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ABSTRACT

There are numerous applications of tensor analysis in signal
processing, such as, blind multiuser separation-equalization-
detection and blind identification. As the applicability of
tensor analysis widens, the numerical techniques must im-
prove to accommodate new data. We present a new numer-
ical method for tensor analysis. The method is based on
the iterated Tikhonov regularization and a parameter choice
rule. Together these elements dramatically accelerate the
well-known Alternating Least-Squares method.

1. INTRODUCTION

The purpose of this paper is to present a novel tech-
nique for tensor decomposition, namely the parallel factor
(PARAFAC) analysis and block term decomposition (BTD).
Tensor decomposition or multi-way analysis has been play-
ing a major role in advancing signal processing and com-
munications. For example, it has appeared in problems in-
volving higher order statistics, with source independence,
in blind multichannel system identification including the
case where the number of sources exceeds the number of
sensors, in source separation and in blind multiuser de-
tection. In particular, Sidiropoulos et al. [28] have pio-
neered the application of tensor analysis to the blind mul-
tiuser separation-equalization-detection for direct-sequence
code-division multiple access (DS-CDMA) systems where
no space/time statistical independence is assumed. There
have been numerous contributions thereafter; e.g. see [32]
for PARAFAC and [25, 3] for BTD. Much of the success of
applying tensor analysis is attributed to the Kruskal essential
uniqueness property of PARAFAC [21] and BTD [11].

Moreover tensor decomposition has also been a vital tool
in scientific computing [8, 16, 18], data analysis [2, 20],
biomedical engineering [1, 14, 23] and chemometrics [29].
For more applications of tensor decomposition, see the sur-
vey paper of Kolda and Bader [19]. These tensor analysis
techniques rely on numerical methods in optimization and
numerical linear algebra. Current methods like the Alternat-
ing Least-Squares become inefficient and at times inadequate
for these problems. Thus it is important to improve numeri-
cal methods for tensor analysis.

In this paper, we introduce our regularized method for
PARAFAC and BTD. We provide a new formulation for in-
creasing the convergence rate of the well-known Alternating-
Least-Squares method by applying the iterated Tikhonov reg-
ularization. Regularization methods have also appeared in
the context of tensor decomposition; e.g. see [6], [7] for
techniques in approximating nonnegative matrix. Our new
formulation results in a new objective functional which re-
quires a selection of the regularization parameter α . We will
describe our strategies for an easy and quick computation of
the parameter α . The implementation only requires only a
few extra lines of coding so they are no more complicated
than the original algorithms. This is another motivating fac-
tor for using regularization methods. They are extremely
easy to implement unlike the purely algorithmic and com-
plicated line search schemes [26, 24, 33] for accelerating the
ALS algorithm.

1.1 Preliminaries

We denote the scalars in R and C with lower-case let-
ters (a,b, . . .) and the vectors with bold lower-case letters
(a,b, . . .). The matrices are written as bold upper-case let-
ters (A,B, . . .) and the symbol for tensors are calligraphic
letters (A ,B, . . .). The subscripts represent the following
scalars: (A )i jk = ai jk, (A)i j = ai j, (a)i = ai. If A is a parti-
tioned matrix, then A = [A1 A2 . . .AR] where Ar ∈CI×Lr

is a submatrix for r = 1, . . . ,R. Note that when Lr = 1 for
all r then the submatrices collapse into column vectors; i.e.
Ar = ar, and A = [a1 a2 . . . aR]. The superscripts indicate
the length of the vector or the size of the matrices. For ex-
ample, bK is a vector with length K and BN×K is a N×K
matrix.

Definition 1.1 The Kronecker product of matrices A and B
is defined as

A⊗B =

 a11B a12B . . .
a21B a22B . . .

...
...

 .

Definition 1.2 The Khatri-Rao product of A and B is de-



fined in [27] as

A�B = [A1⊗B1 A2⊗B2 . . .].

while the column-wise Khatri-Rao product is the special
case,

A�c B = [a1⊗b1 a2⊗b2 . . .]

when A = [a1 a2 . . . aR] and B = [b1 b2 . . . bR].

Definition 1.3 (Mode-n vector) Given a tensor
T ∈ CI×J×K , there are three types of mode vectors,
namely, mode-1, mode-2, and mode-3. There are J · K
mode-1 vectors that are of length I which are obtained
by fixing the indices ( j,k) while varying i. Similarly, the
mode-2 vector (mode-3 vector) is of length J (K) obtained
from the tensor by varying j (k) with fixed (k, i) (i, j).

Definition 1.4 (Mode-n rank) The mode-n rank of a tensor
T is the dimension of the subspace spanned by the mode-n
vectors.

The order of a tensor refers to the dimension of the index set.
A matrix is a second-order tensor and a vector is a first-order
tensor.

Definition 1.5 (rank-(L,M,N)) A third-order tensor is rank-
(L,M,N) if the mode-1 rank is L, the mode-2 rank is M and
the mode-3 rank is N.

In the case when a third-order tensor has rank-(1,1,1), it is
simply called a rank-1 tensor.

Definition 1.6 (Tucker mode-n product) Given a tensor
T ∈CI1×I2×I3 and the matrices A ∈CJ1×I1 , B ∈CJ2×I2 and
C ∈ CJ3×I3 , then the Tucker mode-n products are the follow-
ing:

(T •1 A) =
I1

∑
i1=1

ti1i2i3 a j1i1 , ∀ j1, i2, i3 (mode-1 product)

(T •2 B) =
I2

∑
i2=1

ti1i2i3 b j2i2 , ∀ j2, i1, i3 (mode-2 product)

(T •3 C) =
I3

∑
i3=1

ti1i2i3 c j3i3 , ∀ j3, i1, i2 (mode-3 product)

2. TENSOR ANALYSIS

The Parallel Factor Decomposition (PARAFAC) first ap-
peared in [17] in the context of psychometrics. Indepen-
dently, [9] introduced this decomposition as the Canonical
Decomposition (CANDECOMP) in phonetics. Given a ten-
sor T ∈ CI×J×K , the PARAFAC decomposition is

T =
R

∑
r=1

ar ◦br ◦cr (1)

where ar, br, cr are the r-th columns of the matrices A ∈
CI×R, B∈CJ×R, and C∈CK×R. The symbol ’◦’ denotes the
usual outer product; i.e. if v,w ∈ Rn, then v ◦w = v⊗wT .
PARAFAC is a sum of rank-1 tensors. Another decomposi-
tion is the so-called Tucker decomposition [12, 30, 31]:

T =
L

∑
l=1

M

∑
m=1

N

∑
n=1

(D)lmn al ◦bm ◦cn (2)

where (D)lmn is a component of the tensor D ∈ CL×M×N

with full mode-1, mode-2 and mode-3 rank, al is l-th col-
umn of A ∈ CI×L, bm is the m-th column of B ∈ CJ×M,
and cn is the n-th column of C ∈ CK×N . The decomposition
(2) is written more succinctly in terms of the Tucker mode-n
product,

T = D •1 A•2 B•3 C.

A normalized version of this formulation is referred to as the
Higher-Order Singular Value Decomposition (HOSVD). In
[12], the HOSVD has been shown as a generalization of the
matrix SVD.

In the papers of [10, 11, 13], BTD is introduced. The
following is a BTD in rank-(Lr,Lr,1):

T =
R

∑
r=1

Er ◦cr =
R

∑
r=1

(Ar ·Br
T )◦cr (3)

where Er ∈ CI×J with rank(Er)= Lr and Er = Ar ·BT
r and

cr is a column vector for r = 1, . . . ,R. Note that Ar ∈ CI×Lr

with rank(Ar) = Lr and Br ∈ CJ×Lr with rank(Br) = Lr.
When Lr = L for all r = 1, . . . ,R, it is called the BTD in rank-
(L,L,1). Furthermore, the BTD in rank-(Lr,Lr,1) can be
recast as

T =
R

∑
r=1

Dr •1 Ar •2 Br •3 cr (4)

where Dr ∈ CLr×Lr is full rank Lr × Lr matrix. Lastly, the
BTD in rank-(L,M,N) is

T =
R

∑
r=1

Dr •1 Ar •2 Br •3 Cr (5)

where Dr ∈ CL×M×N has full mode-1, mode-2 and mode-
3 ranks, Ar ∈ CI×L, Br ∈ CJ×M and Cr ∈ CK×N for r =
1, . . . ,R.

2.1 Matrix And Vector Representation

To apply the numerous well-developed tools in numerical lin-
ear algebra and optimization, matrix and vector representa-
tions of tensor are necessary. In the PARAFAC framework,
the standard matricization of the tensors are in the directions
of the left-right, front-back, and top-bottom to generate slices
of matrices. Concatenating these sliced matrices allows us to
build these long matrices:

TJK×I = (B�C)AT , TKI×J = (C�A)BT

and TIJ×K = (A�B)CT (6)

where the superscripts of T reflect the matrix size. For the
BTD in rank-(Lr,Lr,1), the matricization results into these
matrices

TJK×I = [B1⊗c1 . . .BR⊗cR]AT , (7)

TKI×J = [c1⊗A1 . . .cR⊗AR]BT (8)
and

TIJ×K = [(A1�B1)1L1 . . .(AR�BR)1LR ]C
T (9)

where 1Lr is a column vector of 1’s of length Lr.



3. ITERATED TIKHONOV REGULARIZATION

3.1 Alternating Least Squares

The problem we are solving is the following: we would like
to recover the best tensor T ∈ CI×J×K of rank-(Lr,Lr,1) or
rank-(Lr,Mr,Nr) if it exists from the given a noisy tensor
T̂ ∈ CI×J×K . Define the residual tensor as R = T̂ −T .
The standard approach is then to minimize the norm of the
residual tensor in the least-square sense:

min‖R‖2
F = min

T
‖T̂ −T ‖2

F (10)

where ‖ · ‖F is the Frobenius norm. Here we discuss the re-
covery of the tensor decomposition in rank-(Lr,Lr,1), but
the techniques are easily extended to the BTD in rank-
(Lr,Mr,Nr). Recall the Frobenius norm of a tensor is defined
as

‖A ‖2
F =

I

∑
i=1

J

∑
j=

K

∑
k=1
|ai jk|2

which is a direct extension of the Frobenius norm of a ma-
trix. Here T = ∑

R
r=1 ArBr

T ◦cr is tensor of rank-(Lr,Lr,1)
where Ar ∈ RI×Lr , Br ∈ RJ×Lr , cr is column vector of
C ∈ RK×R. Then it follows that the optimization problem
(10) is

min
A,B,C

∥∥∥∥∥T̂ − R

∑
r=1

ArBr
T ◦cr

∥∥∥∥∥
2

F

(11)

where the minimization is over the partitioned matrices A
and B and the matrix C. Recall that A = [A1 . . .AR],
B = [B1 . . .BR] and C = [c1 . . .cR]. Although there ex-
ists methods which directly approximate the factors A, B
and C through the least-squares formulation (10), it is more
tractable and natural to approximate using these three sub-
least squares problems:

minA ‖T̂JK×I−TJK×I‖2
F = minA ‖T̂JK×I−QAT‖2

F
minB ‖T̂KI×J−TKI×J‖2

F = minB ‖T̂KI×J−RBT‖2
F

minC ‖T̂IJ×K−TIJ×K‖2
F = minC ‖T̂IJ×K−SCT‖2

F

(12)

where T̂JK×I , T̂KI×J and T̂IJ×K are the matricization of ten-
sor T̂ through the top-bottom, left-right, front-back slices as
in Section 2 and the matrices are

Q = [B1⊗c1 . . .BR⊗cR],
R = [c1⊗A1 . . .cR⊗AR]

and
S = [(A1�B1)1L1 . . .(AR�BR)1LR ].

The three sub-least squares problems is implemented con-
secutively and iteratively. Each sub-least squares problem is
updated immediately by the newly estimated matrix from the
preceding sub-least squares problem much like the Gauss-
Seidel scheme [5]. If instead

Q = B�C, R = C�A, and S = A�B

and the noisy version of the matrices (6) are in (12), then
this is a formulation for PARAFAC. These formulations

are known as the Alternating Least-Squares (ALS) method
which can be found in [29] for PARAFAC and [13] for BTD.

There are drawbacks of the ALS method. An artifact of
the ALS algorithm is the so-called swamp. Swamp behav-
ior occurs when there are exceedingly high number of iter-
ations causing the convergence rate to slow down dramati-
cally. Swamps have been observed when the component ma-
trices are ill-conditioned or when collinearity occurs in the
columns of these matrices.

3.2 Regularization Method

We reformulate the least squares sub-problems into three it-
erated Tikhonov sub-problems [15]:

Ai+1
T = argminA‖T̂JK×I−QAT‖2

F +αi‖AT −Ai
T‖2

F (13)

Bi+1
T = argminB‖T̂KI×J−RBT‖2

F +αi‖BT −Bi
T‖2

F (14)

Ci+1
T = argminC‖T̂IJ×K−SCT‖2

F +αi‖CT −Ci
T‖2

F (15)

where αi is the regularization parameter and Ai, Bi and Ci

are the approximation from the ith iteration. The regular-
ization terms αi‖A−Ai‖, αi‖B−Bi‖ and αi‖C−Ci‖ are
the fitting terms for the factors A, B, and C. It also forces
the matrices Ai, Bi and Ci to have the same scalings and
permutation of the previous iterates. Both PARAFAC and
BTD are essentially unique. For PARAFAC, this means that
the factors are unique up to scalings and permutation. For
BTD, essential uniqueness includes conjugation. As a con-
sequence, the objective functional is flat which causes a slug-
gish rate of convergence. Moreover, the regularization term
allows a sub-optimal regularized solution to an otherwise ill-
posed problem.

3.2.1 Parameter Choice

Iterated Tikhonov regularization can be understood in two
ways: either α is fixed and the iteration number is the main
steering parameter or the iteration number is set a priori and
α is tuned. Both strategies give a convergent regularization
if the tuning parameter is based on the parameter choice rule.
The parameter choice must be related to the noise level in the
data according to a well-known result by Bakushinskii [4].
Otherwise a choice independent of the noise level cannot be
expected to give convergent results in the worst case. In ad-
dition, the two schemes above can be combined by choosing
a different regularization parameter at each iteration, e.g. a
geometrically decaying sequence αi = qi with 0 < q < 1. In
fact, this is the strategy that we employed in the numerical
examples in Section 4.

The parameter choice rule is based on Morozov’s dis-
crepancy rule [22]: the a posteriori choice of parameter α

requires no prior knowledge of the parameter but the knowl-
edge of the noise level which is defined as the distance be-
tween given noisy tensor and unknown true tensor, i.e.

‖T̂ −T ‖2
F ≤ τ ·σ (16)

where τ > 1 is a factor to ensure that the residual is attained
and σ is the noise level. The noise level is typically unknown
but it must be assumed a priori. Thus, the discrepancy rule
defines α or the iteration number as the optimal parameter
when the residual has the same order as of the noise level.
If α is fixed and the iteration number is the parameter to



Table 1: Alternating Least-Squares with iterated Tikhonov
regularization

Given Imax, T̂ , c, ε

A0 = randn(I,R), B0 = randn(J,R) and C0 = randn(K,R)
α0 = 1
for i = 1,2,3, . . . , Imax

Ai←−min‖T̂JK×I −Qi−1A
T ‖2

F +αi‖AT −Ai−1
T ‖2

F
Ri = [(ci−1)1⊗ (Ai)1 . . .(ci−1)R⊗ (Ai)R]

Bi←−min‖T̂KI×J −RiB
T ‖2

F +αi‖BT −Bi−1
T ‖2

F
S = [(Ai)1� (Bi)1)1L1 . . .(Ai)R� (Bi)R)1LR

Ci←−min‖T̂IJ×K −SiC
T ‖2

F +αi‖CT −Ci−1
T ‖2

F
Qi = [(Bi)1⊗ (ci)1 . . .(Bi)R⊗ (ci)R]

Ti = create tensor(Ai,Bi,Ci)
if ‖T̂ −Ti‖< ε

i = Imax
end
αi = cαi−1

end

be tuned, then the discrepancy rule dictates the termination
of the loop. It stops at the first iteration index where the in-
equality (16) is satisfied. If the iteration number is set and the
iterated Tikhonov regularization is implemented to obtain a
sequence of decreasing parameters αi, then the discrepancy
principle essentially terminates the procedure at the largest
αi for which (16) holds. Similarly for the mixed method of
geometrically decaying αi, we stop the iteration when (16)
is satisfied. Typically for linear problems, there exists such
a parameter αi or maximum number of iterations such that
(16) holds and the algorithm usually terminates. Moreover,
it has been shown in [15] that the regularization together with
this parameter choice rule result in a convergent method; i.e.
as the noise level σ → 0, the regularized solution will tend to
the true one.

Also there is the possibility of an a priori parameter
choice rule. For instance, one can choose

α
∗ ≈ τ ·σ . (17)

However, there are cases when this choice does not give the
optimal order of convergence in contrast to the discrepancy
rule. See the pseudocode in Table 1. Notice only a few addi-
tional lines of coding is required.

4. NUMERICAL RESULTS
We consider two models, PARAFAC and BTD, to demon-
strate the swamp shortening property of the iterated
Tikhonov regularization. We start with simple PARAFAC
model [26] with

A =
[

1 cosθ 0
0 sinθ 1

]
, B =

 3
√

2cosθ 0
0 sinθ 1
0 sinθ 0

 ,

and C = I3×3. Notice that as θ → 0, the columns of A and
B become collinear. In Figure 1, the plot shows the error
‖T̂ −Test‖2

F versus the number of iterations it takes to ob-
tain an error of 1× 10−5 for θ = π

60 . At θ = π

60 the iterated
Tikhonov method takes 41 iterations to reach an error within
10−5 while the least-squares method need 683 iterations. As
θ is decreased both methods need more iterations. For the
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Figure 1: Error vs Iteration using iterated Tikhonov regular-
ization (blue) and least-squares method (red) with θ = π

60 .
PARAFAC (top) and BTD (bottom)

iterated Tikhonov regularization, 69 and 311 iterations are
needed to attain an error of 1×10−5 for θ = π

90 and θ = π

120 ,
respectively. However, ALS requires 12007 (θ = π

90 ) and
12026 (θ = π

120 ) iterations for the error to be within 1×10−3.
In the second example, we find the BTD of the ten-

sor T ∈ R4×4×6 of rank-(2,2,1) with the component ma-
trices Ai,Bi ∈ R4×2 for i = 1,2,3 and C ∈ R6×3. Here
A = [A1A2A3] where

A1 =

 1 cosθ

0 0
0 0
0 0

 , A2 =

 0 0
1 cosθ

0 sinθ

1 cosθ

 , A3 =

 0 sinθ

1 cosθ

0 0
1 1

 ,

B = A and C is randomly generated. The bottom graph
in Figure 1 displays 2500 iterations for our method versus
68630 ALS iterations for the residual to be within 1×10−7.
The swamp regime lengthens as the columns become more
collinear in the ALS case. In general, more iterations are
required for both methods when the dimensions I,J,K are
increased.
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