
Tensor Completion via the CP Decomposition

Fatoumata Sanogo Carmeliza Navasca
sanogof1@uab.edu cnavasca@uab.edu

Department of Mathematics Department of Mathematics

University of Alabama at Birmingham University of Alabama at Birmingham

Birmingham, Alabama 35294-1170 Birmingham, Alabama 35294-1170

January 27, 2019

Abstract

We propose a new algorithm for tensor completion.
The tensor completion problem is about finding the un-
known tensor from a given a tensor with partially ob-
served data. While most tensor completion methods use
the Tucker model, our new approach uses the canoni-
cal polyadic decomposition model to reconstruct the un-
known tensor. The unknown tensor is reconstructed by
finding the optimal factors through linear least squares
and the singular vectors through a proximal algorithm of
soft thresholding.

1 Introduction

The matrix (tensor) completion [5] problem is about fill-
ing in missing entries from the partially observed entries
of the matrix (tensor). The matrix/tensor completion
has received much attention in big data analysis, e.g. in
collaborative filtering algorithms. However, the tensor
completion problem dates back as early as in 2000. The
matrix (tensor) completion problem has been solved us-
ing different approaches. Several papers have applied
the Canonical Polyadic (CP) and Tucker decomposition
to find the missing entries of a tensor. Bro [2] had one of
the earliest work on demonstrating two ways to handle
missing data using canonical polyadic decomposition.
The first way is to alternatively estimate the model pa-
rameters while imputing the missing data [3]. It was
called the Missing-Skipping (MS) approach; it skips the
missing value and builds up the model based only on the
observed part [9]. The second way is the weighted least
square PARAFAC decomposition [10], [11]. The Tucker
decomposition is the popular model for tensor comple-
tion [7]. Tucker decomposition and Higher Order Or-
thogonal Iteration were combined to deal with missing
data [12]. Specifically, the trace norm method has been
used to predict missing values; see, e.g., [6] [15]. In the
paper [5], it shown that the trace norm minimization
(a.k.a. matrix rank minimization) problem recovers the
unknown matrix. Then in [6], the authors have used the

matricized Tucker models and applied the trace norm
minimization iteratively.

2 Current Results

In this paper, we propose a method for solving tensor
completion. While most algorithms for tensor comple-
tion applies the matrix rank minimization approach, we
take an alternative approach by formulating a sparse
optimization problem for recovering the CP decompo-
sition of a given tensor with partial observed entries.
Let us define the CP decomposition of a tensor S to be
S =

∑R
r σrar ◦ br ◦ cr ∈ RI×J×K where ar ∈ RI , br ∈

RJ , cr ∈ RK are rth column vectors of what we call the
factor matrices A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R,
respectively, and σr is the rth entry in the column vec-
tor σ ∈ RR. Note that ar ◦ br ◦ cr is rank one tensor,
derived by the outer products of the three vectors, ar, br
and cr. Given a tensor T ∈ RI×J×K with partially ob-
served entries on the index set Ω, the tensor (matrix)
completion problem formulation is

min
A,B,C,σ

‖T − S‖F + λ‖σ‖`1 (1)

subject to S(Ω) = T (Ω)

where γ is a constant regularization parameter. Here
the tensor Frobenious norm is defined as ‖T ‖F =

(
∑
ijk T 2

ijk)
1
2 and the vector `1 norm is ‖σ‖`1 =

∑R
r |σr|.

The tensor completion problem (1) is a minimization
of a sum of a smooth term and a nonsmooth term, we
then consider the following optimization problem with
smooth and nonsmooth terms:

xn+1 = arg min
x

{
f(xn) + 〈x− xn,∇xf(xn)〉+ t

2‖x− xn‖2 + g(x)
}

(2)

where f and g are the smooth and nonsmooth func-
tions, respectively. Here f is approximated at a given
point xk. Furthermore, problem (1) finds the factor ma-
trices A,B,C and vector σ which construct a low rank
tensor S, filling in the missing entries of the original

tensor T . Thus, we solve the linear least squares sub-
problems using gradient descent and then implement a
soft thresholding iteratively until the residual vector is
within our stopping criteria. This optimization formu-
lation has been applied in analyzing surveillance video
in the foreground/background extraction [13]

2.1 Numerical Approach

Our strategy for solving problem (1) is to solve five
optimization subproblems iteratively and then impose
the constraint. Let f(A,B,C, σ) = ‖T − S‖F = ‖T −∑R
r σrar ◦ br ◦ cr‖F and g(σ) = γ‖σ‖`1 where R is an

upper bound of the rank of S. We rescaled the columns
of the matrices A,B,C [1, 4] to prevent the norm of
the approximated matrices from blowing up to infinity
when implementing the canonical polyadic decomposi-
tion. We then introduce an indicator function, to switch
the optimization problem into the following form:

min
A,B,C,σ

∥∥∥∥∥T −
R∑
r

σrar ◦ br ◦ cr

∥∥∥∥∥
F

+ λ ‖σ‖`1 + δS1
(A) + δS2

(B) + δS3
(C)

subject to S(Ω) = T (Ω)

where S1 = {A|‖ar‖ = 1, r = 1, · · · , R}, S2 = {B|‖br‖ = 1, r = 1, · · · , R}
and S3 = {C|‖cr‖ = 1, r = 1, · · · , R}.

Observe that f(A,B,C, σ) is a nonlinear least

squares objective function. However, if T ≈
∑R
r σrar ◦

br ◦ cr is matricized, then we have the following:

T(1) ≈ AD(C �B)T , T(2) ≈ BD(C �A)T , (3)

and T(3) ≈ CD(B �A)T

where T(i) are the concatenation of the sliced matrices
in T and D is an r × r diagonal matrix with entries
σr. The Khatri-Rao product � is the column-wise Kro-
necker product; i.e. C�B = [c1⊗ b1 . . . cR⊗ bR]. Also,
another matricization is

t ≈ σS (4)

where t is the vectorization of T , the columns sr are
the vectorization of the rank one tensor ar ◦ br ◦ cr.
Moreover, using the vectorization of tensors methods
[14], we turn every rank-one tensor of outer product
ar ◦ br ◦ cr into a row vector qr for 1 ≤ r ≤ R. Thus
function f(A,B,C,σ) can be written the following
equivalent forms:
1
2‖T(1) −AU‖2F = 1

2‖T(2) −BV‖2F = 1
2‖T(3) −CW‖2F = 1

2‖t− σQ‖
2
F

where,

U = D(C�B)T ,V = D(C�A)T ,W = D(B�A)T ,Q = (qT1 , · · · ,qTR)T (5)

and t is a vectorization for tensor T
Then the gradients of f(•) on A,B,C, σ are:

∇Af(A,B,C,σ) = (AU−T(1))U
T ,

∇Bf(A,B,C,σ) = (BV −T(2))V
T ,

∇Cf(A,B,C,σ) = (CW −T(3))W
T .

∇σf(A,B,C,σ) = (σQ− t)QT .

(6)

Then, with equations, (3-4), we can formulate linear
least squares problems with respect to A, B, C and σ.

In the algorithm we starts from (An,Bn,Cn,σn)
and iteratively update variables A,B,C and then σ in
each loop. Using the equation (2) above, we update A
following the constraint optimization problem below:

arg min
A
{〈A−An,∇Af(An,Bn,Cn,σn)〉+

sdn
2
‖A−An‖2F }

s.t. ‖ai‖ = 1, i = 1, · · · , R,

where A = (a1, · · · ,aR) ∈ RI×R, dn = max{‖UnUnT ‖F , 1}
and Un is computed from σn,Bn,Cn by using (5). This
problem is equivalent to:

arg min
A
{‖A−Dn‖2F } s.t. ‖ai‖ = 1, i = 1, · · · , R.

where Dn = An − 1
sdn
∇Af(An,Bn,Cn,σn). So we

obtain the update of A:

an+1
i = dni /‖dni ‖, i = 1, · · · , R,

where an+1
i and dni are the i-th columns of An+1 and

Dn.
Similarly, we update B, C and σ following the same

process as A. Now to deal with σ we have the following
optimization problem:

arg min
σ
{〈σ − σn,∇σf(An+1,Bn+1,Cn+1,σn)〉+ sηn

2 ‖σ − σ
n‖2 + λ‖σ‖1}

where ηn = max{‖Qn+1Qn+1T ‖F , 1}. This optimiza-
tion problem is equivalent to:

arg min
σ

1
2‖σ − σ

n + 1
sηn
∇σf(An+1,Bn+1,Cn+1,σn)‖2 + λ

sηn
‖σ‖1.

So we can obtain the update form for α in Algorithm
1 by using the separate soft thresholding (proof in the
appendix):

σn+1 = prox λ
sηn

(βn+1)

=

{
0, |βn+1| ≤ λ

sηn

βn+1 − λ
sηn

sign(βn+1), |βn+1| > λ
sηn

(7)

where

βn+1 = σn − 1

sηn
∇αf(An+1,Bn+1,Cn+1,αn). (8)

Each iteration of (7) can be computed efficiently but it
could suffer from slow convergence. So we implemented
FISTA (fast iterative shrinkage-thresholding algorithm)
[18] for our algorithm to converge faster. FISTA is
the accelerated variant of ISTA [20]. Each iteration of
FISTA has the following format:

σn+1 = prox λ
sηn

(
βn+1

)
(9)

tn+1 =
1 +
√

1 + 4tn2

2
(10)

yn+1 = σn +

(
tn − 1

tn+1

)(
σn+1 − σn

)
(11)

See these optimization problems implemented in Algo-
rithm 1.

Algorithm 1 Low-Rank Approximation Of Tensors
(LRAT)

Input: A third order tensor with missing entries A, an
upper bound R of rank(A), a penalty parameter λ
and a scale s > 1;

Output: An approximated tensor B̂ with an estimated
rank R̂;

1: Give an initial tensor B0 = [σ0; A0,B0,C0]R.
2: Update step:

b. Update matrices A,B,C:
Compute Un by (5) and let dn =

max{‖UnUnT ‖F , 1}.
Compute Dn and An+1 by

Dn = An − 1

sdn
∇Af(An,Bn,Cn,σn),

An+1 = Dndiag(‖dn1‖, · · · , ‖dnR‖)−1

where dni is the i-th column of Dn for i =
1, · · · , R.

Compute Vn by (5) and let en =
max{‖VnVnT ‖F , 1}.

Compute En and Bn+1 by

En = Bn − 1

sen
∇Bf(An+1,Bn,Cn,σn),

Bn+1 = Endiag(‖en1‖, · · · , ‖enR‖)−1

where eni is the i-th column of En for i =
1, · · · , R.

Compute Wn by (5) and let fn =
max{‖WnWnT ‖F , 1}.

Compute Fn and Cn+1 by

Fn = Cn − 1

sfn
∇Cf(An+1,Bn+1,Cn,σn),

Cn+1 = Fndiag(‖fn1 ‖, · · · , ‖fnR‖)−1

where fni is the i-th column of Fn for i =
1, · · · , R.
c. Update the row vector σ:

Compute Qn+1 by (5) and let ηn =

max{‖Qn+1Qn+1T ‖F , 1}.
Compute βn+1 by (8) and use the soft thresh-

olding:
σn+1 = prox λ

sηn

(
βn+1

)
.

d. Update for FISTA using equations (9, 10, 11)
3: Denote the limitations by Â, B̂, Ĉ, σ̂, compute B̂ =

[σ̂; Â, B̂, Ĉ]R and count the number R̂ of nonzero
entries in σ̂.

4: Impose constraints A(Ω) = B(Ω).
5: return The tensor B̂ with the estimated rank R̂.

2.2 Numerical Experiments

We implemented our algorithm on a color image of size
246× 257× 3; see Figure 1. We recovered an estimated
color image after removing 20 percent of the entries from
the original color image; see Figures 2−3.The algorithm
without the FISTA implementation took 2.128045 sec-
onds to reach convergence with a relative error of 9.5e-3.
Using FISTA it reaches convergence after 2.045318 sec-
onds with a relative error 9.6e-3.

Further, we implemented our algorithm on a color
image of size 218× 215× 3; see Figure 4. We recovered
an estimated color image after removing 20 percent of
the entries from the original color image; see Figures
5−6.The algorithm without the FISTA implementation
took 2.998823 seconds to reach convergence with a rela-
tive error of 9.4e-3. Using FISTA it reaches convergence
after 2.882080 seconds with a relative error 9.7e-3.

3 Conclusion

We propose an alternating optimization algorithm for
tensor completion. The implementation is based on four
linear least squares problems and a soft thresholding
algorithm. Our algorithm is fast and it does not rely
on matrix SVD (or matrix singular value thresholding).
In our future outlook, we would like to include some
sampling rates for our algorithm as well as a regularized
version of the optimization problem.

Appendix

Recall g(σ) = λ ‖ σ ‖1 is convex and non-differentiable.
The function g can be turn into a proximal operator to
find its minimum using the definition [8] below:

Definition 3.1 Given a proper closed convex function
f: Rn −→ R

⋃
∞, the proximal operator scaled by δ > 0,

is a mapping from Rn −→ R defined by

proxδg(v) := argmin
y∈Rn

(g(y) +
1

2δ
‖ y − v ‖2).

Then the proximal operator for g(σ) is,

proxg(v) = argmin
σ

(g(σ) +
1

2δ
‖ σ − v ‖22)

= argmin
σ

(λ ‖ σ ‖1 +
1

2δ
‖ σ − v ‖22)

= argmin
σ

(λ

n∑
i=1

| σi | +
1

2δ

n∑
i=1

(σi − v)2)

For σ = (σ1, ..., σn)

(proxδg(v)i)i = argmin
σi

(λ | σi | +
1

2δ
(σi − vi)2)

= argmin
σi

(λ− vi

δ)σi + 1
2δσ

2
i , σi > 0

−(λ+ vi
δ)σi + 1

2δσ
2
i , σi < 0

}

Figure 1: Original color image data

Figure 2: 20% missing entries

Figure 3: Recovered color image data

Figure 4: Original color image data

Figure 5: 20% missing entries

Figure 6: Recovered color image data

Hence,

proxg(v)i =

{
0, | vi |≤ λ
vi − λsign(vi), | vi |> λ

with δ = 1

References

[1] A. Uschmajew, Local convergence of the alternat-
ing least squares algorithm for canonical tensor ap-
proximation, SIAM J. Matrix Anal. Appl. 33(2):639-
652, 2012.

[2] R Bro, “Multi-way analysis in the food industry:
models, algorithms, and applications. MRI, EPG
and EMA,Ó Proc ICSLP, 2000.

[3] R Bro, “PARAFAC. Tutorial and applications.”
Chemometrics and intelligent laboratory systems,
1997.

[4] E. Acar, D.M. Dunlavy, and T. Kolda, A
scalable optimization approach for fitting canonical
tensor decompositions, Journal of Chemometrics 25
(2):67-86, (2011).

[5] E. Candès and T. Tao. “The Power of Convex Re-
laxation: Near-Optimal Matrix Completion,” IEEE
Trans on Information Theory, vol. 56, no. 5, pp.
2053-2080, (2010).

[6] J Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor
completion for estimating missing values in visual
data,” ICCV, 2009.

[7] H. Rauhut, R. Schneider, and Z. Stojanac, “Tensor
completion in hierarchical tensor representations,”
Compressed Sensing and its Applications 2015.

[8] N. Parikh and S. Boyd, “Proximal Algorithms,”
Foundations and Trends in Optimization, vol. 1, no.
3, (2013), pp. 123-231.

[9] G. Tomasi and R. Bro, ”PARAFAC and missing val-
ues,” Chemometrics and Intelligent Laboratory Sys-
tems, 2005.

[10] E. Acar, D. M. Dunlavy, T. G. Kolda, and
M. Mørup, ”Scalable tensor factorizations for in-
complete data,” Chemometrics and Intelligent Lab-
oratory Systems, 2011.

[11] P. Paatero, ”A weighted non-negative least squares
algorithm for three-way ‘PARAFAC’factor analy-
sis,” Chemometrics and Intelligent Laboratory Sys-
tems, 1997.

[12] X. Geng and K. Smith-Miles, ”Facial age esti-
mation by multilinear subspace analysis,” ICASSP,
2009.

[13] X. Wang and C. Navasca, ”Low-rank approxima-
tion of tensors via sparse optimization, Numer Lin-
ear Algebra Appl. vol. 25, no. 2, (2018), pp.

[14] G. Golub and C. F. Van Loan, Matrix Compu-
tations, Johns Hopkins University Press; 4th edition,
2013

[15] S. Gandy, B. Recht, and I. Yamada, ”Tensor com-
pletion and low-n-rank tensor recovery via convex
optimization” Inverse Problems (2011).

[16] Y. Xu and W. Yin, A block coordinate de-
scent method for regularized multi-convex optimiza-
tion with applications to nonnegative tensor factor-
ization and completion, SIAM J. Imaging Sciences,
6 (2013), pp. 1758-1789.

[17] J. Bolte, S. Sabach and M. Teboulle, Proxi-
mal alternating linearized minimization nonconvex
and nonsmooth problems, Mathematical Program-
ming, 146 (2014), pp. 459-494.

[18] A. Beck and M. Teboulle, A Fast Iterative
Shrinkage-Thresholding Algorithm for Linear In-
verse Problems, SIAM J. Imaging Sci., 2(2009), pp.
183-202.

[19] K. Bredies and D. A. Lorenz, Linear conver-
gence of iterative soft-thresholding, J. Fourier Anal.
Appl., 14(2008), pp. 813-837.

[20] Y. E. Nesterov, Smooth minimization of non-
smooth functions, Math. Program., 103(2005), pp.
127-152.

	Introduction
	Current Results
	Numerical Approach
	Numerical Experiments

	Conclusion

