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Abstract

Algebraic Riccati equations (ARE) of large dimension arise when using approxima-
tions to design controllers for systems modelled by partial differential equations. We
use a modified Newton method to solve the ARE that takes advantage of several special
features of these problems. The modified Newton method leads to a right-hand side of
rank equal to the number of inputs regardless of the weights. Thus, the resulting Lya-
punov equation can be more efficiently solved. The Cholesky-ADI algorithm is used to
solve the Lyapunov equation resulting at each step. The algorithm is straightforward
to code. Performance is illustrated with a number of standard examples. An exam-
ple on controlling the deflection of the Euler-Bernoulli beam indicates that for weakly
damped problems a low rank solution to the ARE may not exist. Further analysis
supports this point.
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Introduction

In linear quadratic controller design the objective is to find a control u(t) so that the objective
function

∫ ∞

0

〈Cz(t), Cz(t)〉 + 〈u(t), Ru(t)〉dt (1)

is minimized where R is a symmetric positive definite matrix weighting the control, C is
a matrix weighting the state, and z(t) is determined by the system of ordinary differential
equations

ż(t) = Az(t) +Bu(t).

It is well-known that the solution to this problem is found by finding the positive semi-definite
solution P to the algebraic Riccati equation (ARE) [28, e.g.]

A∗P + PA− PBR−1B∗P = −C∗C. (2)

The optimal control is then given by u(t) = −Kx(t) where

K = −R−1B′P. (3)

If the system is modelled by partial differential or delay differential equations, then the state
x(t) lies in an infinite-dimensional space. There is a fairly complete theory for linear quadratic
control for infinite-dimensional systems; see [11, 15, 23, 24]. The optimal control is found
through solution of an operator equation on the infinite-dimensional space that is similar
in structure to the ARE (2). In practice, the control is calculated through approximation.
The matrices A and B arise in a finite dimensional approximation of the infinite dimensional
system. Letting n indicate the order of the approximation and m the number of control
inputs; A is an n × n matrix and B is a n × m matrix. There have been many papers
written describing conditions under which approximations lead to approximating controls
that converge to the control for the original infinite-dimensional system, see for instance,
[5, 16, 19, 23, 24]. In this paper we will assume that an approximation has been chosen so
that a solution to the Riccati equation (2) exists for sufficiently large n and also that the
approximating feedback operators converge.

In many cases, particularly in partial differential equation models with more than one
space dimension, approximations lead to Riccati equations of very large order that must be
solved. Standard direct methods are based on eigenvector calculation. The main methods
are Potter’s method [35] and the Schur vector-based technique [22]. These algorithms require
computational effort proportional to n3 where n is the order of the system; thus they are
impractical for large order systems. A survey of currently used methods to solve large
AREs can be found in [8]. Two common iterative methods are Chandrasekhar [4, 9] and
Newton-Kleinman iterations [18, 21, 36]. In this paper, we use a modification of the Newton-
Kleinman method first proposed by Banks and Ito [4] as a refinement for a partial solution
to the Chandraskehar equation. In [4] the Chandrasekhar equations are partially solved to
obtain a stabilizing initial feedback Ko as a stabilizing initial guess to the modified Newton-
Kleinman method. The modified Newton-Kleinman is subsequently used and compared to
a Schur method.
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Solution of the Lyapunov equation is a key step in implementing either modified or
standard Newton-Kleinman. For most problems, the matrices involved are sparse. Also,
in general, the number of controls, m, is considerably less than the number of states, n.
We implement a method, Cholesky-ADI (CF-ADI) [25, 33], that takes advantage of these
features. The use of this Lyapunov solver with a standard Newton-Kleinman method is
described in [7, 8, 31, 34].

In the next section both standard and modified Newton-Kleinman are described. Then
in Section 2 we compare both methods. We show that the modified Newton-Kleinman
method is unconditionally convergent. We show that a modified Newton-Kleinman method
is considerably faster than standard Newton-Kleinman when both are coupled with this
Lyapunov solver. We then solve a number of standard control examples, including one with
several space variables. Our results indicate that the modified Newton-Kleinman method
achieves considerable savings in computation time over standard Newton-Kleinman.

Numerical results on a beam problem indicate that convergence is decreased with de-
creasing damping. In Section 3, we analyze the behavior of low rank approximations for
damped systems. Numerical results and theoretical analysis indicate that in some cases a
low rank approximation to the Riccati equation solution may not exist for a lightly damped
system. Finally, in the last section, we make some concluding remarks.

1 Description of Algorithm

We say a matrix Ao is Hurwitz if σ(Ao) ⊂ C−. We will assume throughout this paper that

• (A,B) is stabilizable; that is there is K such that A−BK is Hurwitz, and

• (A,C) is detectable; that is there is F such that A− FC is Hurwitz.

The assumptions that (A,B) is stabilizable and (A,C) is detectable imply that there exists
a unique P ≥ 0 satisfying the Riccati equation equation (2) such that A − B(R−1B∗P ) is
Hurwitz [28, e.g.].

One approach to solving large Riccati equations is the Newton-Kleinman method [21].
The Riccati equation (2) can be rewritten as

(A−BK)∗P + P (A− BK) = −Q−K∗RK (4)

where Q = C∗C and K = R−1B∗P .

Theorem 1.1 (Newton-Kleinman Method) [21] Consider a stabilizable pair (A,B)
with a feedback K0 so that A − BK0 is Hurwitz. Then the sequence of solutions Pi to the
Lyapunov equation

S∗
i Pi + PiSi = −Q−K∗

i RKi (5)

where Si = A− BKi and Ki+1 = −R−1B∗Pi has

lim
i→∞

Pi = P

with a quadratic convergence rate.
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The key assumption in the above theorem is that there exists an initial estimate K0 such
that A − BK0 is Hurwitz. This condition is not restrictive for Riccati equations arising in
control of infinite-dimensional systems. Many of these systems are stable even when uncon-
trolled and so the initial iterate K0 may be chosen as zero. If the original system is not stable,
the initial stabilizing iterate can be chosen using a number of approaches. For example, if
the approximation procedure is valid then convergence of the feedback gains is obtained with
increasing model order. Thus, a gain obtained from a lower order approximation may be
used as an ansatz for a higher order approximation. This technique was used successfully in
[18, 31, 36].

A modification to the Newton-Kleinman method was proposed by Banks and Ito [4].

Theorem 1.2 (Modified Newton-Kleinman Method) Consider equation (4) and choose
K0 and K1 so that A−BK0 and A−BK1 are Hurwitz. Then the following Lyapunov equation
and feedback update,

(A−BKi)
∗Xi +Xi(A−BKi) = − [Ki −Ki−1]

∗R [Ki −Ki−1] , (6)

Ki+1 = Ki −B∗Xi.

has feedback gain Ki where

lim
i→∞

Ki = K

with quadratic convergence.

Proof: With Ki = R−1B∗Pi−1, consider two iterations of the Newton-Kleinman method:

(A− BKi−1)
∗Pi−1 + Pi−1(A− BKi−1) = −Q−K∗

i−1RKi−1, (7)

(A−BKi)
∗Pi + Pi(A− BKi) = −Q−K∗

i RKi. (8)

Subtract (8) from (7), and rearrange to obtain

(−BKi−1 +BKi)
∗Pi−1 + Pi−1(−BKi−1 +BKi) + (A− BKi)

∗Xi ...

+Xi(A− BKi) = −K∗
i−1RKi−1 +K∗

i RKi

where Xi = Pi−1−Pi. The first term on the left hand side can be written −(Ki−1−Ki)
∗RKi,

and similarly, the second term is −K∗
i R(Ki−1 − Ki). Move these two terms to the right-

hand-side of equation, and simplify, to obtain (6). Since this is simply a reformulation of
the Newton-Kleinman iterations, quadratic convergence of {Ki} follows from the quadratic
convergence of the Newton-Kleinman method. �

The modified Newton-Kleinman method is mathematically equivalent to the original
method, involving just a reformulation of the iterations. The advantage of the modified
Newton-Kleinman method lies in the fact that the Lyapunov equation (6) to be solved at
each step has a right-hand-side with rank limited by the number of controls, while the rank
of the right-hand-side in the original formulation (5) has rank equal to that of the state
weight Q = C∗C which could be quite large.

4



The solution of a Lyapunov equation is a key step in both standard and modified Newton-
Kleinman iterations. For Ao ∈ Rn×n is Hurwitz and D ∈ Rn×r consider the Lyapunov
equation

XAo + A∗
oX = −DD∗ (9)

If Ao is Hurwitz, then the Lyapunov equation has a symmetric positive semidefinite solution
X.

As for the Riccati equation, direct methods such as Bartels-Stewart [6] are only appro-
priate for low model order and do not take advantage of sparsity in the matrices. The most
basic iterative method to solve Lyapunov equation is Smith’s method [38]. For p < 0, define
U = (Ao−pI)(Ao +pI)−1 and V = −2p(A∗

o +pI)−1DD∗(Ao +pI)−1. The Lyapunov equation
(9) can be rewritten as

X = U∗XU + V.

In Smith’s method, the solution X is found by using successive substitutions: X = limi→∞Xi

where

Xi = U∗Xi−1U + V (10)

with X0 = 0. The convergence of the iterations can be improved by careful choice of the
parameter p; see [37, pg. 297]. This method of successive substitution is unconditionally
convergent, but the convergence rate is linear convergence.

The ADI method [26, 40] improves Smith’s method by using a different parameter pi at
each step. Two alternating linear systems,

(A∗
o + piI)Xi− 1

2

= −DD∗ −Xi−1(Ao − piI) (11)

(A∗
o + piI)X

∗
i = −DD∗ −X∗

i− 1

2

(Ao − piI) (12)

are solved recursively starting with X0 = 0 ∈ Rn×n and parameters pi < 0. If all parameters
pi = p then equations (11,12) reduce to Smith’s method. If the ADI parameters pi are chosen
appropriately, then convergence is obtained in J iterations where J ≪ n. The parameter
selection problem has been studied extensively [13, 26, 39]. For symmetric A the optimal
parameters can be easily calculated. We estimate the complex ADI parameters as in [13]
if the spectrum of A is complex. As the spectrum of A flattens to the real axis the ADI
parameters are closer to optimal.

If Ao is sparse, then sparse arithmetic can be used in calculation of Xi. However, full
calculation of the dense iterates Xi is required at each step. Setting X0 = 0, it can be easily
shown that Xi is symmetric and positive semidefinite for all i, and so we can write X = ZZ∗

where Z is a Cholesky factor of X [25, 33]. Substituting ZiZ
∗
i for Xi and setting X0 = 0, we

obtain the following iterates for Zi:

Z1 =
√

−2p1(A
∗
o + p1I)

−1D

Zi = [
√

−2pi(A
∗
o + piI)

−1D, (A∗
o + piI)

−1(A∗
o − piI)Zi−1]. (13)

Note that Z1 ∈ Rn×r, Z2 ∈ Rn×2r, and Zi ∈ Rn×ir. At each iteration, an approximation to
the solution of increasing rank is obtained. The algorithm is stopped when the Cholesky
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Table 1: Complexity of CF-ADI and ADI [25]

CF-ADI ADI
Sparse A O(Jrn) O(Jrn2)
Full A O(Jrn2) O(Jrn3)

Table 2: Cholesky-ADI Method

Given Ao and D
Choose ADI parameters {p1, . . . , pJ} with ℜ(pi) < 0
Define z1 =

√−2p1(A
∗
o + p1I)

−1D
and Z1 = [z1]
For i = 2, . . . , J

Define Wi = (

√
−2pi+1
√
−2pi

)[I − (pi+1 − pi)(A
∗
o + pi+1I)

−1]

(1) zi = Wizi−1

(2) If ‖z‖ > tol
Zi = [Zi−1 zi]
Else, stop.

iterations converge within some tolerance. In [25] these iterates are reformulated in a more
efficient form using the observation that the order in which the ADI parameters are used is
irrelevant. This leads to the algorithm shown in Table 2.

This solution method results in considerable savings in computation time and memory.
The Cholesky factor Z is used to calculate the feedback K - the full solution X is never
constructed. Also, the complexity of CF-ADI is also considerably less than that of standard
ADI as shown in Table 1. For both standard and modified Newton-Kleinman iterations,
Ao = A−BKi. The factor D differs significantly. Let nQ indicate the rank of Q = C∗C. In
the case of standard Newton-Kleinman,

D =
[

C∗ K∗
i R

1/2
]

,

while for modified Newton-Kleinman,

D = (Ki −Ki−1)
∗R1/2.

In the case of standard Newton-Kleinman, the rank r of the right-hand-side r = m + nQ

while for modified Newton-Kleinman, r = m. Since nQ is close to n in many cases, while m
is generally much smaller than n, this means that the rank of the right-hand-side is typically
much smaller for modifed Newton-Kleinman than for the standard algorithm. The reduction
in complexity of CF-ADI method over ADI is marked for the modified Newton-Kleinman
method.
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2 Comparison of Standard and Modified Newton-Kleinman

In this section we compare the standard and modified Newton-Kleinman methods on a num-
ber of standard examples. The computations were done in MatLab on a personal computer
with two 2.5 GHz AMD Opteron processors with 1024KB cache memory and 2G RAM. The
relative error of the feedback K is measured and used as a stopping criterion, with a tolerance
of 10−9 and the stopping criterion for the Lyapunov solver is set to 10−9 for the heat equation
and 10−12 for the beam problem. This criterion was used because it is cheap to calculate and
also for most applications, an accurate calculation of K, not P is required. The residuals in
the ARE were also calculated as a check on the algorithm and are shown in the tables. The
total Lyapunov iterations includes the iterations from the required initializations.

One-dimensional Heat Equation

Consider the linear quadratic regulator problem of minimizing a cost functional (1) subject
to [4, 10]

∂z(t, x)

∂t
=

∂2z(t, x)

∂x2
, x ∈ (0, 1),

z(0, x) = ψ(x) (14)

with boundary conditions

∂z(t, 0)

∂x
= u(t)

∂z(t, 1)

∂x
= 0. (15)

We choose R = 1 and C is defined by

Cz(t) =

∫ 1

0

z(t, x)dx. (16)

The solution to the infinite-dimensional Riccati equation is

Kz =

∫ 1

0

k(x)z(x)dx

where k ≡ 1 [5]. Thus, for this problem we have an exact solution to which we can compare
the approximations. The equations (14-16) are discretized using the standard Galerkin
approximation with linear spline finite element basis on an uniform partition of [0, 1]. This
yields a sequence of solutions to the ARE that converges uniformly to the solution to the
operator Riccati equation for the PDE [23].

In Tables 3 - 6 we compare the number of Newton-Kleinman and Lyapunov iterations as
well as the CPU time per order n for C as in (16) and also C = I. We use the ansatz k0(x) =
100 in all cases. Both algorithms yielded feedback operators that converged to the exact
feedback. With the modified algorithm, there are fewer Riccati loops than with the original
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Table 3: 1-d Heat Equation with single observation: Standard Newton-Kleinman

n N.K. Itn’s Lyapunov Itn’s time (s) residual

25 12 348 .15 7.7 × 10−9

50 12 406 .23 1.1 × 10−8

100 12 464 .65 7.0 × 10−9

200 12 522 4.55 8.9 × 10−9

Table 4: 1-d Heat Equation with single observation: Modified Newton-Kleinman

n N.K. Itn’s Lyapunov Itn’s time (s) residual

25 10 254 .11 7.7 × 10−9

50 10 300 .17 1.1 × 10−8

100 10 306 .43 7.0 × 10−9

200 9 347 2.49 8.9 × 10−9

Newton-Kleinman iteration. Also, the modified Newton-Kleinman method requires fewer
Lyapunov iterations within the last few Newton-Kleinman loops. The computation time
with the modified Newton-Kleinman algorithm is significantly less than that of the original
algorithm. As predicted by the complexity analysis, the reduction the in number of iterations
and computation time of the modified Newton-Kleinman method over that required in the
standard method is greater with C = I than for the case of a single observation.

Two-Dimensional Heating Problem

Define the rectangle Ω = [0, 1] × [0, 1] with boundary ∂Ω. Consider the two-dimensional
partial differential equation [10]

∂z
∂t

= ∂2z
∂x2 + ∂2z

∂y2 + 20∂z
∂y

+ 100z = f(x, y)u(t), (x, y) ∈ Ω

z(x, y, t) = 0, (x, y) ∈ ∂Ω
(17)

Table 5: 1-d Heat Equation with C=I: Standard Newton-Kleinman

n N.K. Itn’s Lyapunov Itn’s time (s) residual

25 12 363 .22 7.7 × 10−9

50 12 418 .83 1.1 × 10−8

100 12 480 4.10 7.0 × 10−9

200 12 535 28.35 8.9 × 10−9
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Table 6: 1-d Heat Equation with C=I: Modified Newton-Kleinman

n N.K. Itn’s Lyapunov Itn’s time (s) residual

25 10 261 .12 7.7 × 10−9

50 10 306 .21 1.1 × 10−8

100 10 314 .68 7.0 × 10−9

200 9 354 4.02 8.9 × 10−9

Table 7: 2-d Heat Equation with single observation: Standard Newton-Kleinman

grid n N.K. Itn’s Lyapunov Itn’s time (s) residual

12 × 12 144 13 431 1.7 7.9 × 10−7

23 × 12 276 14 507 5.84 6.2 × 10−7

23 × 23 529 14 557 29.18 9.5 × 10−8

where z is a function of x, y and t and

f(x, y) =

{

100, if .1 < x < .3 and .4 < y < .6
0, else

.

Central difference approximations are used to discretize (17) on a grid of N ×M points.
The resulting approximation has dimension n = N ×M and thus, A ∈ Rn×n and B ∈ Rn×1.
The matrix A is sparse with at most 5 non-zero entries in any row. The matrix B is a
sparse column vector. With a uniform grid, this approximation is equivalent to a Galerkin
finite-element method and the results in [5, 23] imply uniform convergence of the solutions
to the resulting ARE’s.

We solved the Riccati equation on a number of grids, using both standard and modified
Newton-Kleinman methods with C = B∗ and R = 1.The data is shown in Tables 7 and 8. We
also investigated the performance of the algorithm with the same numerical approximation
of the partial differential equation (17) but with control weight R = 100 and cost C = I.
In all case, the ansatz K0 = 0 was used. The results are shown in Tables 9 and 10. Fewer
Lyapunov iterations are required for modified Newton-Kleinman than for standard Newton-
Kleinman and there is also a significant reduction in computation time . The advantage
of modified Newton-Kleinman over standard Newton-Kleinman is more pronounced for the
case where the state weight has large rank.

Euler-Bernoulli Beam

Consider an Euler-Bernoulli beam clamped to a central hub at one end (r = 0) and free to
vibrate at the other end (r = 1). A torque u(t) at the hub causes a rotation of the entire
beam about the hub. Let w(r, t) denote the deflection of the beam from its rigid body motion
at time t and position r. A detailed derivation of the partial differential equation can be
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Table 8: 2-d Heat Equation with single observation: Modified Newton-Kleinman

grid n N.K. Itn’s Lyapunov Itn’s time (s) residual

12 × 12 144 12 378 1.3 7.9 × 10−7

23 × 12 276 13 447 4.17 6.2 × 10−7

23 × 23 529 13 524 15.15 9.5 × 10−8

Table 9: 2-d Heat Equation with C = I: Standard Newton-Kleinman

grid n N.K. Itn’s Lyapunov Itn’s time (s) residual

12 × 12 144 6 96 3.3 8.5 × 10−5

23 × 12 276 6 124 25.63 1.0 × 10−4

23 × 23 529 7 166 237.21 4.0 × 10−7

Table 10: 2-d Heat Equation with C = I: Modified Newton-Kleinman

grid n N.K. Itn’s Lyapunov Itn’s time (s) residual

12 × 12 144 5 68 .59 8.4 × 10−5

23 × 12 276 5 88 3.5 1.1 × 10−4

23 × 23 529 6 103 27.4 4.0 × 10−7

10



found in [29, e.g] We assume that the hub inertia Ih is much larger than the beam inertia
Ib. In this situation, the partial differential equation model with Kelvin-Voigt and viscous
damping is

ρwtt(r, t) + Cvwt(r, t) +
∂2

∂r2
[CdIbwrrt(x, t) + EIbwrr(r, t)] =

ρr

Ih
u(t), (18)

with boundary conditions

w(0, t) = 0

wr(1, t) = 0

EIwrr(1, t) + CdIbwrrt(1, t) = 0

∂

∂r
[EI(1)wrr(r, t) + CdIbwrrt(r, t)]r=1 = 0.

The values of the physical parameters in Table 2 are as in [2].
Define H be the closed linear subspace of the Sobolev space H2(0, 1),

H =

{

w ∈ H2(0, 1) : w(0) =
dw

dr
(0) = 0

}

and define the state-space to be X = H × L2(0, 1) with state z(t) = (w(·, t), ∂
∂t
w(·, t)). A

state-space formulation of the above partial differential equation problem is

d

dt
x(t) = Ax(t) +Bu(t),

where

A =





0 I

−EI
ρ

d4

dr4 −CdI
ρ

d4

dr4 − Cv

ρ



 , B =





0

r
Ih



 ,

with domain

dom (A) = {(φ, ψ) ∈ X : ψ ∈ H and

M = EI d2

dr2φ+ CdI
d2

dr2ψ ∈ H2(0, 1) with M(L) = d
dr
M(L) = 0} .

Set R = 1 and define C by the tip position

w(1, t) = C[w(x, t) ẇ(x, t)].

We also solved the control problem with C = I, and R = 1.
Let H2N ⊂ H be a sequence of finite-dimensional subspaces spanned by the standard

cubic B-splines with a uniform partition of [0, 1] into N subintervals. This yields an ap-
proximation in H2N × H2N [20, e.g.] of dimension n = 4N. This approximation method
yields a sequence of solutions to the algebraic Riccati equation that converges strongly to
the solution to the infinite-dimensonal Riccati equation corresponding to the original partial
differential equation description [5, 27].

The control problem was solved with several different choices of ansatzK0: 0 and B∗. The
results are shown in Tables 12-15. In all cases, modified Newton-Kleinman converged with
a significant reduction in iterations and computation time over standard Newton-Kleinman.
As for the other examples, the reduction in the computation time is greater for full state
observation than for a single observation.
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E 2.68 × 1010 N/m2

Ib 1.64 × 10−9 m4

ρ 1.02087 kg/m
Cv 2 Ns/m2

Cd 5 × 108 Ns/m2

L 1 m
Ih 121.9748 kg m2

d .041 kg−1

Table 11: Beam physical parameters

Table 12: Beam with C=Ctip: Standard Newton-Kleinman

K0 n N.K. Itn’s Lyapunov Itn’s time (s) residual

0 48 1 558 .3 1.3 × 10−11

0 72 1 620 .7 1.3 × 10−11

0 96 1 664 1.21 1.5 × 10−11

0 120 1 698 1.99 3.4 × 10−11

B’ 48 1 558 .37 1.3 × 10−11

B’ 72 1 620 .72 1.3 × 10−11

B’ 96 1 664 1.2 1.4 × 10−11

B’ 120 1 698 2.0 3.5 × 10−11

Table 13: Beam with C=Ctip: Modified Newton-Kleinman

K0 n N.K. Itn’s Lyapunov Itn’s time (s) residual

0 48 1 280 .34 1.3 × 10−11

0 72 1 311 .47 1.3 × 10−11

0 96 1 333 .74 1.5 × 10−11

0 120 1 350 1.14 3.4 × 10−11

B’ 48 2 547 .46 1.3 × 10−11

B’ 72 2 312 .60 1.3 × 10−11

B’ 96 1 333 .75 1.4 × 10−11

B’ 120 1 350 1.17 3.5 × 10−11
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Table 14: Beam with C=I: Standard Newton-Kleinman

K0 n N.K. Itn’s Lyapunov Itn’s time (s) residual

0 48 1 566 3.49 3.7 × 10−10

0 72 1 628 9.15 2.7 × 10−9

0 96 1 672 18.41 3.0 × 10−9

0 120 1 706 32.48 6.9 × 10−9

B’ 48 1 566 3.47 3.6 × 10−10

B’ 72 1 628 9.15 2.7 × 10−9

B’ 96 1 672 18.40 2.4 × 10−9

B’ 120 1 706 32.41 7.4 × 10−9

Table 15: Beam with C=I: Modified Newton-Kleinman

K0 n N.K. Itn’s Lyapunov Itn’s time (s) residual

0 48 1 284 1.87 3.6 × 10−10

0 72 1 315 4.82 2.7 × 10−9

0 96 1 337 9.59 2.8 × 10−9

0 120 1 354 16.88 7.0 × 10−9

B’ 48 2 550 2.03 3.6 × 10−10

B’ 72 1 315 4.82 3.0 × 10−9

B’ 96 1 337 9.6 2.3 × 10−9

B’ 120 1 354 16.85 7.6 × 10−9
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3 Low rank approximations to Lyapunov function

For the parabolic equations in Examples 1 and 2 the number of Lyapunov iterations required
in each Newton-Kleinman iteration was quite low- less than 50 in all cases. The convergence
was much slower for the beam equation. Although for all n, only 1 or 2 Newton-Kleinman
iterations were required, the number of Lyapunov iterates increases as n increases. Tables
16,17 show the effect of varying Cd on the number of iterations required for convergence.
Larger values of Cd led to a decreasing number of iterations. Small values of Cd led to a
large number of required iterations in each solution of a Lyapunov equation.

Recall that the CF-ADI algorithm used here starts with a rank 1 initial estimate of the
Cholesky factor and the rank of the solution is increased at each step. The Cholesky-ADI
method relies on its efficiency on the existence of a low-rank approximation to the solution
X to the Lyapunov equation being solved. This is true of many other iterative algorithms
to solve large Lyapunov equations.

Theorem 3.1 [17, e.g. Thm. 3.5.2]. For any symmetric, positive semi-definite matrix X
of rank n let λ1 ≥ λ2... ≥ λn be its eigenvalues. For any rank k < n matrix Xk,

‖X −Xk‖2

‖X‖2
≥ λk+1

λ1
.

Thus, the relative size of the largest and smallest eigenvalues determines the existence
of a low rank approximation Xk that is close to X, regardless of how this approximation is
obtained.

A bound on the rank of the solution to a Lyapunov equation where A is symmetric is given
in [32]. A tighter bound on the error in a low-rank approximation has been obtained [1] in
terms of the eigenvalues and eigenvectors of A. This bound is applicable to all diagonalizable
matrices A. The bound for the case where the right-hand-side D has rank one is as follows.

Theorem 3.2 [1, Thm 3.1] Let V be the matrix of right eigenvectors of A, and denote its
condition number by κ(X). Denote the eigenvalues of A by µ1, ...µn. There is a rank k < n
approximation to X satisfying

‖X −Xk‖2 ≤ (n− k)2δk+1 (κ(V )‖D‖2)
2 (19)

where

δk+1 =
−1

2Real(µk+1)
Πk

j=1

∣

∣

∣

∣

µk+1 − µj

µ∗
k+1 + µj

∣

∣

∣

∣

2

.

The eigenvalues µi are ordered so that δi are decreasing.

If the condition number κ(V ) is not too large, for instance if A is normal, then δk+1/δ1
gives a relative error estimate of the error λk+1/λ1 in the approximation Xk. This estimate
is observed in [1] to estimate the actual decay rate of the eigenvalues of X quite well, even
in cases where the decay is very slow.
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Consider a parabolic partial differential equation, where the A-matrix of the approxima-
tion is symmetric and negative definite and so all the eigenvalues µi of A are real. A routine
calculation yields that

δk+1

δ1
≈ µ1

µk

and so the rate of growth of the eigenvalues determines the accuracy of the low rank approx-
imation. Since the eigenvalues typically increase in magnitude quite quickly, the Lyapunov
function for such problems can be approximated by a matrix of low rank.

The accuracy of the low-rank approximant can be quite different if a matrix A is non-
symmetric. The solution X to the Lyapunov equation could be, for instance, the identity
matrix [1, 32] in which case the eigenvalues of X do not decay.

It is observed through several numerical examples in [1] that it is not just complex
eigenvalues that cause the decay rate to slow down, but the dominance of the imaginary
parts of the eigenvalues as compared to the real parts, together with absence of clustering
in the spectrum of A.

Consider the bound (19) for the beam with Cd = 0, and an eigenfunction basis for
the approximation. Defining cv = Cv/(ρA), c2 = EI/(ρA) and indicating the roots of
1 + cos(a)cosh(a) by ak, the eigenvalues of A are [30]

µk = −cv/2 ± iωk

where

ωk =
√

ca2
k − c2v/4.

A simple calculation yields that for all k,

δk
δ1

=
k−1
∏

j=1

1

1 + 4c2v
(wk−wj)2

≈ 1.

This indicates that the eigenvalues of the Lyapunov solution do not decay. This effect was
observed in the beam equation. The ratio λk+1/λ1 is plotted for several values of Cd in
Figures 1 and 2. For larger values of Cd the solution X is closer to a low rank matrix than
it is for smaller values of Cd.

These observations are supported by results in the theory of control of partial differential
equations. If B and C are bounded finite-rank operators and A generates an exponentially
stable semigroup then the solution to the ARE is nuclear:

∞
∑

i=1

λi(P ) <∞.

[12, 14]. Uniform approximation by low order matrices is possible. This does not provide
an estimate about the rate of decay of the eigenvalues. Figure 1 shows eigenvalue ratios for
a beam example in which the underlying semigroup is stable, and C and B have rank 1. In
all cases the eigenvalues decay, although more slowly for a lightly damped system.

The results quoted above only apply if B and C are compact operators. If the original
semigroup is analytic, for instance in the case of Examples 1, 2 and the beam equation with
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Figure 1: Eigenvalue ratio for solution to beam ARE for varying Cd (N = 96, C = Ctip)

Cd > 0, then the approximations converge uniformly in operator norm under fairly standard
assumptions; see [23]. However, if the semigroup is not analytic, the solution P to the ARE
may not be compact. For example, consider the class of systems where A∗ = −A (as in the
undamped wave and beam equations). If C = B∗ then P = I is a solution to the ARE [11].
Clearly, if P is not compact, it cannot be uniformly approximated by a finite rank operator.
Convergence of the approximating solutions to the ARE for an non-analytic semigroup, in
general requires that C must be compact; see [24]. In Figure 2 the observation C is not
compact and with Cd = 0 the underlying semigroup is not analytic; note that no decay in
the eigenvalues occurs in this case. For problems where the underlying semigroup is not
analytic the state weighting matrix C must be compact. For lightly damped systems the
decay of the eigenvalues in the Riccati solution may be very slow, even if the underlying
semigroup is analytic, as in the case of the beam examined here. In such cases, the state
weighting matrix C should be chosen compact. Even so, the decay of the solution eigenvalues
may be quite slow.
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Figure 2: Eigenvalue ratio for solution to beam ARE for varying Cd (N = 96, C = I)

Table 16: Beam: Effect of Changing Cd (Standard Newton-Kleinman)

Cv Cd α Newton-Kleinman Itn’s Lyapunov Itn’s CPU time
2 1 × 104 1.5699 – – –

3 × 105 1.5661 – – –
4 × 105 1.5654 3 1620;1620;1620 63.14
1 × 107 1.5370 3 1316;1316;1316 42.91
1 × 108 1.4852 3 744;744;744 18.01
5 × 108 1.3102 3 301;301;301 5.32
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Table 17: Beam: Effect of Changing Cd (Modified Newton-Kleinman)

Cv Cd α Newton-Kleinman It’s Lyapunov It’s CPU time
2 1 × 104 1.5699 2 – –

3 × 105 1.5661 2 – –
4 × 105 1.5654 2 1620;1 24.83
1 × 107 1.5370 2 1316;1 16.79
1 × 108 1.4852 2 744;1 7.49
5 × 108 1.3102 2 301;1 2.32
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Figure 3: Beam: Spectrum of A for Cd = 1x104, 4x105, 1x108.
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4 Conclusions

The analysis and results shown here indicate that a modified Newton-Kleinman method
is considerably faster than standard Newton-Kleinman. The combination of the modified
Newton-Kleinman method with the Cholesky-ADI method takes advantage of the fact that
the number of controls is generally considerably less than the number of states. The reduction
in number of iterations and computation time over standard Newton-Kleinman increases with
the rank of the state-weighting matrix.

For the beam problem, increasing numbers of iterations were required as the damping
was decreased. The convergence could probably be improved with better ADI parameter
selection. However, as the damping is decreased, the ability to approximate the Riccati
solution (or the solution to the Lyapunov equation) by a solution of low rank, is lost. Thus,
one expects a greater number of iterations in the Lyapunov loop to be required as Cd is
decreased.

Analysis indicates that the fundamental reason for the slow convergence with small Cd is
the “hyperbolic-like” behaviour of the problem. This may have consequences for control of
systems such as plates and coupled acoustic-structures where the spectra have large imagi-
nary parts relative to the real parts. Special methods may be needed to calculate controllers
for these systems.

Acknowledgements This research was supported by the National Science and En-
gineering Research Council of Canada.

19



References

[1] A.C. Antoulas, D.C. Sorensen, Y. Zhou, “On the decay rate of Hankel singular values
and related issues”, Systems and Control Letters, vol. 46, pg. 323–342, 2002.

[2] H.T. Banks and D. J. Inman, “On Damping Mechanisms in Beams”, ICASE Report
No.

[3] H. T. Banks and K. Ito, “Approximation in LQR problems for infinite-dimensional
systems with unbounded input operators”, J. Math. Systems Estim. Control, vol. 7 , no.
1, 1997, 34 pg. (electronic).

89-64, NASA, Langley, 1989.

[4] H. T. Banks and K. Ito, “A Numerical Algorithm for Optimal Feedback Gains in High
Dimensional Linear Quadratic Regulator Problems”,SIAM J. Control Optim., vol. 29,
no. 3, pg. 499–515, 1991.

[5] H. T. Banks and K. Kunisch, “The linear regulator problem for parabolic sys-
tems”,SIAM J. Control Optim., vol. 22, no. 5, pg. 684–698, 1984.

[6] R.H. Bartels and W. Stewart, “Solution of the matrix equation AX+XB =C” Comm.
of ACM, vol. 15, pg. 820–826, 1972.

[7] P. Benner, “Efficient Algorithms for Large-Scale Quadratic Matrix Equations”, Proc.
in Applied Mathematics and Mechanics, vol. 1, no. 1, pg. 492–495, 2002.

[8] P. Benner, “Solving Large-Scale Control Problems”, IEEE Control Systems Magazine,
vol. 24, no. 1, pg. 44–59, 2004.

[9] J.A. Burns and K. P. Hulsing, “Numerical Methods for Approximating Functional Gains
in LQR Boundary Control Problems”, Mathematical and Computer Modelling, vol. 33,
no. 1, pg. 89–100, 2001.

[10] Y. Chahlaoui and P. Van Dooren, A collection of Benchmark examples for model re-
duction of linear time invariant dynamical systems, SLICOT Working Note 2002-2,
http://www.win.tue.nl/niconet/.

[11] Curtain, R. and Zwart, H., An Introduction to Infinite-Dimensional Linear Systems
Theory, Springer Verlag, Berlin, 1995.

[12] Curtain, R.F. , “On model reduction for control design for distributed parameter sys-
tems”, in Research Directions in Distributed Parameter Systems, R. Smith and M.
Demetriou, ed., pg. 95-121, SIAM, 1993.

[13] N. Ellner and E. L. Wachpress, “Alternating Direction Implicit Iteration for Systems
with Complex Spectra”, SIAM J. Numer. Anal., vol. 28, no. 3, pg. 859–870, 1991.

20



[14] De Santis, A., Germani, A and Jetto, L., “Approximation of the algebraic Riccati
equation in the Hilbert space of Hilbert-Schmidt operators” , SIAM J. Control Optim.
vol. 31, no. 4, pg. 847–874, 1993.

[15] J.S. Gibson, “The Riccati Integral Equations for Optimal Control Problems on Hilbert
Spaces”, SIAM J. Control and Optim., vol. 17, pg. 637–565, 1979.

[16] J.S. Gibson, “Linear-quadratic optimal control of hereditary differential systems: infi-
nite dimensional Riccati equations and numerical approximations”, SIAM J. Control
and Optim., vol. 21, pg. 95–139, 1983.

[17] G.H. Golub and C.F. van Loan, Matrix Computations, John Hopkins, 1989.

[18] J.R. Grad and K. A. Morris, “Solving the Linear Quadratic Control Problem for Infinite-
Dimensional Systems”, Computers and Mathematics with Applications, vol. 32, no. 9,
pg. 99-119, 1996.

[19] K. Ito, “Strong convergence and convergence rates of approximating solutions for alge-
braic Riccati equations in Hilbert spaces”, in Distributed Parameter Systems, eds. F.
Kappel, K. Kunisch, W. Schappacher, Springer-Verlag, pg. 151–166 1987.

[20] K. Ito and K. A. Morris, “An approximation theory of solutions to operator Riccati
equations for H∞ control”, SIAM J. Control Optim., vol. 36, pg. 82–99, 1998.

[21] D. Kleinman, “On an Iterative Technique for Riccati Equation Computations”, IEEE
Transactions on Automat. Control, vol. 13, pg. 114–115, 1968.

[22] A. J. Laub, “A Schur method for solving algebraic Riccati equations”, IEEE Trans.
Automat. Control , vol. 24, pg. 913-921, 1979.

[23] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Con-
tinuous and Approximation Theories, Part 1, Cambridge University Press, 2000.

[24] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Con-
tinuous and Approximation Theories, Part 2, Cambridge University Press, 2000.

[25] J. R. Li and J White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal.
Appl., vol. 24, pg. 260–280, 2002.

[26] A. Lu and E. L. Wachpress, “Solution of Lyapunov Equations by Alternating Direction
Implicit Iteration”, Computers Math. Applic., vol. 21, no. 9, pg. 43–58, 1991.

[27] K.A. Morris, “Design of Finite-Dimensional Controllers for Infinite-Dimensional Sys-
tems by Approximation”, J. Mathematical Systems, Estimation and Control, vol. 4, pg.
1–30, 1994.

[28] K.A. Morris, Introduction to Feedback Control, Harcourt-Brace, 2001.

[29] K.A. Morris and K. J. Taylor, “A Variational Calculus Approach to the Modelling of
Flexible Manipulators”, SIAM Review, vol. 38, no. 2, pg. 294–305, 1996.

21



[30] K.A. Morris and M. Vidyasagar, “A Comparison of Different Models for Beam Vibra-
tions from the Standpoint of Controller Design”, ASME Journal of Dynamic Systems,
Measurement and Control, September, 1990, vol. 112, pg. 349-356.

[31] Morris, K. and Navasca, C., “Solution of Algebraic Riccati Equations Arising in Control
of Partial Differential Equations”, in Control and Boundary Analysis, ed. J. Cagnola
and J-P Zolesio, Marcel Dekker, 2004.

[32] T. Penzl, “Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric
case”, Systems and Control Letters, vol. 40, pg. 139–144, 2000.

[33] T. Penzl, “A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations”,
SIAM J. Sci. Comput., vol. 21, no. 4, pg. 1401–1418, 2000.

[34] T. Penzl LYAPACK Users’s Guide, http://www.win.tue.nl/niconet.

[35] J. E. Potter, “Matrix quadratic solutions”, SIAM J. Appl. Math., vol. 14, pg. 496-501,
1966.

[36] I. G. Rosen and C. Wang, “A multilevel technique for the approximate solution of
operator Lyapunov and algebraic Riccati equations”, SIAM J. Numer. Anal. vol. 32,
pg. 514–541, 1994.

[37] Russell, D.L., Mathematics of Finite Dimensional Control Systems: Theory and Design,
Marcel Dekker, New York, 1979.

[38] R.A. Smith, “Matrix Equation XA + BX = C”, SIAM Jour. of Applied Math., vol. 16,
pg. 198–201, 1968.

[39] E. L. Wachpress, The ADI Model Problem, preprint, 1995.

[40] E. Wachpress, “Iterative Solution of the Lyapunov Matrix Equation”, Appl. Math. Lett.,
vol. 1, pg. 87-90, 1988.

22


