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ABSTRACT

We present a novel method for tensor dimensionality reduc-
tion. The tensor rank reduction has many applications in sig-
nal and image processing including various blind techniques.
In this paper, we generalize the trace class norm to higher-
order tensors. Recently, the matrix trace class has received
much attention in the compressed sensing applications. It is
known to provide bounds for the minimum rank of a matrix.
In this paper, a new tensor trace class norm is used to formu-
late an optimization problem for finding the best low multi-
linear rank tensor approximation. Our new formulation leads
to a set of semidefinite programming subproblems where the
nth subproblem approximates a low multilinear rank factor
in the nth modal direction. Our method is illustrated on a
real-life data set.

1. INTRODUCTION

The optimization problem of approximating a tensor T ∈
RI×J×K by a low multilinear rank tensor T̂ ,

min
rankn(T̂ )=Rn

‖T − T̂ ‖F

is of interest across many applications, for example, in sig-
nal and image processing. In independent component analy-
sis, electro-encephalography, magneto-encephalography, nu-
clear magnetic resonance, etc., high-dimensional data with
very few significant signal source contributions are ubiqui-
tous. In image processing, tensor dimensionality reduction
has been applied to image synthesis, analysis and recogni-
tion. Also tensor multilinear rank reduction has been par-
ticular useful in estimation of poles and complex amplitudes
in harmonic retrieval. The tensor Frobenius norm ‖ · ‖F is
defined as

‖T ‖F =
( I

∑
i=1

J

∑
j=1

K

∑
k=1

|ti jk|2
) 1

2
(1)

which is equivalent to the `2 norm of the singular values at
each mode [4]. The desired solution, T ∗ = argmin‖T −
T̂ ‖F has a specific structure. If T ∈ RI×J is a second order

tensor (a matrix), then the best rank-R approximation is

T∗ = argmin‖T− T̂‖F = URΣRVT
R

which can be computed by means of truncated SVD. The ma-
trix ΣR ∈ RR×R is a diagonal matrix with the first R singular
values of T. The matrices UR ∈ RI×R and VR ∈ RJ×R are
the first R columns of the full column rank U and V through
truncated SVD. Certainly, we would like to extend the similar
concept to higher-order tensor. The higher-order SVD (HO-
SVD) [6, 19, 20, 21] plays an important role in finding an
approximation. Through HO-SVD, the tensor singular val-
ues and vectors are calculated mode by mode via successive
SVD. Although the HO-SVD is extremely useful in finding
singular values and vectors, it does not in general provide the
best low multilinear rank approximation and certainly not the
best low rank approximation.

There are several current well-known methods for tensor
low multilinear rank approximation, namely, the truncated
Higher-Order SVD (HO-SVD) [6, 21], Higher-Order Or-
thogonal Iteration (HOOI) [5, 12]. Although these methods
are widely used in applications, these techniques have some
shortcomings. The truncated HO-SVD, in general, does
not give the best low multilinear rank approximation while
HOOI does not guarantee global optimal solution and can
be slow. There are also the current quasi-Newton schemes
on Grassmannian manifolds [9, 10, 16, 7] which have been
demonstrated to converge to local optima super-linearly and
quadratically.

In this paper, we develop an alternative approach for re-
ducing multilinear tensor rank by extending the matrix rank
minimization problem to problems involving higher order
tensors. The matrix rank minimization problems come from
the subject areas of optimization and convex analysis. Lately,
these rank minimization problems have received much atten-
tion in compressed sensing [3, 15, 2]. Thus it is worthwhile
to extend these formulations to multilinear algebra to widen
and improve the applicability of tensors.

1.1 Organization
Beginning with Section 2, we give some preliminaries which
include basic definition, tensor decompositions and tensor
unfolding techniques. In addition, HO-SVD is discussed in
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details. In Section 3, we describe the trace class norm and
semidefinite programming for tensors. In the next section,
we discuss our technique for computing the low multilinear
rank factors through semidefinite programming. We also il-
lustrate the attributes of the new method through some nu-
merical results. Finally, we conclude in Section 5 by includ-
ing some remarks on our future work.

2. PRELIMINARIES

We denote the scalars in R with lower-case letters (a,b, . . .)
and the vectors with bold lower-case letters (a,b, . . .). The
matrices are written as bold upper-case letters (A,B, . . .) and
the symbol for tensors are calligraphic letters (A ,B, . . .).
The subscripts represent the following scalars: (A )i jk = ai jk,
(A)i j = ai j, (a)i = ai. The superscripts indicate the length
of the vector or the size of the matrices. For example, bK

is a vector with length K and BN×K is a N ×K matrix. In
addition, the lower-case superscripts on a matrix indicate the
mode in which it has been matricized. For example, Rn is
the mode-n matricization of the tensor R ∈ RI×J×K for n =
1,2,3.

Definition 2.1 The Kronecker product of matrices A and B
is defined as

A⊗B =

 a11B a12B . . .
a21B a22B . . .

...
...

. . .

 .

Definition 2.2 (Mode-n vector) Given a tensor
T ∈ RI×J×K , there are three types of mode vectors,
namely, mode-1, mode-2, and mode-3. There are J · K
mode-1 vectors that are of length I which are obtained
by fixing the indices ( j,k) while varying i. Similarly, the
mode-2 vector (mode-3 vector) is of length J (K) obtained
from the tensor by varying j (k) with fixed (k, i) (i, j).

Definition 2.3 (Mode-n rank) The mode-n rank of a tensor
T is the dimension of the subspace spanned by the mode-n
vectors.

The order of a tensor refers to the cardinality of the index set.
A matrix is a second-order tensor and a vector is a first-order
tensor.

Definition 2.4 (rank-(L,M,N)) A third-order tensor T ∈
RI×J×K is rank-(L,M,N) if the mode-1 rank is L, the mode-2
rank is M and the mode-3 rank is N. It is often denoted as
rank1(T ) = L, rank2(T ) = M and rank3(T ) = N.

In the case when a third-order tensor has rank-(1,1,1), it is
simply called a rank-1 tensor.

Definition 2.5 (Tucker mode-n product) Given a tensor
T ∈ RI×J×K and the matrices A ∈ RÎ×I , B ∈ RĴ×J and
C ∈ RK̂×K , then the Tucker mode-n products are as follows:

(T •1 A)î, j,k =
I

∑
i=1

ti jkaîi, ∀î, j,k (mode-1 product)

(T •2 B) ĵ,i,k =
J

∑
j=1

ti jkb ĵ j, ∀ ĵ, i,k (mode-2 product)

(T •3 C)k̂,i, j =
K

∑
k=1

ti jkck̂k, ∀k̂, i, j (mode-3 product)

Definition 2.6 (Matrix Slice and Subtensor) A third-order
tensor S ∈RI×J×K has three types of matrix slices obtained
by fixing the index of one of the modes. The matrix slices
of S ∈ RI×J×K are the following: S1

i=α
∈ RJ×K with fixed

i = α , S2
j=α

∈ RI×K with fixed j = α and S3
k=α

∈ RI×J with
fixed k = α . For an Nth-order tensor S ∈ RI1×I2×I3×...×IN ,
the subtensors are the (N − 1)th-order tensors denoted by
S n

in=α
∈ RI1×I2×I3×...×In−1×In+1×...×IN which are obtained by

fixing the index of the nth mode.

2.1 Higher-Order SVD
The higher-order SVD is also referred to multilinear SVD.
In the following theorem, we discuss the HO-SVD for third
order tensors for the sake of simplicity and clarity. Of course
the HO-SVD applies for Nth-order tensors.

Theorem 2.1 (Multilinear SVD [6]) A third order tensor
T ∈ RI×J×K can be represented as a product

T = S •1 A•2 B•3 C

where
1. A ∈ RI×I is an orthogonal matrix and A = [a1 . . .aI]
2. B ∈ RJ×J is an orthogonal matrix and B = [b1 . . .bJ]
3. C ∈ RK×K is an orthogonal matrix and C = [c1 . . .cK]
4. S ∈RI×J×K is a third order tensor with subtensors (ma-

trices) S1
i=α

∈RJ×K , S2
j=α

∈RI×K and S3
k=α

∈RI×J with
the following properties:
• all-orthogonality:

〈S1
i=α

,S1
i=β

〉= (σ (1)
α )

2
δα,β , α,β = 1, . . . , I,

〈S2
j=α

,S2
j=β

〉= (σ (2)
α )

2
δα,β , α,β = 1, . . . ,J,

〈S3
k=α

,S3
k=β

〉= (σ (3)
α )

2
δα,β , α,β = 1, . . . ,K

• ordering:
‖S1

i=1‖F ≥ ‖S1
i=2‖F ≥ ·· · ≥ ‖S1

i=I‖F ≥ 0,
‖S2

j=1‖F ≥ ‖S2
j=2‖F ≥ ·· · ≥ ‖S2

j=J‖F ≥ 0,
‖S3

k=1‖F ≥ ‖S3
k=2‖F ≥ ·· · ≥ ‖S3

k=K‖F ≥ 0

where ‖Sn
i=α

‖F = σ
(n)
α for α = 1, . . . , In (I1 = I, I2 =

J, I3 = K).

The usual inner product of matrices, A,B ∈RI×J is denoted
by 〈A,B〉 = ∑i j bi jai j. For a third order tensor, there are

three sets of singular values: σ
(1)
α ’s are mode-1 singular val-

ues, σ
(2)
α ’s are the mode-2 singular values and σ

(3)
α ’s are the

mode-3 singular values. The corresponding mode-1, mode-2
and mode-3 singular vectors are aα , bα and cα , respectively.
The all-orthogonality property implies the simultaneous mu-
tual orthogonality between different horizontal slices, verti-
cal slices and frontal slices with respect to the scalar product
of matrices.

For an Nth-order T ∈ RI1×I2×I3×I4×...×IN tensor, the
HOSVD is

T = S •1 U1 •2 U2 •3 U3 •4 U4 •5 . . .•N UN (2)

where Un ∈ RIn×In are orthogonal matrices and S ∈
RI1×I2×I3×I4×...×IN is a core tensor with subtensors S n

n ∈
RI1×I2×...In−1×In+1×...×IN fixed at the inth index. The mode-n
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singular values are ‖S n
n=1‖F , ‖S n

n=2‖F , . . ., ‖S n
n=In‖F cor-

responding to the mode-n singular vectors un
1, un

2, . . ., un
In of

the orthogonal matrix Un. We denote the mode-n singular
value as σ

(n)
α = ‖S n

n=α‖F .
The following matrix representations of the HO-SVD is

obtained by unfolding the third-order T and S tensors in
(2):

T1 = AS1(B⊗C)T ,T2 = BS2(C⊗A)T ,T3 = CS3(A⊗B)T

We denote T1 = TI×JK , T2 = TJ×KI , T3 = TK×IJ and sim-
ilarly for Sn. In general, Tn and Sn are mode-n matrix rep-
resentation of T and S .

3. TRACE CLASS MINIMIZATION

We start with the trace class norm of the matrix (also re-
ferred to as the Schatten-1 norm [17] or more recently, nu-
clear norm [15], [2]). The matrix T ∈ RI×J is a second
order tensor which has an SVD of T = AΣB where Σ =
diag{σ1,σ2, . . . ,σp} where p = min{I,J}. The trace class
norm of T is the sum of its singular values; i.e.

‖T‖tr = σ1 +σ2 + . . .+σp. (3)

In the paper [14], we generalize the trace class norm to
higher-order tensors as follows

‖T ‖tr(n) = ‖Tn‖tr =
In

∑
α=1

σ
(n)
α (4)

where Tn is a matrix slice of T fixed at the nth mode. We
refer to the norm ‖ · ‖tr(n) as the mode-n tensor trace class
norm. There are N trace class norms for an Nth order tensor
which is consistent with the fact that there are also N mode-n
ranks and N sets of mode-n singular values.

The nth mode tensor trace class norm (4) is the sum of
the mode-n singular values. Recall that the mode-n singular
values are σ

(n)
α =

√
〈S n

n=α ,S n
n=α〉 = ‖S n

n=α‖F where the
tensor S n

n=α ∈ RI1×...×In−1×In+1×...×IN is the subtensor fixed
at nth mode of the core tensor S ∈ RI1×...×In×...×IN . The
norm (4) is consistent with the matrix trace class norm for
T ∈RI×K because the singular values of the two mode ranks
are equivalent; i.e.

‖T‖tr(1) =
I

∑
i=1

√
〈Σ1

i=1,Σ
1
i=1〉 and ‖T‖tr(2) =

J

∑
j=1

√
〈Σ2

j=1,Σ
2
j=2〉

where Σ1
i=α

(Σ2
j=α

) is the αth row (column) vector of the
diagonal core matrix Σ. Due to the pseudodiagonality in the
matrix SVD, the two sums are equivalent. For the higher
order tensors, the sums of the singular values at each mode
are not necessarily equivalent. The core tensor satisfies the
all-orthogonality property which does not imply a tensor with
only nonzero entries on its super-diagonal.

3.1 Semidefinite Programming for Tensors

The dual norm of the trace class norm (4) has been proven to
be

‖T ‖tr∗(n)
= max

α

{
σ

(n)
α

}
= σ

(n)
1

in [14] where σ
(n)
1 = ‖S n

in=1‖F is the maximum singular
value in the set of the mode-n singular values. If we take
the variational definition [11] of (4)

‖T ‖tr(n) = max 〈T ,R〉 , subject to ‖R‖tr∗(n)
≤ 1 (5)

for all n = 1, . . . ,N for a given tensor T , then the nth mode
tensor trace class norm provides an inherent optimization
problem.

With the tensor unfolding techniques, the constraint in
(5) becomes

‖R‖tr∗(n)
≤ 1 =⇒ ‖Rn‖tr∗ ≤ 1

where Rn is the mode-n matricization of R and ‖Rn‖tr∗ de-
notes the largest singular value of Rn. Then from [1, 14],

‖Rn‖tr∗ ≤ 1 =⇒
[

IIn×In Rn

(Rn)T IIm×Im

]
� 0 (6)

and IIk×Ik is the identity matrix of dimension Ik × Ik. The
symbol � 0 denotes a positive semidefinite matrix.

Let

Mn =
[

IIn×In Rn

(Rn)T IIm×Im

]
, (7)

then we can formulate a set of N semidefinite programming
problems (SDP),

‖Tn‖tr(n) = max 〈Tn,Rn〉 , subject to Mn � 0 (8)

for each mode n of an Nth-order tensor. Given the matrix rep-
resentation of T by Tn, we find an optimal matrix Rn which
obtains the sum of the singular values of Tn constrained to
the positive semidefinite Mn. The SDP (8) is consistent with
the matrix trace class norm defined in (3). It was in [22] that
the matrix trace class norm was heuristically formulated as a
SDP.

From [15, 2], it has been shown through convex analysis
that the trace class norm of a matrix gives the optimal lower
bound of the rank. In the algorithm described in the next sec-
tion, we use the trace class norm to find low multilinear rank
factors through N subproblems of matrix rank minimization.

4. ALGORITHM

The SDP framework (8) is used to find the low multilinear
rank factors. For a given third order tensor T ∈ RI×J×K ,
we initially implement three sub-SDP problems iteratively to
find initial factors A0, B0 and C0:

min
ranki(T̂)=L

‖Ti− T̂i‖tr , for i = 1,2,3, respectively, (9)

where Tn is a matricization of T and T̂n’s are the matri-
cization of the the unknown T̂ . The matrices A0, B0 and
C0) are the approximated dominant left singular vectors of
T1, T2 and T3. For example, the first I−R1 columns of the
factor A0 is truncated. Then the truncated matrix is used to
initialize the following algorithm below. Note that the factors
are approximated by the solving (9) through an optimization
solver in [8]. Now the column space of the iterate Ait (Bit

and Cit ) is the dominant subspace of the column space of R1
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(R2 and R3). Then, to continue to approximate Ait , Bit and
Cit , the following equations are updated and the SDPs are
solved iteratively and alternatingly:


(Ŝ1)it+1 = T1(Bit ⊗Cit)
max 〈(Ŝ1)it+1,R1〉
subject to M1 � 0
(Ŝ2)it+1 = T2(Cit ⊗Ait+1)
max 〈(Ŝ2)it+1,R2〉
subject to M2 � 0
(Ŝ3)it+1 = T3(Ait+1⊗Bit+1)
max 〈(Ŝ3)it+1,R3〉
subject to M3 � 0

where T1, T2 and T3 are matrix representations of the given
tensor T and the matrices Rn and Mn are of the form (6)
and (7). At each iteration above, we obtain the low multilin-
ear rank factors: Ait+1 ∈RI×L,Bit+1 ∈RJ×M,Cit+1 ∈RK×N

from each SDP problems. We assume A, B, and C are
column-wise orthonormal.

4.1 Numerical Experiments
In these experiments, the original tensor data is approximated
by a low multilinear rank tensor using both the HOOI and
SDP algorithms. We have used the Matlab codes available at
[8] and [18] for the SDP algorithm implementation.

Figure 1: Compression Ratios of SDP (left,middle) and HOOI al-
gorithm (right): mode-1(solid), mode-2 (dash), mode-3 (dash-dot)

A low multilinear rank core tensor of dimension 2×2×2
(R=L=M=N=2) is computed from an original tensor data of
dimension 5×10×14 in the first experiment. The biomedi-
cal system dataset [13] is based on the tongue displacement
shapes occurring in the pronunciation of English vowels by
different English-speaking individuals which has a dominant
rank-(2,2,2). The dataset is a real-valued (5× 10× 14)-
array obtained from high-quality audio recordings and cine-
fluorograms. In Figures 1, the initial factors are randomly
generated. We plot the compression ratios using the HOOI
and SDP algorithms versus the number of iterations where
T is the original data and T̂ is the approximated one. For
the left and middle graphs, the convergence is achieved af-
ter three iterations using the SDP algorithm while the right
graph took 4-7 iterations when the initial factors are gener-
ated randomly via the HOOI algorithm. In the left graph, the

three curves correspond to ‖T̂1‖tr
‖T1‖tr

= 0.9117, ‖T̂
2‖tr

‖T2‖tr
= 0.8078,

and ‖T̂3‖tr
‖T3‖tr

= 0.8093, while the curves in the middle graph

are the ratios ‖T̂n‖F
‖Tn‖F

= 0.9969 for all modes and the right
plot is the compression ratio of the HOOI algorithm with
‖T̂n‖F
‖Tn‖F

= 0.9968. If the truncated SVD starters were used
as an initial factors, the HOOI iterations are reduced while it
has no effect in the SDP algorithm.

Figure 2: ‖T̂n‖F versus 50 Monte Carlo Simulation Runs via
HOOI (red, first two left) and SDP (blue, last two right). The stop-
ping tolerance: εtol = 10−5 (left,red) to εtol = 10−9 (right,red) and
εtol = 10−4 (left,blue) to εtol = 10−5 (right,blue).

In Figures 2-3, we implement the HOOI and SDP algo-
rithms on the some particular tensors: tensors T of dimen-
sion 4×7×7 and 7×7×7 without a dominant low multilin-
ear rank. We then find a low multilinear rank tensors T̂ of
rank-(2,2,2) for the first tensor in Figure 2 and rank-(3,3,3)
in Figure 3. Now in the few test cases including the data
in [13] where the original tensor has a dominant low multi-
linear rank, the approximation of both HOOI and SDP algo-
rithms coincide. The plots in Figure 2 show that there are
two local extrema, ‖T̂n‖F = 7.1359 and ‖T̂n‖F = 7.0756,
generated by the HOOI algorithm with random initial fac-
tors. Several other extrema are visible on the plots which are
artifacts caused by low stopping criteria settings. The stop-
ping criteria is set through ‖Ai −Ai+1‖F < εtol and a max-
imum iteration. As we decrease the stopping criteria from
εtol = 10−5 to εtol = 10−9 and increase the maximum iter-
ation tolerance, the artifacts diminish. The plots in Figure
3 show that there are two local extrema, ‖T̂n‖F = 7.1359
and ‖T̂n‖F = 7.0756, generated by the SDP algorithm with
random initial factors. As we decrease the stopping criteria
from εtol = 10−4 to εtol = 10−5 and increase the maximum
iteration tolerance, we see that the SDP converges to the min-
imum of the two extrema, ‖T̂n‖F = 7.0756 (‖T̂1‖tr = 8.41,
‖T̂2‖tr = 8.41, ‖T̂3‖tr = 8.36) which is the approximated
lowest multilinear rank tensor. On the other hand, when both
algorithms are started with the truncated HO-SVD initial fac-
tors, ‖T̂n‖F = 7.1359, was the only approximation for both
algorithms.

In Figure 3, we also tested the both algorithms with ten-
sor of size 7× 7× 7 which has no dominant low multilin-
ear rank structure. The plot shows in most cases that the
SDP algorithm finds the extreme cost value of 9.1074 while
the HOOI algorithm also converges to three values: 9.0815,
9.0790, 9.107 for approximation a low multilinear rank ten-
sor of (3,3,3).

In Figure 4, we ran a noisy test case with on data [13]
where T̃ = T

‖T ‖F
+σ

N
‖N ‖F

where N is a noise tensor and

σ is the noise level. The noisy tensor T̃ is a tensor with
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Figure 3: ‖T̂n‖F versus Monte Carlo Simulation Runs via HOOI
(red, left) and SDP (blue, right). The stopping tolerance: εtol =
10−9(left) and εtol = 10−4 (right) for nondominant low multilinear
rank structure.

SNR Table
σ ‖(T1)i+1− (T1)i‖F ‖T1− T̂1‖F

10−3 1.0883×10−6 0.0792
10−2 6.604×10−6 0.0863
10−1 3.210×10−4 0.3531

Figure 4: 30 Monte Carlo Simulation Runs with dominant low
rank (2,2,2)

zero-mean Gaussian entries.

5. CONCLUSION

In this paper, we have presented a new method for com-
puting low multilinear rank factors for higher-order tensors.
Through the tensor trace class norm, we formulate a rank
minimization problem for each mode. Thus, a set of semidef-
inite programming subproblems are solved. In general, this
requires a high number of iterations. The results reported in
this paper are only preliminary. In particular, we should ex-
amine whether the method always converges. Also the issue
of local optima deserves further attention. We should deter-
mine the convergence rate, analyze noisy test cases and find
efficient SDP algorithm for tensors.
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