system. Let n indicate the order of
the approximation, m the number of control inputs and p
the number of observations. Thus, A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rp×n. There have been many papers written
describing conditions under which approximations lead to
approximating controls that converge to the control for the
original infinite-dimensional system [4], [12], [15], [18],
[19]. In this paper we will assume that an approximation
has been chosen so that a solution to the Riccati equation (2)
exists for sufficiently large n and also that the approximating
feedback operators converge. Unfortunately, particularly in
partial differential equation models with more than one space
dimension, many infinite-dimensional control problems lead
to Riccati equations of large order. A survey of currently
used methods to solve large ARE can be found in [8]. Two

common iterative methods are Chandrasekhar [3], [9] and
Newton-Kleinman iterations [14], [17], [28]. Here we use a
modification to the Newton-Kleinman method first proposed
by by Banks and Ito [3] as a refinement for a partial solution
to the Chandraskehar equation.

Solution of the Lyapunov equation is a key step in im-
plementing either modified or standard Newton-Kleinman.
The Lyapunov equations arising in the Newton-Kleinman
method have several special features: (1) the model order
n is generally much larger than the number of controls m
or number of observations p and (2) the matrices are often
sparse. We use a recently developed method [20], [26] that
uses these features, leading to an efficient algorithm. Use
of this Lyapunov solver with a Newton-Kleinman method is
described in [27], [6], [7], [8].

In the next section we describe the algorithm to solve the
Lyapunov equations. We use this Lyapunov solver with both
standard and modified Newton-Kleinman to solve a number
of standard control examples, including one with several
space variables. Our results indicate that modified Newton-
Kleinman achieves considerable savings in computation time
over standard Newton-Kleinman. We also found that using
the solution from a lower-order approximation as an ansatz
for a higher-order approximation significantly reduced the
computation time.

I. DESCRIPTION OF ALGORITHM

One approach to solving large Riccati equations is the
Newton-Kleinman method [17]. The Riccati equation (2) can
be rewritten as

(A−BK)∗P + P (A−BK) = −Q−K∗RK. (4)

We say a matrix Ao is Hurwitz if σ(Ao) ⊂ C−.
Theorem 1.1: [17] Consider a stabilizable pair (A,B)

with a feedback K0 so that A − BK0 is Hurwitz. Define
Si = A−BKi, and solve the Lyapunov equation

S∗i Pi + PiSi = −Q−K∗
i RKi (5)

for Pi and then update the feedback as Ki+1 = −R−1B∗Pi.
Then

lim
i→∞

Pi = P

with quadratic convergence.
The key assumption in the above theorem is that an initial

estimate, or ansatz, K0, such that A − BK0 is Hurwitz
is available. For an arbitrary large Riccati equation, this
condition may be difficult to satisfy. However, this condition
is not restrictive for Riccati equations arising in control of
infinite-dimensional systems. First, many of these systems



are stable even when uncontrolled and so the initial iterate
K0 may be chosen as zero. Second, if the approximation
procedure is valid then convergence of the feedback gains is
obtained with increasing model order. Thus, a gain obtained
from a lower order approximation, perhaps using a direct
method, may be used as an ansatz for a higher order
approximation. This technique was used successfully in [14],
[24], [28].

A modification to this method was proposed by Banks and
Ito [3]. In that paper, they partially solve the Chandrasekhar
equations and then use the resulting feedback K as a
stabilizing initial guess. Instead of the standard Newton-
Kleinman iteration (5) above, Banks and Ito rewrote the
Riccati equation in the form

(A−BKi)∗Xi + Xi(A−BKi) = −D∗
i RDi,

Di = Ki −Ki−1, Ki+1 = Ki −B∗Xi.

Solution of a Lyapunov equation is a key step in each
iteration of the Newton-Kleinman method, both standard and
modified. Consider the Lyapunov equation

XAo + A∗oX = −DD∗ (6)

where Ao ∈ Rn×n is Hurwitz and D ∈ Rn×r. Factor
Q into C∗C and let nQ indicate the rank of C. In the
case of standard Newton-Kleinman, r = m + nQ while for
modified Newton-Kleinman, r = m. If Ao is Hurwitz, then
the Lyapunov equation has a symmetric positive semidefinite
solution X. As for the Riccati equation, direct methods such
as Bartels-Stewart [5] are only appropriate for low model
order and do not take advantage of sparsity in the matrices.

In [3] Smith’s method was used to solve the Lyapunov
equations. For p < 0, define U = (Ao − pI)(Ao + pI)−1

and V = −2p(A∗o + pI)−1DD∗(Ao + pI)−1. The Lyapunov
equation (6) can be rewritten as

X = U∗XU + V.

In Smith’s method [30], the solution X is found by using
successive substitutions: X = limi→∞Xi where

Xi = U∗Xi−1U + V (7)

with X0 = 0. Convergence of the iterations can be improved
by careful choice of the parameter p e.g. [29, pg. 297].
This method of successive substitition is unconditionally
convergent, but has only linear convergence.

The ADI method [21], [32] improves Smith’s method by
using a different parameter pi at each step. Two alternating
linear systems,

(A∗o + piI)Xi− 1
2

= −DD∗ −Xi−1(Ao − piI)
(A∗o + piI)X∗

i = −DD∗ −X∗
i− 1

2
(Ao − piI)

are solved recursively starting with X0 = 0 ∈ Rn×n and
parameters pi < 0. If all parameters pi = p then the above
equations reduce to Smith’s method. If the ADI parameters
pi are chosen appropriately, then convergence is obtained
in J iterations where J & n. The parameter selection
problem has been studied extensively [10], [21], [31]. For

TABLE I
COMPLEXITY OF CF-ADI AND ADI [20]

CF-ADI ADI
Sparse A O(Jrn) O(Jrn2)
Full A O(Jrn2) O(Jrn3)

TABLE II
CHOLESKY-ADI METHOD

Given Ao and D
Choose ADI parameters {p1, . . . , pJ} with !(pi) < 0
Define z1 =

√
−2p1(A∗o + p1I)−1D

and Z1 = [z1]
For i = 2, . . . , J

Define Wi = (
√
−2pi+1√
−2pi

)[I − (pi+1 − pi)(A∗o + pi+1I)−1]

(1) zi = Wizi−1
(2) If ‖z‖ > tol

Zi = [Zi−1 zi]
Else, stop.

symmetric A the optimal parameters can be easily calculated.
A heuristic procedure to calculate the parameters in the
general case is in [26]. If the spectrum of A is complex,
we estimated the complex ADI parameters as in [10]. As
the spectrum of A flattens to the real axis the ADI parameters
are closer to optimal.

If Ao is sparse, then sparse arithmetic can be used in
calculation of Xi. However, full calculation of the dense
iterates Xi is required at each step. By setting X0 = 0,
it can be easily shown that Xi is symmetric and positive
semidefinite for all i, and so we can write X = ZZ∗

where Z is a Cholesky factor of X [20], [26]. (A Cholesky
factor does not need to be square or be lower triangular.)
Substituting ZiZ∗i for Xi , setting X0 = 0, and defining
Mi = (A∗o + piI)−1 we obtain the following iterates

Z1 =
√
−2p1M1D

Zi = [
√
−2piMiD, Mi(A∗o − piI)Zi−1].

Note that Z1 ∈ Rn×r, Z2 ∈ Rn×2r, and Zi ∈ Rn×ir.
The algorithm is stopped when the Cholesky iterations

converge within some tolerance. In [20] these iterates are
reformulated in a more efficient form, using the observation
that the order in which the ADI parameters are used is
irrelevant. This leads to the algorithm shown in Table II.

This solution method results in considerable savings in
computation time and memory. In calculation of the feedback
K, the full solution X never needs to be constructed. Also,
the complexity of this method (CF-ADI) is also considerably
less than that of standard ADI as shown in Table I. Recall
that for standard Newton-Kleinman, r is the sum of the rank
of the state weight nQ and controls m. For modified Newton-
Kleinman r is equal to m. The reduction in complexity
of CF-ADI method over ADI is marked for the modified
Newton-Kleinman method.



E 2.68× 1010 N/m2

Ib 1.64× 10−9 m4

ρ 1.02087 kg/m
Cv 2 Ns/m2

Cd 2.5× 108 Ns/m2

L 1 m
Ih 121.9748 kg m2

d .041 kg−1

TABLE III
TABLE OF PHYSICAL PARAMETERS.

II. CONTROL OF EULER-BERNOULLI BEAM

In this section, we consider a Euler-Bernoulli beam
clamped at one end (r = 0) and free to vibrate at the other
end (r = 1). Let w(r, t) denote the deflection of the beam
from its rigid body motion at time t and position r. The
deflection is controlled by applying a torque u(t) at the
clamped end (r = 0). We assume that the hub inertia Ih

is much larger than the beam inertia Ib so that Ihθ̈ ≈ u(t).
The partial differential equation model with Kelvin-Voigt and
viscous damping is

ρwtt(r, t) + Cvwt(r, t) + ...

∂2

∂r2
[CdIbwrrt(x, t) + EIbwrr(r, t)] =

ρr

Ih
u(t),

with boundary conditions

w(0, t) = 0
wr(1, t) = 0.

EIbwrr(1, t) + CdIbwrrt(1, t) = 0
∂

∂r
[EIbwrr(r, t) + CdIbwrrt(r, t)]r=1 = 0.

The values of the physical parameters in Table II are as in
[2].

Let

H =
{

w ∈ H2(0, 1) : w(0) =
dw

dr
(0) = 0

}

be the closed linear subspace of the Sobolev space H2(0, 1)
and define the state-space to be X = H×L2(0, 1) with state
z(t) = (w(·, t), ∂

∂tw(·, t)). A state-space formulation of the
above partial differential equation problem is

d

dt
x(t) = Ax(t) + Bu(t),

where

A =




0 I

−EIb
ρ

d4

dr4 −CdIb
ρ

d4

dr4 − Cv
ρ





and

B =




0

r
Ih





with domain

dom (A) = {(φ,ψ) ∈ X : ψ ∈ H, M(L) = d
dr M(L) = 0}

where M = EIb
d2

dr2 φ + CdIb
d2

dr2 ψ ∈ H2(0, 1).
We use R = 1 and define C by the tip position:

w(1, t) = C[w(x, t) ẇ(x, t)].

Then Q = C∗C. We also solved the control problem with
Q = I .

Let H2N ⊂ H be a sequence of finite-dimensional
subspaces spanned by the standard cubic B-splines with a
uniform partition of [0, 1] into N subintervals. This yields
an approximation in H2N × H2N [16, e.g.] of dimension
n = 4N. This approximation method yields a sequence
of solutions to the algebraic Riccati equation that converge
strongly to the solution to the infinite-dimensonal Riccati
equation corresponding to the original partial differential
equation description [4], [22].

III. LOW RANK APPROXIMATIONS TO LYAPUNOV
FUNCTION

Tables IV,V show the effect of varying Cd on the number
of iterations required for convergence. Larger values of Cd

(i.e. smaller values of α) leads to a decreasing number of
iterations. Small values of Cd lead to a large number of
required iterations in each solution of a Lyapunov equation.

Recall that the CF-ADI algorithm used here starts with a
rank 1 initial estimate of the Cholesky factor and the rank of
the solution is increased at each step. The efficiency of the
Cholesky-ADI method relies on the existence of a low-rank
approximation of the solution X to the Lyapunov equation.
This is true of many other iterative algorithms to solve large
Lyapunov equations.

Theorem 3.1: For any symmetric, positive semi-definite
matrix X of rank n let µ1 ≥ µ2... ≥ µn be its eigenvalues.
For any rank k < n matrix Xk,

‖X −Xk‖2
‖X‖2

≥ µk+1

µ1
.

Proof: See, for example, [13, Thm. 2.5.3]. !
Thus, the relative size of the largest and smallest eigen-

values determines the existence of a low rank approximation
Xk that is close to X , regardless of how this approximation
is obtained.

The ratio µk+1/µ1 is plotted for several values of Cd in
Figure 1. For larger values of Cd the solution X is closer to
a low rank matrix than it is for smaller values of Cd.

A bound on the rank of the solution to a Lyapunov
equation where A is symmetric is given in [25]. A tighter
bound on the error in a low-rank approximation has been
obtained [1] in terms of the eigenvalues and eigenvectors of
A. This bound is applicable to all diagonalizable matrices
A. The bound for the case where the right-hand-side D has
rank one is as follows.

Theorem 3.2: [1, Thm 3.1] Let V be the matrix of right
eigenvectors of A, and denote its condition number by κ(X).
Denote the eigenvalues of A by λ1, ...λn. There is a rank
k < n approximation to X satisfying

‖X −Xk‖2 ≤ (n− k)2δk+1 (κ(V )‖D‖2)2 (8)



where

δk+1 =
−1

2Real(λk+1)

k∏

j=1

∣∣∣∣
λk+1 − λj

λ∗k+1 + λj

∣∣∣∣
2

.

The eigenvalues λi are ordered so that δi are decreasing.
In order to calculate this bound, all the eigenvalues and

eigenvectors of A are needed.
If the condition number κ(V ) is not too large, for instance

if A is normal, then δk+1/δ1 gives a relative error estimate of
the error µk+1/µ1 in the approximation Xk. This estimate
is observed in [1] to estimate the actual decay rate of the
eigenvalues of X quite well, even in cases where the decay
is very slow.

Consider a parabolic partial differential equation, with A-
matrix of the approximation is symmetric and negative defi-
nite. Then all the eigenvalues are real. A routine calculation
yields that

δk+1

δ1
≈ λ1

λk

and so the rate of growth of the eigenvalues determines the
accuracy of the low rank approximation. The accuracy of
the low-rank approximant can be quite different if A is non-
symmetric. The solution X to the Lyapunov equation could
be, for instance, the identity matrix [1], [25] in which case
the eigenvalues of X do not decay.

It is observed through several numerical examples in [1]
that it is not just complex eigenvalues that cause the decay
rate to slow down, but the dominance of the imaginary parts
of the eigenvalues as compared to the real parts, together with
absence of clustering in the spectrum of A. This effect was
observed in the beam equation. Figure 2 shows the change
in the spectrum of A as Cd is varied. Essentially, increasing
Cd increases the angle that the spectrum makes with the
imaginary axis. Note that the eigenvalues do not cluster. As
the damping is decreased, the dominance of the imaginary
parts of the eigenvalues of A increases and the decay rate of
the eigenvalues of X slows. The Cholesky-ADI calculations
for the beam with Cd = 0 did not terminate on a solution
Xk with k < n.

These observations are supported by results in the theory
of control of partial differential equations. If Cd > 0 the
semigroup for the original partial differential equation is
parabolic and the solution to the Riccati equation converges
uniformly in operator norm [18, chap.4]. However, if Cd = 0,
the partial differential equation is hyperbolic and only strong
convergence of the solution is obtained [19]. Thus, one might
expect a greater number of iterations in the Lyapunov loop
to be required as Cd is decreased. Consider the bound (8)
for the beam with Cd = 0, and an eigenfunction basis for
the approximation so that the eigenvalues of A are the exact
eigenvalues. Defining cv = Cv/ρ, c2 = EIb/ρ and indicating
the roots of 1 + cos(a)cosh(a) by ak, the eigenvalues are

λk = −cv/2 ± iωk

where
ωk =

√
ca2

k − c2
v/4

TABLE IV
BEAM: : EFFECT OF CHANGING Cd (STANDARD NEWTON-KLEINMAN)

Cv Cd α N.-K. It’s Lyapunov Itn’s CPU time
2 1E04 1.5699 – – –

3E05 1.5661 – – –
4E05 1.5654 3 1620;1620;1620 63.14
1E07 1.5370 3 1316;1316;1316 42.91
1E08 1.4852 3 744;744;744 18.01
5E08 1.3102 3 301;301;301 5.32

TABLE V
BEAM: EFFECT OF CHANGING Cd (MODIFIED NEWTON-KLEINMAN)

Cv Cd α N.-K. It’s Lyapunov It’s CPU time
2 1E04 1.5699 2 – –

3E05 1.5661 2 – –
4E05 1.5654 2 1620;1 24.83
1E07 1.5370 2 1316;1 16.79
1E08 1.4852 2 744;1 7.49
5E08 1.3102 2 301;1 2.32

[23]. A simple calculation yields that for all k,

δk

δ1
=

k−1∏

j=1

1
1 + 4c2

v
(wk−wj)2

≈ 1.

This indicates that the eigenvalues of the Lyapunov solution
do not decay.

IV. CONCLUSIONS

The results indicate a problem with solving the algebraic
Riccati equation for systems with light damping where the
eigenvalues are not decaying rapidly. Although better choice
of the ADI parameters might help convergence, the fact
that the low rank approximations to the solution converge
very slowly when the damping is small limits the achievable
improvement. This may have consequences for control of
coupled acoustic-structure problems where the spectra are
closer to those of hyperbolic systems than those of parabolic
systems.
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Fig. 1. Eigenvalue ratio for solution to beam ARE for varying Cd
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