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Abstract We proposed two randomized tensor algorithms for reducing multilinear
ranks in the Tucker format. The basis of these randomized algorithms is from the
randomized SVD of Halko, Martinsson and Tropp [9]. Here we provide randomized
versions of the higher order SVD and higher order orthogonal iteration. Moreover,
we provide a sharper probabilistic error bounds for the matrix low rank approxima-
tion. Thus, we can provide theoretical error bounds for the tensor case. In addition,
these randomized algorithms are implemented on an MRI dataset.

1 Introduction

The problem of approximating a given matrix M ∈ Rn×m with a low rank matrix
M̂ ∈ Rn×k is

min
rank(M̂)≤k

‖M− M̂‖2
F

where ‖ · ‖ is the matrix Frobenius norm. The solution is

M∗ = argminrank(M̂)≤k‖M− M̂‖2
F =UkΣkV T

k

where UkΣkV T
k = ∑

k
i=1 σiui⊗vi is the first k leading terms in the SVD. This is due to

Eckart-Young [6]. Similarly, we ask this question for tensors. For a given kth order
tensor T ,
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min‖T − T̂ ‖2
F (1)

where T̂ is subject to a rank constraint and ‖A ‖2
F = tr〈A ,A 〉 is a Frobenius norm.

For example, for a desired rank k in T̂ = ∑
k
i=1 σiu

(1)
i ⊗ u(2)i ⊗ ·· · ⊗ u(k)i , does a

minimizer in (1) exist? The answer for the tensor case is complicated. The best rank
k approximant may exists, but it may not have orthogonal factors like in SVD of
matrix[14]. Or the best k rank-one terms may not exist; this is called the degenerate
case [5]. A minimizer in (1) is not always guaranteed to exist as opposed to the
matrix case where the best rank k solution always exists. In fact, this problem is NP-
hard [10]. These tensor questions are important in analyzing datasets with complex
structure which appear across many disciplines, namely in, signal processing [2],
PDEs [13, 19], geophysics [12], environmental sciences [16], brain connectome [23]
and etc. Other interesting applications are in bioinformatics [20] and biomedical
imaging [11]; see more applications in [15] and the references therein.

In this work, we propose some algorithms for approximation of a low multilinear
rank T̂ from a given tensor T ∈Rn1×n2×n3 ; i.e

min‖T − T̂ ‖2
F

where T̂ = ∑
r1
l=1 ∑

r2
m=1 ∑

r3
k=1(S )lmn(U1)il ,(U2) jm,(U3)kn (Tucker format) with or-

thogonal matrices U1 ∈ Rn1×r1 , U2 ∈ Rn2×r2 and U3 ∈ Rn3×r3 . Here the core tensor
is S ∈Rr1×r2×r3 . We say that the tensor T̂ has rank-(r1,r2,r3). In these algorithms,
we use random projections on matrices based on the work of Halko, Martinsson and
Tropp [9] to approximate range space, rank and theoretical bounds. In addition, we
prove a sharper probabilistic error bound found in [9] for the matrix case. Then, we
apply this error bound for the tensor case. The tensor extension of these randomized
projections was first proposed by Mahoney, Maggioni and Drineas [17].

In addition, we demonstrate the efficacy of the proposed randomized algo-
rithms through MRI data compression. Numerical experiments are compared to
tensor based methods for compression (e.g. quasi-newton methods on Grassman-
nian manifolds [22]). We restrict our comparison to tensor based methods for three-
dimensional datasets even though there are well-known and powerful methods for
compression based on wavelet analysis that has been successful for two-dimensional
data. In the work of Wu et al. [26], they have shown that the higher-order SVD
within the hierarchical tensor framework has some advantages over wavelet analy-
sis for compression. The advantages are the following: (a) it can achieve far higher
quality than wavelet transform at large compression ratios (b) the tensor framework
facilitates progressive or partial data transmission and visualization; i.e. the receiver
can quickly view the low resolution versions first and decide whether it is worth-
while to wait for higher resolution details.
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2 Preliminaries

We denote the scalars in R with lower-case letters (α,β , . . .) and the vectors with
lower-case letters (a,b, . . .). The matrices are written as upper-case letters (A,B, . . .)
and the symbol for tensors are calligraphic letters (A ,B, . . .). The subscripts rep-
resent the following scalars: (A )i jk = ai jk, (A)i j = ai j, (a)i = ai. The superscripts
indicate the length of the vector or the size of the matrices. For example, bK is a
vector with length K and BN×K is a N×K matrix. In addition, the lower-case super-
scripts on a matrix indicate the mode in which it has been matricized. For example,
Rn is the mode-n matricization of the tensor R ∈ RI×J×K for n = 1,2,3.

Definition 1. The Kronecker product of matrices A and B is defined as

A⊗B =

 a11B a12B . . .
a21B a22B . . .

...
...

. . .

 .
Definition 2 (Mode-n vector). Given a tensor T ∈RI×J×K , there are three types of
mode vectors, namely, mode-1, mode-2, and mode-3. There are J ·K mode-1 vectors
that are of length I which are obtained by fixing the indices ( j,k) while varying i.
Similarly, the mode-2 vector (mode-3 vector) is of length J (K) obtained from the
tensor by varying j (k) with fixed (k, i) (i, j).

Definition 3 (Mode-n rank). The mode-n rank of a tensor T is the dimension of
the subspace spanned by the mode-n vectors.

The order of a tensor refers to the cardinality of the index set. A matrix is a second-
order tensor and a vector is a first-order tensor.

Definition 4 (rank-(L,M,N)). A third-order tensor T ∈ RI×J×K is rank-(L,M,N)
if the mode-1 rank is L, the mode-2 rank is M and the mode-3 rank is N.

In the case when a third-order tensor has rank-(1,1,1), it is simply called a rank-1
tensor.

Definition 5 (Tucker mode product). Given a tensor T ∈RI×J×K and the matrices
A∈RÎ×I , B∈RĴ×J and C ∈RK̂×K , then the Tucker mode-n products are as follows:

(T •1 A)î, j,k =
I

∑
i=1

(T )i jkaîi, ∀î, j,k (mode-1 product)

(T •2 B) ĵ,i,k =
J

∑
j=1

(T )i jkb ĵ j, ∀ ĵ, i,k (mode-2 product)

(T •3 C)k̂,i, j =
K

∑
k=1

(T )i jkck̂k, ∀k̂, i, j (mode-3 product)

In general, we have the following definition.
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Definition 6. Given a kth order tensor T ∈ Rn1×n2···×nk and matrices Ui ∈ Rn̂l×nl ,
then the Tucker mode-nl is

(T •l Ul)i1i2···îl ···ik = ∑
il

(T )i1i2···il ···ik(U)îl il

Definition 7 (Matricization). Matricization is the process of reordering the ele-
ments of an Nth order tensor into a matrix. The mode-n matricization of a tensor
T ∈Rn1×n2×···×nk is denoted by Tl and arranges the mode-l fibers to be the columns
of the resulting matrix. The mode-l fiber, tn1···nl−1:nl+1···nk , is a vector obtained by fix-
ing every index with the exception of the lth index.

If we use a map to express such matricization process for any Nth order tensor
T ∈Rn1×n2×···×nk , that is, the tensor element (n1,n2, . . . ,nk) maps to matrix element
(nl , j), then there is a formula to calculate j:

j = 1+
k

∑
l=1
l 6=k

(nl−1)Jl with Jl =
l−1

∏
m=1
m 6=l

nm.

Then, given a third-order tensor X ∈ RI×J×K , the mode-1, mode-2 and mode-3
matricizations of X , respectively, are:

X1 = [x:11, . . . ,x:J1,x:12 . . . ,x:J2, . . . ,x:1K , . . . ,x:JK ],

X2 = [x1:1, . . . ,xI:1,x1:2 . . . ,xI:2, . . . ,x1:K , . . . ,xI:K ], (2)
X3 = [x11:, . . . ,xI1:,x12: . . . ,xI2:, . . . ,x1J:, . . . ,xIJ:].

3 Theoretical Error Bounds

In this section, we introduce a randomization technique for calculating low rank ma-
trices. It is well known from Eckart-Young Theorem [6] that the low rank k matrix
approximation is attained from calculating the leading first k rank-one terms in the
SVD; i.e.

argminrank(Â)≤k‖A− Â‖F =UkΣkV T
k .

Recent results [9] show that the randomized versions of classical numerical linear
algebra techniques give fast, efficient and accurate algorithms. Here we build on the
theoretical error bounds found in [9] which will be essential for the error bounds in
the tensor case.

The goal is to create an algorithm for SVD with randomness. For simplicity, we
fix a specific low rank k in mind. Given a matrix A ∈Rn×m, a desired rank k, and an
oversampling parameter p, we want to construct Q ∈ Rn×k+p orthonormal columns
such that
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‖A−QQT A‖ ≈ min
rank(Â)≤k

‖A− Â‖.

Essentially, we are constructing a random orthogonal project such that the residual
‖A−QQT A‖≤ ε . A Gaussian test matrix Ω is used such that the columns of AΩ are
orthonormalized; i.e. AΩ = QR. See Table 1. Thus, Q captures the first k columns as
the left singular vectors of A. Then, the matrix B = QT A of size k+ p×m is formed
and factored into its SVD; ie. B = ÛΣV T which follows that A = QB = QÛΣV T =
UΣV T where U = QÛ . SVD is performed on a smaller matrix B of size k+ p×m
as opposed to A of size n×m. See Table 2 for the randomized SVD.

Table 1 Fixed low matrix rank [9].

Input: A, rank k, oversampling paramater p
Output: Q ∈ Rn×k+p

Draw a random n× k+ p test matrix Ω

Form the matrix product Y = A Ω

Compute a QR: [Q,R]=qr(AΩ)

Table 2 Randomized SVD [9].

Input: A, orthogonal matrix Q
Output: orthogonal matrices U , V and diagonal
matrix Σ ; i.e A =UΣV T

Form B = QT A
Compute a small SVD: [Û ,Σ ,V T ]=svd(B)
Set U = QÛ

Now we discuss a deterministic error bound for calculating the range space of A.
Let A be an m×n that has an SVD of A =U Σ V T ; i.e.

A =U
[

Σ1
Σ2

][
V T

1
V T

2

]
(3)

where Σ1 is an k× k matrix and Σ2 is an n− k× n− k matrix. Let Ω be an n×
l test matrix where l ≥ k in the coordinate system determined by the right polar
decomposition of A via

Ω1 =V T
1 Ω and Ω2 =V T

2 Ω . (4)

A deterministic bound is the following:
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Theorem 1. ([9]) Let A be an m×n matrix with SVD A=UΣV T (3). Let Ω be a test
matrix and construct the matrix Y =AΩ with Ω1 and Ω2 are defined in 4. Assume
Ω1 has full row rank, then

‖A−QQT A‖2
F ≤ ‖Σ2‖2

F +‖Σ2Ω2Ω
†
1‖

2
F .

Let Vs be an n× s matrix whose entries are i.i.d. N(0,1) random variables and let
Ms =

1
s VsV T

s . The random matrix Ms is called the Wishart matrix.

Theorem 2. ([7]) Let Ms =
1
s VsV T

s where Vs is an n× s matrix with i.i.d. entries
with σi j ∼ N(0,1). For 0 < n

s < ∞, the largest singular values of Ms converges a.s.
to
(
1+
√ n

s

)
as s→ ∞.

Theorem 3. ([24]) Let Ms =
1
s VsV T

s where Vs is an n× s matrix with i.i.d. entries
with σi j ∼ N(0,1). For 0 < n

s < 1, the smallest singular values of Ms converges a.s.
to
(
1−
√ n

s

)
as s→ ∞.

Here we improve the theoretical bound in Theorem 1.

Theorem 4. Let A be an m× n matrix with SVD A=UΣV T (3). Let Ω be an n× l
matrix with i.i.d. entries with ai j ∼ N(0,1) and construct the matrix Y =A Ω with
Ω1 and Ω2 are defined in (4). Assume Ω1 has full row rank, then

‖A−QQT A‖2
F ≤

1+
1+
√

n−k
l

1−
√

k
l

‖Σ2‖2
F

as l→ ∞ where 0 < n−k
l < ∞ and 0 < k

l < 1.

Proof. Theorem 1 states this bound:

‖A−QQT A‖2
F ≤ ‖Σ2‖2

F +‖Σ2Ω2Ω
†
1‖

2
F .

We now calculate a bound for ‖Σ2Ω2Ω
†
1‖2

F . The following is true:

‖Σ2Ω2Ω
†
1‖

2
F = tr((Ω †

1 )
T

Ω
T
2 Σ

2
2 Ω2Ω

†
1 ) = tr(Ω T

2 Σ
2
2 Ω2Ω

†
1 (Ω

†
1 )

T ).

Let P1 = Ω
†
1 (Ω

†
1 )

T and P2 = Ω2Ω T
2 with orthonormal bases {φ j} and {ψk} ([18]),

respectively. Then

tr(Ω T
2 Σ

2
2 Ω2P1) = tr〈I,Ω T

2 Σ
2
2 Ω2P1〉= ∑

i
〈φi,Ω

T
2 Σ

2
2 Ω2Pφi〉

≤∑
i
‖P‖2〈φi,Ω

T
2 Σ

2
2 Ω2φi〉 ≤ ‖P1‖2 tr〈I,Ω T

2 Σ
2
2 Ω2〉

≤ ‖P1‖2 tr〈I,Σ 2
2 Ω2Ω

T
2 〉 ≤ ‖P1‖2 ∑

i
〈ψk,Σ

2
2 P2ψi〉

≤ ‖P1‖2‖P2‖2 ∑
i
〈ψk,Σ

2
2 P2ψi〉 ≤ ‖P1‖2‖P2‖2‖Σ2‖2

F
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Using Theorem 2, the largest singular value of P2 converges almost surely to
√

l
(

1+
√

n−k
l

)
as l→∞ for 0 < n−k

l < ∞. Similarly, using Theorem 3, the largest

singular value of P1 is the reciprocal of the smallest singular value of Ω1Ω T
1 ; i.e.

the largest singular value of P1 converges almost surely to 1
√

l
(

1−
√

k
l

) as l→ ∞ for

0 < k
l < 1. Thus,

‖A−QQT A‖2
F ≤ ‖Σ2‖2

F +‖Σ2Ω2Ω
†
1‖

2
F

≤ (1+‖P1‖2‖P2‖2)‖Σ2‖2
F

≤

1+
1+
√

n−k
l

1−
√

k
l

‖Σ2‖2
F

as l→ ∞ where 0 < n−k
l < ∞ and 0 < k

l < 1. ut

This is a probabilistic bound which sharpens the result of [9] and [1]. The determin-
istic bound of [9] is an improvement on the result of [1]. In the next section, we will
apply Theorem 4 for the error bounds in the tensor case.

4 Low Multilinear Rank Tensor Approximation

In this section, we will describe two low multilinear rank tensor approximations as
well apply the probabilistics theoretical bounds. An extension of SVD to tensor is
called the multilinear SVD [3] (or Higher-order SVD). Recall the Tucker mode-nl
(Definition 6). Given a kth order tensor T ∈ Rn1×n2···×nk and matrices Ui ∈ Rn̂l×nl

for i = 1, · · · ,, then the Tucker mode-nl is

(T •l Ul)i1i2···îl ···ik = ∑
il

Ti1i2···il ···ikUîl il

Definition 8 (Multilinear SVD). A third order tensor T ∈ Rn1×n2···×nk can be fac-
tored into a product of a core third order tensor and three orthogonal matrices; i.e.

T = S •1 U1 •2 U2 · · · •l Ul · · · •k Uk

where S ∈Rn1×n2···×nk is the core tensor and UiUi ∈Rnl×nl are orthogonal matrices.
The core tensor satisfies:

• an all-orthogonality constraint for each mode l: 〈Si1i2···il=α···ik ,Si1i2···il=β ···ik〉=
(σ l)2δα,β with α,β = 1, · · · ,nl

• ordering
‖Sil=1‖F ≥ ‖Sil=2‖F ≥ ‖Sil=3‖F ≥ ·· · ≥ ‖Sil=nl‖F
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where Sil=α = Si1i2···il=α···ik and ‖Sil=α‖F = σ l
α for α = 1, · · · ,nl .

A kth order tensor has k set of singular values {σ l
α} and singular vectors (Ul)α for

α = 1, · · · ,nl .

Definition 9 (Low Multilinear SVD). A given third order tensor T ∈ Rn1×n2···×nk

can be factored into a product of a core third order tensor and three orthogonal
matrices; i.e.

T = S •1 U1 •2 U2 · · · •l Ul · · · •k Uk

where S ∈ Rr1×r2···×rk is the core tensor and Ui ∈ Rnl×rl are orthogonal matrices.
The core tensor satisfies

• an all-orthogonality constraint for each mode l: 〈Si1i2···il=α···ik ,Si1i2···il=β ···ik〉=
(σ l)2δα,β with α,β = 1, · · · ,rl

• ordering
‖Sil=1‖F ≥ ‖Sil=2‖F ≥ ‖Sil=3‖F ≥ ·· · ≥ ‖Sil=nl‖F

where Sil=α = Si1i2···il=α···ik and ‖Sil=α‖F = σ l
α for α = 1, · · · ,rl .

A kth order tensor has k set of singular values {σ l
α} and singular vectors (Ul)α for

α = 1, · · · ,rl .

There are methods for computing (low) multilinear SVD [25, 3, 4]. One ap-
proach is to flatten (Definition 2) the tensor and apply matrix SVD. A third or-
der tensor T is matricized into T1 = U1S1(U2⊗U3)

T , T2 = U2S2(U3⊗U1)
T and

T3 = U3S3(U1⊗U2)
T . To obtain orthogonal matrices Ui, each matrix Ti is decom-

posed into its SVD. The core tensor S is then reconstructed. Low rank orthogonal
matrices are constructed by taking the first ri columns of Ui ∈ Rni×ri . The low rank
core tensor S ∈ Rr1×r2×r3 is built via S = T •1 UT

1 •2 UT
2 •3 UT

3 . Moreover, the
randomized SVD in Table 1 which is based on random projections can applied to
each Ti. See Table 3 and Figure 1. In the next section, we describe an improvement
of this method.

Table 3 Randomized Multilinear SVD (or HOSVD)

Input: T ∈ Rn1×n2×n3 , rank− (r1,r2,r3), oversampling parameter p1, p2, p3
Output: orthogonal matrices Ul and diagonal tensor S in T =S •1 U1 •2 U2 •3 U3

Reshape T into matrices T1, T2, T3
U1 ← randsvd(T1,r1, p1)
U2 ← randsvd(T2,r2, p2)
U3 ← randsvd(T3,r3, p3)
Form S = T •1 UT

1 •2 UT
2 •3 UT

3
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4.1 A Randomized Multilinear Orthogonal Iteration (MOI)

The HOOI method is based on minimizing the Frobenius norm squared of the resid-
ual:

min
U1,U2,U3

‖T −S •1 U1 •2 U2 •3 U3‖2
F = min

U1,U2,U3
‖T ‖2

F −2〈S ,S 〉+‖S ‖2
F

= max
U1,U2,U3

‖S ‖2
F

where S = T •1 UT
1 •2 UT

2 •3 UT
3 . In general, the orthogonal matrices are obtained

through
max

U1,··· ,Uk
‖T •1 UT

1 •2 UT
2 · · · •k UT

k ‖2
F

The implementation of this maximization problem is an alternating maximization
of the matricized subproblems:

max
Ul
‖UT

l Z‖2
F (5)

where Z = Sl(UT
1 ⊗UT

2 · · ·⊗UT
l−1⊗UT

l+1 · · ·Uk). Orthogonal Ul is attained by setting
the leading rl singular vectors of Z [8]. Here we show an alternative proof in the
spirit of Regalia [21] on how the maximum is attained in (5); i.e.

max
Ul
‖UT

l Z‖2
F

where Z = Sl(UT
1 ⊗UT

2 · · ·⊗UT
l−1⊗UT

l+1 · · ·Uk).
Assume Z has an SVD; i.e. Z=XΣY T . We calculate

‖UT
l Z‖2

F = tr〈UT
l Z,UT

l Z〉= tr(ZTUUT Z) = tr(Y ΣXTUUT XΣY T ) = tr(XTUUT XΣ
2)

= tr〈XTUUT X ,Σ 2〉= tr∑
i, j
(XTUUT X)i j(Σ

2) ji = ∑
i
(XTUUT X)ii(σ(Σ 2))i

≤∑
i
(σ(Σ 2))i

since ‖XTUUT X‖2 ≤ ‖XT‖2‖U‖2‖UT‖2‖X‖2 ≤ 1. If follows that when U = X , the
maximum of the objective function is attained.

Here we describe how randomness is introduced to the orthogonal iteration. Let
T ∈ Rn1×n2×n3 . Consider the following subproblems from the HOOI formulation:
find orthogonal Qi, i = 1,2,3 such that

‖T1−Q1QT
1 T1‖2

F = min
rank(U1)≤r1

‖T1−U1S1(U2⊗U3)
T‖2

F

‖T2−Q2QT
2 T2‖2

F = min
rank(U2)≤r2

‖T2−U2S2(U3⊗U1)
T‖2

F

‖T3−Q3QT
3 T3‖2

F = min
rank(U3)≤r3

‖T3−U3S3(U1⊗U2)
T‖2

F
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Thus, we can iteratively calculate Q(k)
i and U (k)

i until a stopping criteria is satisfied.
Moreover, we calculate the theoretical bounds for each mode.

Theorem 5. Let Tl ∈ Rnl×n1···nl−1nl+1···nk be a matricization of a kth-order tensor
with SVD Tl=UlΣ(U1⊗·· ·Ul−1⊗Ul+1 · · ·⊗Uk)

T (3). Let Ωl be an Nl ×Ll matrix
with i.i.d. entries with ai j ∼ N(0,1) and construct the matrix Yl=Tl Ω with Ω1 and
Ω2 are defined in (4) where N = n1 · · ·nl−1nl+1 · · ·nk. Assume Ω1 has full row rank,
then

‖Tl−QlQT
l Tl‖2

F ≤

1+
1+
√

Nl−rl
Ll

1−
√

rl
Ll

‖Σ2‖2
F

as Ll → ∞ where 0 < Nl−rl
Ll

< ∞ and 0 < rl
Ll

< 1.

Remark 1. It follows that we can bound (1) but the theorem above; i.e.

‖T − T̂ ‖2
F ≤

1+
1+
√

Nl−rl
Ll

1−
√

rl
Ll

‖Σ2‖2
F

for any mode l since ‖T − T̂ ‖2
F = ‖Tl−QlQT

l Tl‖2
F by rearrangements of elements.

Table 4 Randomized Higher Order Orthogonal Iteration (HOOI)

Input: T ∈ Rn1×n2×n3 , rank− (r1,r2,r3), oversampling parameter p1, p2, p3
Output: orthogonal matrices Ul and diagonal tensor S in T =S •1 U1 •2 U2 •3 U3

Reshape T into matrices T1, T2, T3
for k = 1, · · · ,MAXit
Z1← T1(Uk−1

2 ⊗Uk−1
3 )

Uk
1 ← randsvd(Z1,r1, p1)

Z2← T2(Uk−1
3 ⊗Uk

1 )
Uk

2 ← randsvd(Z2,r2, p2)
Z3← T3(Uk

1 ⊗Uk
3 )

Uk
3 ← randsvd(Z3,r3, p3)

Form S = T •1 UT
1 •2 UT

2 •3 UT
3

end

5 Numerical Examples

In the first two numerical experiments, the knee MRI dataset was obtained from
OsiriX [27]. The first numerical experiment is the implementation of the randomized
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HOSVD described in Table 3. The dataset of size 92×92×26 is compressed with
a core tensor of size 35× 35× 26. Here for each orthogonal matrix Ui, we took
the first ri columns of Ui where r1 = 35,r2 = 35,r3 = 26. The calculated errors are
‖S1‖F = 1333.3, ‖S2‖F = 58.2 and ‖S3‖F = 5.1. See Figure 1. Here l1 = l2 = 85
and p1 = p2 = 50.

The second experiment is the implementation of the randomized HOOI in Table
4. The dataset of size 92× 92× 26 is compressed with a core tensor of size 35×
35×26. Here for each orthogonal matrix Ui, we took the first ri columns of Ui where
r1 = 35,r2 = 35,r3 = 26. The calculated errors are ‖S1‖F = 5.1, ‖S2‖F = 5.1 and
‖S3‖F = 5.1 after two iterations. See Figure 2. Here l1 = l2 = 85 and p1 = p2 = 50.

The third experiment is a comparison study of multilinear rank reduction us-
ing HOOI, randomized HOOI and Quasi-Newton [22]. In Figure 3, we find a
low multilinear rank of (3,3,3) from a tensor A of size 5× 5× 5 while having
a stopping criteria of a maximum number of iterations of 100 and the error norm,
‖U3A3(U1⊗U2)‖2

F , to be within 10−6. HOOI maxed out at 100 iterations and Quasi-
Newton required 99 iterations while Randomized HOOI needed 18 iterations. For

Fig. 1 Randomized HOSVD Example. (left) Six frames of the original data of size 92×92×26.
(right) Reconstructed data using Randomized HOSVD with low multilinear rank-(35,35,26).

Fig. 2 Randomized HOOI Example. (left) Six frame of the original data of size 92× 92× 26.
(right) Reconstructed data using Randomized HOOI with low multilinear rank-(35,35,26).
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the randomized HOOI, we take L3 = 5 (with an oversampling parameter of p = 2)
and the desired rank of r3 = 3.
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