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Abstract

We present a method for the image classification prob-
lem. First, the set of images is organized in a tensor
format. Then, we define several classes in terms of sub-
tensors of the same type of images. The method relies on
the tensor dimensionality reduction algorithm to create
the basis of the subtensor. Our algorithm was tested on
the AT&T database of faces. From our experiments, the
algorithm successfully classifies unknown images from
the measured residual.

1 Introduction

We develop an algorithm for a pattern recognition prob-
lem known as the automatic classification of unknown
images. Given an unknown image, the goal is to assign
the unknown image to a set of predefined classes. This
problem is difficult since the variation of the objects
within each class is high yet the objects from different
classes have less variation. There are many techniques
developed for this problem; see [9] and the references
therein.

In this work, we adapt a randomized tensor-based
formulation for object classification of Eldén and Savas
[9] and apply it to the database of faces from the AT&T
Laboratories Cambridge [1]. There are 40 different indi-
viduals with each individual in 10 different expressions.
The expressions range from glasses on/off, smiling or
frowning, and different lighting with distinct facial ex-
pressions. We arrange the images into a tensor of di-
mension 112× 92× 400, with each image as a 112× 92
matrix and 400 images along mode-3 (k-axis).

Here we give a short introduction to tensors and
higher-order singular value decomposition. A tensor is
a multidimensional array. The order of a tensor refers
to the dimension of the index set. A matrix is a second-

order tensor and a vector is a first-order tensor. Tucker
introduced [10, 11] a decomposition (HOSVD), in which
a tensor is decomposable into a core tensor B multiplied
by a matrix along each mode, i.e.

(T )ijk = (B •1 U •2 V •3 W)ijk =
∑
îĵk̂

Bîĵk̂uîivjĵwkk̂

where T ∈ RI×J×K and •n denotes the n-mode prod-
uct. The mode products are the left and right multipli-
cations as seen in the matrix SVD: T = U •1 B •2 V.
Many applications in signal and image processing rely

Figure 1: Tucker decomposition (HOSVD)

on the tensor multi-dimensionality reduction due to the
high-dimensional data with very few significant (e.g.
signal source) contributions. There are current meth-
ods for low multilinear rank approximation, namely,
truncated HOSVD [10], HOOI [2], alternating SDP [7]
and randomized generalized CUR decomposition [4]. In
this work, we develop a randomized algorithm based
on HOOI for the best-(R1, R2, R3) low multilinear rank
tensor approximation.

Randomized algorithms [4, 6] have shown to be pow-
erful tools for approximation of matrix decomposition.
In comparison with the standard (deterministic) matrix
algorithms, randomization can lead to faster and robust



algorithms. Here we focus on randomized versions of
low dimensional rank reduction algorithms, namely, the
power iteration method for QR decomposition for ten-
sors. Recall the theorem of Eckart and Young [5] which
provides the kth low rank matrix approximation of a
given m× n matrix M in the minimization problem of

M̂ = argminrank(B)<k‖M−B‖2

where M̂ = UkΣkVT
k (truncated SVD) and ‖M−B̂‖2 =

σk+1 ((k + 1)th singular value of M). The truncated
SVD can be computed by a variant of the power itera-
tion method for QR decomposition; i.e.

‖M−QQTM‖ ≈ minrank(B)<k‖M−B‖.

The idea is to compute the decomposition into two
stages: (1) approximate an orthogonal matrix Q by
oversampling and (2) implement the standard QR fac-
torization using Q from the first stage. Drineas and Ma-
honey [4] have developed and applied the column sub-
set selection problem to obtain a k-column Q in which
‖M − QQTM‖ ≤

√
1 + k(n− k)‖M − M̂‖ for tensor

decomposition.

2 Low Multilinear Rank Tensor

We denote the scalars in R with lower-case letters
(a, b, . . .) and the vectors with bold lower-case letters
(a,b, . . .). The matrices are written as bold upper-case
letters (A,B, . . .) and the symbol for tensors are calli-
graphic letters (A,B, . . .). The subscripts represent the
following scalars: (A)ijk = aijk, (A)ij = aij , (a)i = ai.
The superscripts indicate the dimension size.

A matrix T ∈ RI×J is a second order tensor
which has an SVD of T = UΣV′ where Σ =
diag{σ1, σ2, · · · , σp} where p = min{I, J} and U and
V are orthogonal matrices. The Frobenius norm of T
is defined as ‖T‖F =

√
σ2

1 + σ2
2 + · · ·+ σ2

p. A rank k

matrix T̂ of T, i.e. k < p = rank(T), is defined as
T̂ = UkSkVT

k =
∑k
i=1 σi · uiv′i.

2.1 Tensor SVD

The order of a tensor refers to the cardinality of the
index set. A matrix is a second-order tensor and a vector
is a first-order tensor.

Definition 2.1 (Tucker mode-n product) Given a
tensor T ∈ RI×J×K and the matrices U1 ∈ RÎ×I ,
U2 ∈ RĴ×J and U3 ∈ RK̂×K , then the Tucker mode-n
products are as follows: (T •1 U1)î,j,k =

∑I
i=1 TijkAîi

(mode-1 product), (T •2U2)ĵ,i,k =
∑J
j=1 TijkBĵj (mode-

2 product) and (T •3 U3)k̂,i,j =
∑K
k=1 TijkCk̂k, (mode-3

product).

The tensor SVD is also referred to multilinear SVD
(or higher-order SVD).

Theorem 2.1 (Multilinear SVD [3]) A third order
tensor T ∈ RI×J×K can be represented as a product

T = B •1 U1 •2 U2 •3 U3

where U1 ∈ RI×I , U2 ∈ RJ×J and U3 ∈ RK×K are
orthogonal matrices. The core tensor B ∈ RI×J×K are
the matricized subtensors B1

i=α ∈ RJ×K , B2
j=α ∈ RI×K

and B3
k=α ∈ RI×J with the following properties:

• all-orthogonality:

〈Bn
in=α,B

n
in=β〉 = (σ(1)

α )
2
δα,β , α, β = 1, . . . , In,

• ordering:
‖Bn

in=1‖F ≥ ‖Bn
in=2‖F ≥ · · · ≥ ‖Bn

in=In
‖F ≥ 0

where ‖Bn
in=α‖F = σ

(n)
α for α = 1, . . . , In (I1 = I, I2 =

J, I3 = K and i1 = i, i2 = j, i3 = k).

The usual inner product of matrices, A,B ∈ RI×J is
denoted by 〈A,B〉 =

∑
ij bijaij . For third order tensor,

there are three sets of singular values: σ(1)
α ’s are mode-

1 singular values, σ(2)
α ’s are the mode-2 singular values

and σ
(3)
α ’s are the mode-3 singular values. The corre-

sponding mode-1, mode-2 and mode-3 singular vectors
are u1α, u2α and u3α, respectively.

2.2 Higher-order Orthogonal Iteration

The higher order orthogonal iteration (HOOI) [2] is an
alternating least-squares method for the optimization
problem,

min
B,U1,U2,U3

‖T − B •1 U1 •2 U2 •3 U3‖F

= max
U1,U2,U3

‖B •1 U1
T •2 U2

T •3 U3
T ‖F

for approximating low rank matrices U1 ∈ RI×k1 ,U2 ∈
RJ×k2 ,U3 ∈ RK×k3 and the reduced core tensor B ∈
Rk1×k2×k3 . Here is the following algorithm based on
the power iteration formulation:

1. Obtain initial estimates U1,U2,U3

2. while not converged do

• compute B1 = T1 · (U2 ⊗U3)T with U1 =
argmax‖U1

T ·B1‖
• compute B2 = T2 · (U3 ⊗U1)T with U2 =

argmax‖U2
T ·B2‖

• compute B3 = T3 · (U1 ⊗U2)T with U3 =
argmax‖U3

T ·B3‖

end while

where Tm,Bm denote the matricizations of tensors T ,B
in mode m, respectively. The HOOI implementation
uses SVD to calculate Um at each mode, but QR algo-
rithms can be used as well.



Figure 2: Proto-type algorithm for a low rank problem
[6]

2.3 An Improvement

In Figure 2, the algorithm describes how to obtain initial
orthonormal estimates for a low rank matrices Um ∈
RIm×km . Note that UmUm

T is a projection matrix onto
the subspace spanned by columns of Um. Then,

B ≈ T •1 U1U1
T •2 U2U2

T •3 U3U3
T .

The following theorem describes the performance of Fig-
ure 2 with a Gaussian test matrix.

Theorem 2.2 ([6]) Suppose that A is a real m×n ma-
trix. Let k be the target low rank and p be the oversam-
pling parameter where p ≥ 2 and k + p ≤ min{m,n}.
Execute the proto-type algorithm (see Figure 2) with
a Gaussian test matrix (see Figure 2) to obtain an
m× (k+ p) matrix Q with orthonormal columns. Then

E‖A−QQTA‖ ≤
(

1 +
4
√
k + p

p− 1
·
√

min{m,n}
)
σk+1

where E denotes the expectation with respect to the ran-
dom test matrix and σk+1 is the (k+1)th singular value
of A.

If the proto-type algorithm is implemented in Step 1
of HOOI, we obtain the initial estimates U1,U2,U3.
Then we have the following expectations for each mode:

E‖T1 −U1U1
TT1‖

≤
(

1 +
4
√
k1 + p1

p1 − 1
·
√

min{I, JK}
)
σ

(1)
k1+1

E‖T2 −U2U2
TT2‖

≤
(

1 +
4
√
k2 + p2

p2 − 1
·
√

min{J,KI}
)
σ

(2)
k2+1

and
E‖T3 −U3U3

TT3‖

≤
(

1 +
4
√
k3 + p3

p3 − 1
·
√

min{K, IJ}
)
σ

(3)
k3+1

where p1, p2, p3 are the oversampling parameters cor-
responding to the low multilinear ranks k1, k2, k3. In
[6], there is further discussion on how the expecta-
tion can provide error bound for the approximation
‖A−QQTA‖.

3 Preliminary Results

We use a technique for a facial recognition algorithm via
Matlab codes, adapting the the tensor-based technique
used by Savas and Eldén [9] in classifying handwritten
digits. Using facial images taken from the AT&T Face
Database [1], each image is transformed into a matrix
of grey scale value ranging from 0 to 256. The images
are arranged into a tensor of dimension 112× 92× 400,
with each image as a 112 × 92 matrix and 400 images
along mode-3.

We then organize a set of 40 predefined classes into
subtensors of images of similar types (e.g. facial expres-
sion or person). Then, tensor analysis tools are used to
extract salient information like the significant basis for
each subtensor. For each subtensor, we define a least-
squares residual, ‖1 −

∑R3
k=1〈D,B

µ
k〉‖, where D is the

unknown image. See Figure 4 for the algorithm.
The best-(R1, R2, R3) low multilinear rank for the

training tensors are computed using the standard HOOI
[2]. Deterministic power methods for tensor decom-
position have been studied in [2] and [8]. With ef-
ficient Matlab codes, normalized residuals and using
the best-(17, 17, 1) approximation of subtensors T µ ∈
R112×92×10, the algorithm shows promising results and
is able to classify the unknown image correctly. See Fig-
ures 5-6.

4 Conclusion and Future Out-
look

We propose a randomized tensor-based method for im-
age classification. The tensor formulation easily orga-
nizes the set of images. Thus, tensor analysis tools are
easily applied. We applied the tensor based image clas-
sification algorithm on the AT&T Database.

In our future work, we will implement the random-
ized algorithm described in Section 2 for calculating the
basis of each matrix (randomized HOOI) and provide
some theorems which entail the quality of the approxi-
mation.
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Figure 5: Singular values at each mode, truncated at
k1 = k2 = 17, k3 = 1. Computed best-(17, 17, 1) low
multilinear rank for training subtensors T µ.

Figure 6: (Left) Test image D. (Right) Return image
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