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Summary

The goal of this paper is to find a low-rank approximation for a given nth tensor.
Specifically, we give a computable strategy on calculating the rank of a given ten-
sor, based on approximating the solution to an NP-hard problem. In this paper,
we formulate a sparse optimization problem via an l1-regularization to find a
low-rank approximation of tensors. To solve this sparse optimization problem,
we propose a rescaling algorithm of the proximal alternating minimization and
study the theoretical convergence of this algorithm. Furthermore, we discuss
the probabilistic consistency of the sparsity result and suggest a way to choose
the regularization parameter for practical computation. In the simulation exper-
iments, the performance of our algorithm supports that our method provides an
efficient estimate on the number of rank-one tensor components in a given ten-
sor. Moreover, this algorithm is also applied to surveillance videos for low-rank
approximation.

KEYWORDS

l1-regularization, low-rank approximation, proximal alternating minimization, sparsity

1 INTRODUCTION

We have seen the success of the matrix SVD for several decades. However, in the advent of modern and massive data
sets, even SVD has its limitation. Because tensors have been known to be a natural representation of higher-order and
hierarchical dimensional data sets, we focus on the extension of low-rank matrix approximation to tensors. Tensors have
received much attention in the recent years in the areas of signal processing,1–3 computer vision,4–7 neuroscience,8,9 data
science, and machine learning.4,7,10,11 Most of these applications rely on decomposing a tensor data into its low-rank form
to be able to perform efficient computing and to reduce memory requirements. This type of tensor decomposition into a
sum of rank-one tensor terms is called the canonical polyadic (CP) decomposition; thus, it is viewed as a generalization
of the matrix SVD. The generalization of matrix SVD to tensors is not unique. Another tensor decomposition is called
the higher-order SVD,10,12,13 which is a product of orthogonal matrices with a dense core tensor. A reduced higher-order
SVD13 computes for the low-rank approximation to the R-term input with a large number of terms such that the SVD
applies only to the factor matrices. Higher-order SVD is considered as another extension of the matrix SVD.

Unlike the matrix case where the low-rank matrix approximation is afforded by truncating away small rank-one
matrix terms,14 discarding negligible rank-one tensor terms does not necessarily provide the best low-rank tensor
approximation.15 Moreover, most low-rank tensor algorithms do not provide an estimation on the tensor rank; an a priori
tensor rank is often required to find the decomposition. Several theoretical results16,17 on tensor rank can help, but they
are limited to low multidimensional and low-order tensors so they are inapplicable to tensors in real-life applications. In
fact, for a real data set, tensor rank is important. In a source apportionment data problem,18 the tensor rank of the data
provides the number of pollution source profiles to be identified. In this work, the focus is on finding an estimation of the
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tensor rank and its rank-one tensor decomposition (CP) of a given tensor. There are several numerical techniques1,2,10,19,20

for approximating a kth rank tensor into its CP decomposition, but they do not give an approximation of the minimum
rank. There are algorithms21,22 that give a tensor rank, but they are specific to symmetric tensor decomposition over the
complex field using algebraic geometry tools.

Our proposed algorithm addresses two difficult problems for the CP decomposition: (a) one is that finding the rank
of tensors is an NP-hard problem,23 and (b) the other is that tensors can be ill posed24 and have failed to have their best
low-rank approximations.

The tensor rank problem is formulated as an l0 minimization problem, that is,

min
𝜶

||𝜶||0 subject to  = [𝜶;X,Y,Z]R, (1.1)

where
∑R

r=1 𝛼rxr ◦ yr ◦ zr = [𝜶;X,Y,Z]R represents a sum of the outer products of the vectors xr, yr, and zr for r = 1, … ,R.
Here, ||𝜶||0 corresponds to the number of nonzero coefficients in the sum. However, this problem formulation (1.1) is
NP hard. Inspired by the techniques in compressive sensing,25–27 we then consider an l1-regularization formulation for
tensor rank, as follows:

min
𝜶

||𝜶||1 subject to  = [𝜶;X,Y,Z]R. (1.2)

Here, we denote ||𝜶||1 =
∑R

i=1 |𝛼i|. It is well known in the compressed sensing community that minimizing the 𝓁1 norm of
the vector 𝜶 recovers the sparse solution of the linear system. In the presence of noise, the constraint,  = [𝜶;X,Y,Z]R, is
replaced with ||− [𝜶;X,Y,Z]R||F ≤ 𝜀, where || · ||F is the Frobenius norm with ||||F = (

∑
2

i𝑗k)
1
2 . Moreover, to achieve

a tensor decomposition and a tensor rank, we minimize over the factor matrices, X,Y, and Z; thus, this minimization
problem is considered as follows:

min
X,Y ,Z,𝜶

1
2
‖ − [𝜶;X,Y,Z]R‖2

F + λ||𝜶||1. (1.3)

The 𝓁1-regularization achieves a good approximation of tensor rank due to the sparsity structure and its tractability.
The regularization parameter 𝜆 in (1.3) can control the sparsity of the estimated coefficients.28,29 In contrast to (1.1), the
optimization problem (1.3) is a quadratic program. Moreover, the convex property on 𝜶 of (1.3) could make the compu-
tation more tractable than (1.1). In addition, the l1-regularization term provides a restriction on the boundedness of the
variables, thereby ameliorating the ill-posedness of the best low-rank approximation of tensors. For more tractable com-
puting, an alternative multiblock constraint optimization30 is implemented, which is similar to the technique discussed by
Xu et al.7 Because (1.3) is a minimization of the sum of a smooth term and a nonsmooth term, we consider the following
optimization problem with smooth and nonsmooth terms:

x k+1 = argmin
x

{
𝑓 (xk) +

⟨
x − xk,∇x𝑓 (xk)

⟩
+ t

2
||x − xk||2 + g(x)

}
, (1.4)

where f and g are the smooth and nonsmooth functions, respectively. Here, f is approximated at a given point xk.

1.1 Contributions
Here, we list our contributions in this paper:

1. We develop an iterative technique for tensor rank approximation, given that the main objective function contains a
nonsmooth l1-regularization term. The proximal alternating minimization technique7,30 has been adapted and rescaled
for our tensor rank minimization problem. The solution of the optimization method, {�̂�, X̂, Ŷ, Ẑ, R̂}, generates a
by-product [�̂�; X̂, Ŷ, Ẑ]R̂ as a low-rank approximation of ; it provides a CP decomposition for an estimated rank R̂.

2. We provide some theoretical results on the convergence of our algorithm. We show that the objective function satisfies
a descent property in Lemma 3 and a subdifferential lower bound.30 A monotonically decreasing objective function
is ensured on the sequence generated by the algorithm. Furthermore, we point out that the sequence generated by
the algorithm converges to a critical point of the objective function with indicator functions on the normalization
constraint that all the columns of the factor matrices have length one.

3. For practical implementation, we provide a technique (as well as theoretical results) to find a suitable choice on the
regularization parameter directly from the data. The regularization parameter choice has remained a very challenging
problem31–34 in applied inverse problems. Our technique is based on the probabilistic consistency of the sparsity in the
classical model found in other works,35,36 as follows:

b = B𝜽∗ + 𝜺,
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where 𝜽∗ is a sparse signal, B is a design matrix, and 𝜺 is a vector of independent sub-Gaussian entries with mean
zero and parameter 𝜎2. We show that to find the true sparsity structure with a high probability, the regularization
parameter relies on two intrinsic parameters 𝜎2 and 𝛾 of the models, where 𝜎2 represents the variance of noise, and 𝛾 is
the incoherence parameter35 on design matrix B. The relationship between the regularization and intrinsic parameters
actually provides us a suggestion on how to choose a reasonable regularization parameter for practical computation.
To illustrate the performance of this low-rank approximation method, our experiment consists of four parts. In the first
part, we show the relationship between the regularization parameter and the estimated rank. In the second part, we
estimate the number of rank-one components for given tensors by adaptively selecting the regularization parameter
𝜆. In the third one, we compare our algorithm with a modified alternating least-squares algorithm. In the last one, we
handle the real surveillance video data.

1.2 Organization
Our paper is organized as follows. The discussion is limited to third-order tensors, but the formulation works in any
nth order tensors. In Section 2, we provide some notations and terminologies used throughout this paper. In Section 3,
we formulate an l1-regularization optimization to the low-rank approximation of tensors. In Section 4, we propose an
algorithm to solve this l1-regularization optimization by using a rescaling version of the proximal alternating minimization
technique. In Section 5, we discuss the probabilistic consistency of the sparse optimal solution and give a suggestion on
how to choose the regularization parameter. The numerical experiments in Section 6 consist of simulated and real data
sets. Finally, our conclusion and future work are given in Section 7.

2 NOTATION

We denote a vector by a bold lowercase letter a. The bold uppercase letter A represents a matrix, and the symbol of tensor
is a calligraphic letter . Throughout this paper, we focus on third-order tensors  = (ai𝑗k) ∈ RI×J×K of the three indices
1 ≤ i ≤ I, 1 ≤ j ≤ J, and 1 ≤ k ≤ K, but all the methods proposed here can be also applied to tensors of arbitrary high order.

A third-order tensor  has column, row, and tube fibers, which are defined by fixing every index but one and are
denoted by a:jk, ai:k, and aij:, respectively. Correspondingly, we can obtain three kinds A(1),A(2), and A(3) of matricization
of  according to respectively arranging the column, row, and tube fibers to be columns of matrices. We can also consider
the vectorization for  to obtain a row vector a such that the elements of  are arranged according to k varying faster
than j and j varying faster than i, that is, a = (a111, … , a11K, a121, … , a12K, … , a1J1, … , a1JK, …).

The outer product x ◦ y ◦ z ∈ RI×J×K of three nonzero vectors x, y, and z is a rank-one tensor with elements xiyjzk for
all the indices. A CP decomposition of  ∈ RI×J×K expresses  as a sum of rank-one outer products, as follows:

 =
R∑

r=1
xr ◦ yr ◦ zr, (2.1)

where xr ∈ RI , yr ∈ RJ , zr ∈ RK for 1 ≤ r ≤ R. Every outer product xr ◦ yr ◦ zr is called as a rank-one component, and
the integer R is the number of rank-one components in tensor . The minimal number R such that the decomposition
(2.1) holds is the rank of tensor , which is denoted by rank(). For any tensor  ∈ RI×J×K , rank() has an upper bound
min{IJ, JK, IK}.16

The CP decomposition (2.1) can be also written as follows:

 =
R∑

r=1
𝛼rxr ◦ yr ◦ zr, (2.2)

where 𝛼r ∈ R is a rescaling coefficient of rank-one tensor xr ◦ yr ◦ zr for r = 1, … ,R. For convenience, we let 𝜶 =
(𝛼1, … , 𝛼R) ∈ RR and [𝜶;X,Y,Z]R =

∑R
r=1 𝛼rxr ◦ yr ◦ zr in (2.2), where X = (x1, … , xR) ∈ RI×R,Y = (y1, … , yR) ∈ RJ×R,

and Z = (z1, … , zR) ∈ RK×R are called the factor matrices of tensor . We impose a normalization constraint on factor
matrices such that each column is normalized to length one,10,37 which is denoted by N(X,Y,Z) = 1. For most alternating
optimization algorithms for tensors, flattening the tensor (matricization) is necessary to be able to break down the problem
into several subproblems. Here, we describe a standard approach for a matricizing of a tensor. The Khatri–Rao product
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of two matrices X ∈ RI×R and Y ∈ RJ×R is defined as follows:

X ⊙ Y = (x1 ⊗ y1, … , xR ⊗ yR) ∈ R
IJ×R,

where the symbol “⊗” denotes the Kronecker product, as follows:

x ⊗ y = (x1𝑦1, … , x1𝑦J , … , xI𝑦1, … , xI𝑦J)T .

Using the Khatri–Rao product, the decomposition (2.2) can be written in three different matrix forms of tensor ,38 as
follows:

A(1) = XD(Z ⊙ Y)T ,A(2) = YD(Z ⊙ X)T ,A(3) = ZD(Y ⊙ X)T , (2.3)

where the matrix D is diagonal with elements of 𝜶.

3 SPARSE OPTIMIZATION FOR LOW-RANK APPROXIMATION

The main goal of this study is to find a low-rank tensor of the original tensor efficiently and accurately. We first formulate
a tensor rank optimization problem, as follows:

min


rank() subject to || − ||2F < 𝜀.

For any given error 𝜀, the minimal rank of  such that || − ||2F ≤ 𝜀 is no larger than rank(). The optimal solution ̂

is a low-rank approximation of  with error 𝜀.
We represent the tensor  as

∑R
r=1 𝛼rxr ◦ yr ◦ zr = [𝜶;X ,Y ,Z]R, where R is an upper bound of the rank of , and the

columns of X,Y,Z satisfy the normalization constraint N(X,Y,Z) = 1. Rescaling the columns of the matrices X,Y,Z is a
standard technique.11,37 It is implemented in practice for CP tensor decomposition to prevent the norm of the approx-
imated matrices from blowing up to infinity, whereas another factor matrix tends to zero while keeping the residual
small.

The tensor rank minimization is equivalent to the following constraint optimization problem with l0-norm:

min
𝜶

||𝜶||0 s.t. ‖ − [𝜶;X,Y,Z]R‖2
F ≤ 𝜀,N(X,Y,Z) = 1. (3.1)

The problem (3.1) is equivalent to that of finding the rank of tensors when 𝜀 = 0, whose decision version is NP hard.23

To make it more tractable, we turn to an optimization problem with the following l1-norm:

min
𝜶

||𝜶||1 s.t. ‖ − [𝜶;X,Y,Z]R‖2
F ≤ 𝜀,N(X,Y,Z) = 1. (3.2)

Furthermore, we then solve the following:

min
X,Y,Z,𝜶

1
2
‖ − [𝜶;X,Y,Z]R‖2

F + λ||𝜶||1 s.t. N(X,Y,Z) = 1, (3.3)

an l1-regularization optimization problem in which it includes the factor matrices as primal variables. These optimiza-
tion formulations are common in compressed sensing.25–27,39–41 By introducing the indicator function, we switch the
constrained optimization problem (3.3) into the following unconstrained form:

min
X,Y,Z,𝜶

1
2
‖ − [𝜶;X,Y,Z]R‖2

F + λ||𝜶||1 + 𝛿S1(X) + 𝛿S2(Y) + 𝛿S3(Z), (3.4)

where S1 = {X|||xr|| = 1, r = 1, … ,R}, S2 = {Y|||yr|| = 1, r = 1, … ,R}, and S3 = {Z|||zr|| = 1, r = 1, … ,R}.

Remark 1. Here, there is no simple manner to compute the relationship between 𝜖 and 𝜆 without already knowing
the optimal solutions of formulations (3.2) and (3.3). In the matrix versions of Basis Pursuit,

min
𝜽

||𝜽||1, s.t. ||b − B𝜽|| ≤ 𝜀

and

min
𝜽

1
2
||b − B𝜽||2 + λ||𝜽||1,

it is possible to create a mapping between the two parameters through a Pareto curve to estimate the relationship from
the support of few solutions.42
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Our algorithm is tailored for solving the problem (3.4). Let the objective function in (3.4) be as follows:

Ψ(X ,Y ,Z , 𝜶) ∶ R
I×R ×R

J×R ×R
K×R × R

R → R
+,

where

Ψ(X,Y,Z,𝜶) = 𝑓 (X,Y,Z,𝜶) + g(𝜶) + 𝛿S1(X) + 𝛿S2 (Y) + 𝛿S3(Z)

with the approximation term 𝑓 (X,Y,Z,𝜶) = 1
2
||−[𝜶;X,Y,Z]R||2F , the regularized penalty term g(𝜶) = λ||𝜶||1, and three

indicator functions 𝛿S1(X), 𝛿S2(Y), 𝛿S3 (Z). The function f(•) is a real polynomial function on (X,Y,Z,𝜶), and the function
g(•) is a nondifferential continuous function on 𝜶. Because S1, S2, S3 are closed sets, indicator functions 𝛿S1 (X), 𝛿S2(Y),
and 𝛿S3 (Z) are proper and lower semicontinuous. Moreover, because 𝛿S1 (X), 𝛿S2 (Y), and 𝛿S3 (Z) are three semi-algebraic
functions; thus, the objective function is also a semi-algebraic function. So, it is a Kurdyka–Łojasiewicz (KL) function.30

For a point 𝝎 = (X,Y,Z,𝜶) ∈ RI×R × RJ×R × RK×R × RR, if its (limiting) subdifferential,30 denoted by 𝜕Ψ(𝝎), contains 0,
we call it a critical point of Ψ(•). The set of critical points of Ψ(•) is denoted by CΨ.

Due to the ill-posedness24,43 of the best low-rank approximation of tensors, it is known that the problem of finding a best
rank-R approximation for tensors of order 3 or higher has no solution in general. However, after introducing the l1 penalty
term λ||𝜶||1 to the low-rank approximation term f(•), it is always attainable for the minimization of the objective function
in (3.4). Thus, we have the following theorem to show the existence of the global optimal solution of problem (3.4).

Theorem 1. The global optimal solution of problem (3.4) exists.

Proof. For any tensor  ∈ RI×J×K , the objective function 1
2
|| − [𝜶;X ,Y ,Z]R||2F + λ||𝜶||1 + 𝛿S1(X) + 𝛿S2 (Y) + 𝛿S3 (Z)

is denoted as Ψ(X,Y,Z,𝜶). Notice that all the columns of X,Y,Z in problem (3.4) are constrained to have length one.
We define the d− dimensional unit sphere as Δd = {v ∈ Rd|||v||2 = 1}, and a set S = {(X,Y,Z,𝜶) ∈ (ΔI)R × (ΔJ)R ×
(ΔK)R ×RR}. Because this function Ψ(•) is continuous on S, we only need to show that there is a point s ∈ S such that
Ψ(s) = inf{Ψ(x)|x ∈ S}, that is, the minimization of low-rank approximation with l1 penalty is attainable.

For a scalar 𝜉 > inf{Ψ(x)|x ∈ S}, we will show that the level set L = {x ∈ S|Ψ(x) ≤ 𝜉} is compact. Because Ψ(•)
is continuous on S, the set L is closed, and we only need to prove that L is bounded. Actually, it is guaranteed by
the l1 penalty term λ||𝜶||1 of Ψ(•). Otherwise, unbounded points will take the penalty term to infinity contrary to the
boundedness of Ψ(•) on L. From the compactness of the level set L, the infimum inf{Ψ(x)|x ∈ L} is attainable because
Ψ(•) is continuous on L. Furthermore, because inf{Ψ(x)|x ∈ S} = inf{Ψ(x)|x ∈ L}, there exists a point s ∈ S such
that Ψ(s) = inf{Ψ(x)|x ∈ S}.

4 LOW-RANK APPROXIMATION OF TENSOR

In this section, we first describe an algorithm of low-rank approximation of tensor (LRAT) for computing the solu-
tion of problem (3.4) and then show some theoretical guarantees on the convergence of LRAT: (1) The sequence
{(Xn,Yn,Zn,𝜶n)}n∈N generated by LRAT converges to a critical point of Ψ(•). (2) The limit point of {(Xn,Yn,Zn,𝜶n)}n∈N
is a KKT point of problem (3.3).

4.1 The algorithm
As in (2.3), the matricizations of tensor  = [𝜶;X ,Y ,Z]R via Khatri–Rao products are as follows:

B(1) = XD(Z ⊙ Y)T ,B(2) = YD(Z ⊙ X)T ,B(3) = ZD(Y ⊙ X)T ,

where D = diag(𝛼1, … , 𝛼R). We introduce the following three matrices for updating in the Algorithm 1:

U = D(Z ⊙ Y)T ,V = D(Z ⊙ X)T ,W = D(Y ⊙ X)T . (4.1)
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It follows that B(1) = XU, B(2) = YV, and B(3) = ZW. Thus, the function f(X,Y,Z,𝜶) can be written in three equivalent
forms: 1

2
||A(1) − XU||2F = 1

2
||A(2) − YV||2F = 1

2
||A(3) − ZW||2F . Furthermore, we have the gradients of f(•) on X,Y,Z, as

follows:

∇X𝑓 (X,Y,Z,𝜶) =
(
XU − A(1)

)
UT ,

∇Y𝑓 (X,Y,Z,𝜶) =
(
YV − A(2)

)
VT ,

∇Z𝑓 (X,Y,Z,𝜶) =
(
ZW − A(3)

)
WT . (4.2)

Using the vectorization of tensors,44 we can vectorize every rank-one tensor of outer product xr ◦ yr ◦ zr into a row vector
qr for 1 ≤ r ≤ R. We denote a matrix consisting of all qr for 1 ≤ r ≤ R by the following:

Q =
(
qT

1 , … ,qT
R
)T
. (4.3)

Thus, the function f(X,Y,Z,𝜶) can be also written as 1
2
||a − 𝜶Q||2F , where a is a vectorization for tensor . Furthermore,

the gradient of f(•) on 𝜶 is as follows:

∇𝜶 𝑓 (X,Y,Z,𝜶) = (𝜶Q − a)QT . (4.4)

Our algorithm starts from (Xk,Yk,Zk,𝜶k) and iteratively updates variables X,Y,Z and then 𝜶 in each loop. Inspired by
the Equation (1.4), the update of X is based on the following constraint optimization problem:

argmin
X

{⟨X − Xn,∇X𝑓 (Xn,Yn,Zn,𝜶n)⟩ + sdn

2
||X − Xn||2F}

s.t. ||xi|| = 1, i = 1, … ,R,
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where X = (x1, … , xR) ∈ RI×R, dn = max{||UnUnT||F , 1}, and Un is computed from 𝜶n,Yn,Zn by (4.1). This problem is
equivalent to the following:

argmin
X

{||X − Dn||2F} s.t. ||xi|| = 1, i = 1, … ,R,

where Dn = Xn − 1
sdn

∇X𝑓 (Xn,Yn,Zn,𝜶n). So, we obtain the update of X, as follows:

xn+1
i = dn

i ∕||dn
i ||, i = 1, … ,R,

where xn+1
i and dn

i are the ith columns of Xn+1 and Dn.
Similarly, the update of Y is based on the following optimization problem:

argmin
Y

{⟨
Y − Yn,∇Y𝑓 (Xn+1,Yn,Zn,𝜶n)

⟩
+ sen

2
||Y − Yn||2F}

s.t. ||yi|| = 1, i = 1, … ,R,

where Y = (y1, … , yR) ∈ RJ×R, en = max{||VnVnT||F , 1}, and Vn is computed from 𝜶n,Xn+1,Zn by (4.1). So, we obtain
the update of Y, as follows:

yn+1
i = en

i ∕||en
i ||, i = 1, … ,R,

where yn+1
i and en

i are the ith columns of Yn+1 and En = Yn − 1
sen
∇Y𝑓 (Xn+1,Yn,Zn,𝜶n).

The update of Z is based on the following constraint optimization problem:

argmin
Z

{⟨
Z − Zn,∇Z𝑓 (Xn+1,Yn+1,Zn,𝜶n)

⟩
+ s𝑓n

2
||Z − Zn||2F}

s.t. ||zi|| = 1, i = 1, … ,R,

where Z = (z1, … , zR) ∈ RK×R, 𝑓n = max{||WnWnT||F , 1}, and Wn is computed from 𝜶n,Xn+1,Yn+1 by (4.1). The update
of Z is as follows:

zn+1
i = fn+1

i ∕ ‖‖‖fn+1
i

‖‖‖ , i = 1, … ,R,

where zn+1
i and fn+1

i are the ith columns of Zn+1 and Fn = Zn − 1
s𝑓n

∇Z𝑓 (Xn+1,Yn+1,Zn,𝜶n).
Finally, we consider to update 𝜶 by using the Equation (1.4), as follows:

argmin
𝜶

{⟨
𝜶 − 𝜶n,∇𝜶𝑓 (n+1,Xn+1,Yn+1,Zn+1,𝜶n)

⟩
+ s𝜂n

2
||𝜶 − 𝜶n||2 + λ||𝜶||1} ,

where 𝜂n = max{||Qn+1Qn+1T||F , 1}, and Qn+1 can be computed from Xn+1,Yn+1,Zn+1 by (4.3). This optimization problem
is equivalent to the following:

argmin
𝜶

1
2
‖‖‖‖𝜶 − 𝜶n + 1

s𝜂n
∇𝜶 𝑓 (n+1,Xn+1,Yn+1,Zn+1,𝜶n)

‖‖‖‖
2
+ λ

s𝜂n
||𝜶||1.

So, we can obtain the updated form for 𝜶 in Algorithm 1 by using the separate soft thresholding as follows:

𝜶n+1 =  λ
s𝜂n
(𝜷n+1),

where

𝜷n+1 = 𝜶n − 1
s𝜂n

∇𝜶 𝑓 (n+1,Xn+1,Yn+1,Zn+1,𝜶n). (4.5)

It should be noted that if we set λ = 0, the LRAT algorithm turns into a modified alternative least-squares method
(modALS). The modALS algorithm uses linearized iterative technique7,30 to update variables in each step. Although the
regularization parameter λ is fixed in Algorithm 1, we can adaptively choose it for practical computation, which will be
shown in Section 5.

Remark 2. In our algorithm, the computational complexity mainly comes from matrix multiplications. The Update
Step (2b) for updating 𝜶 in LRAT Algorithm requires more cpu time than the Update Step (2a) because of the large
matrix dimension of Q. The complexity of our algorithm is O(NIJKR2), where N is the total number of iteration.
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4.2 Convergence of algorithm
In this section, we illustrate the convergence mechanism of the LRAT algorithm, which is a rescaling version of the
proximal alternating linear minimization algorithm.30 The following Lemma 1 points out that for the function 𝑓 (𝝎) =
1
2
|| − [𝜶;X ,Y ,Z]R||2F , the gradient ∇𝝎 f(𝝎) of f(𝝎) is Lipschitz continuous on bounded subsets and that all the partial

gradients of f(𝝎) are globally Lipschitz with modulus.

Lemma 1. Let f(𝝎) be the approximation term 1
2
||−[𝜶;X,Y,Z]R||2F, where 𝝎 = (X,Y,Z,𝜶). We have that the gradient

function ∇f is Lipschitz continuous on bounded subsets of RI×R × RJ×R × RK×R × RR, that is, for any bounded subset
B ∈ RI×R × RJ×R ×RK×R ×RR, there exists M > 0 such that for any 𝝎1,𝝎2 ∈ B,‖∇𝝎𝑓 (𝝎1) − ∇𝝎𝑓 (𝝎2)‖F ≤ M||𝝎1 − 𝝎2||F .
Moreover, for any fixed X ∈ RI×R,Y ∈ RJ×R,Z ∈ RK×R,𝜶 ∈ RR, there exist four constants c, d, e, 𝜂 > 0 such that:

||∇X𝑓 (X1,Y,Z,𝜶) − ∇X𝑓 (X2,Y,Z,𝜶)||F ≤ d||X1 − X2||F , for any X1,X2 ∈ R
I×R

||∇Y𝑓 (X,Y1,Z,𝜶) − ∇Y𝑓 (X,Y2,Z,𝜶)||F ≤ e||Y1 − Y2||F , for any Y1,Y2 ∈ R
J×R

||∇Z𝑓 (X,Y,Z1,𝜶) − ∇Z𝑓 (X,Y,Z2,𝜶)||F ≤ 𝑓 ||Z1 − Z2||F , for any Z1,Z2 ∈ R
K×R

||∇𝜶 𝑓 (X,Y,Z,𝜶1) − ∇𝜶𝑓 (X,Y,Z,𝜶2)||F ≤ 𝜂||𝜶1 − 𝜶2||F , for any 𝜶1,𝜶2 ∈ R
R,

where d = ||UUT||F , e = ||VVT||F , 𝑓 = ||WWT||F , 𝜂 = ||QQT||F.

The proof has not been included because it relies on standard techniques. In our LRAT algorithm, those Lipschitz
constants rely on the iterative number n and have a lower bound 1. Specifically, dn = max{||Un+1Un+1T||F , 1}, en =
max{||Vn+1Vn+1T||F , 1}, 𝑓n = max{||Wn+1Wn+1T||F , 1}, 𝜂n = max{||Qn+1Qn+1T||F , 1}.

Lemma 2. (See sufficient decrease property in the work of Bolte et al.30)
Let 𝑓 ∶ Rm → R be continuously differentiable with gradient∇f assumed to be Lf-Lipschitz continuous, and let 𝜎 ∶ Rm →
(−∞,+∞] be a proper and lower semicontinuous function with infRm 𝜎 > −∞. For any t > Lf and u ∈ dom 𝜎, define

u+ = argmin
x

{⟨x − u,∇𝑓 (u)⟩ + t
2
||x − u||2 + 𝜎(u)

}
.

Then, we have that

𝑓 (u) + 𝜎(u) −
(
𝑓 (u+) + 𝜎(u+)

)
≥

1
2
(t − L𝑓 )||u+ − u||2. (4.6)

Lemma 3. LetΨ(•) be the objective function in problem (3.4). If (Xn,Yn,Zn,𝜶n)n∈N and (dn, en, 𝑓n, 𝜂n)n∈N are generated
by our LRAT algorithm, we have that for any s > 1,

Ψ(Xn,Yn,Zn,𝜶n) − Ψ(Xn+1,Yn,Zn,𝜶n) ≥ 1
2
(s − 1)dn||Xn − Xn+1||2F ,

Ψ(Xn+1,Yn,Zn,𝜶n) − Ψ(Xn+1,Yn+1,Zn,𝜶n) ≥ 1
2
(s − 1)en||Yn − Yn+1||2F ,

Ψ(Xn+1,Yn+1,Zn,𝜶n) − Ψ(Xn+1,Yn+1,Zn+1,𝜶n) ≥ 1
2
(s − 1)𝑓n||Zn − Zn+1||2F ,

Ψ(Xn+1,Yn+1,Zn+1,𝜶n) − Ψ(Xn+1,Yn+1,Zn+1,𝜶n+1) ≥ 1
2
(s − 1)𝜂n||𝜶n − 𝜶n+1||2F .

Proof. These four inequalities can be obtained by using Lemma 2.

The following lemma shows that the value ofΨ(•)monotonically decreases on the sequence (𝝎n)n∈N, which is generated
by our algorithm.

Lemma 4. Let Ψ(𝝎) be the objective function as follows:
1
2
|| − [𝜶;X ,Y ,Z]R||2F + λ||𝜶||1 + 𝛿S1 (X) + 𝛿S2(Y) + 𝛿S3 (Z),

where 𝝎 = (X,Y,Z,𝜶), then

i. the sequence {Ψ(𝝎n)}n∈N is nonincreasing, and for any n ∈ N, there is a scalar 𝛽 > 0 such that Ψ(𝝎n) − Ψ(𝝎n+1) ≥
𝛽||𝝎n − 𝝎n+1||2F.
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ii. limn→∞||Xn − Xn+1||F → 0, limn→∞||Yn − Yn+1||F → 0, limn→∞||Zn − Zn+1||F → 0 and limn→∞||𝜶n − 𝜶n+1||F → 0.
iii. the sequence {𝝎n}n∈N is bounded.

Proof. In our algorithm, all the Lipschitz constants dn, en, fn, 𝜂n ≥ 1. So, by Lemma 3, Ψ(𝝎n) − Ψ(𝝎n+1) ≥ 𝛽||𝝎n −
𝝎n+1||2F , where 𝛽 = min{(s − 1)∕2, 1∕2}. We can obtain the first conclusion (i).

The second conclusion (ii) holds from the first one because the sum
∑∞

n=0(Ψ(𝝎n) − Ψ(𝝎n+1)) is finite.
If the sequence {𝝎n}n∈N is unbounded, it means that {𝜶n}n∈N is unbounded because columns of Xn,Yn,Zn are

constrained to have length one. So the sequence {Ψ(𝝎n)}n∈N is unbounded since Ψ(,X,Y,Z,𝜶) ≥ λ||𝜶||1. From the
conclusion (i), Ψ(𝝎n) is nonincreasing. Because Ψ(•) has a lower bound, the sequence {Ψ(𝝎n)}n∈N is not unbounded.
It is a contradiction. So, the sequence {𝝎n}n∈N must be bounded.

Furthermore, from Lemma 1 and the boundedness shown in Lemma 4, we can obtain the following Lipschitz upper
bounds for subdifferentials.

Lemma 5. Let 𝝎n = (X n,Y n,Zn,𝜶n) be the sequence generated by our LRAT algorithm. There exist four positive scales
L1,L2,L3, and L4 such that the following inequalities hold for any n ∈ N.

There is some 𝜼n
1 ∈ 𝜕XΨ(𝝎n) such that ||𝜼n

1 ||F ≤ L1||𝝎n − 𝝎n−1||F.
There is some 𝜼n

2 ∈ 𝜕YΨ(𝝎n) such that ||𝜼n
2 ||F ≤ L2||𝝎n − 𝝎n−1||F.

There is some 𝜼n
3 ∈ 𝜕ZΨ(𝝎n) such that ||𝜼n

3 ||F ≤ L3||𝝎n − 𝝎n−1||F.
There is some 𝜼n

4 ∈ 𝜕𝜶Ψ(𝝎n) such that ||𝜼n
4 ||F ≤ L4||𝝎n − 𝝎n−1||F.

Proof. By the update of X,

Xn = argmin
X

{⟨
X − Xn−1,∇X𝑓 (n,Xn−1,Yn−1,Zn−1,𝜶n−1)

⟩
+ sdn

2
||X − Xn−1||2F + 𝛿S1(X)

}
.

So, we have that ∇X𝑓 (Xn−1,Yn−1,Zn−1,𝜶n−1) + sdn(Xn − Xn−1) + un
1 = 0, where un

1 ∈ 𝜕X𝛿S1 (X
n). Hence,

un
1 = sdn(Xn−1 − Xn) − ∇X𝑓 (Xn−1,Yn−1,Zn−1,𝜶n−1).

Because ∇X𝑓 (Xn,Yn,Zn,𝜶n) + un
1 ∈ 𝜕XΨ(Xn,Yn,Zn,𝜶n), we have that

𝜼n
1 = ∇X𝑓 (Xn,Yn,Zn,𝜶n) + sdn(Xn−1 − Xn) − ∇X𝑓 (Xn−1,Yn−1,Zn−1,𝜶n−1)
= ∇X𝑓 (Xn,Yn,Zn,𝜶n) + un

1

∈ 𝜕XΨ(Xn,Yn,Zn,𝜶n). (4.7)

By Lemma 1 and the boundness of {𝝎n}n∈N, we have that there exists a constant L1 such that ||𝜼n
1 ||F ≤ L1||𝝎n−𝝎n−1||F .

Similarly, we can choose the following:

𝜼n
2 = ∇Y𝑓 (Xn,Yn,Zn,𝜶n) + sen(Yn−1 − Yn) − ∇Y𝑓 (Xn,Yn−1,Zn−1,𝜶n−1) (4.8)

and
𝜼n

3 = ∇Z𝑓 (Xn,Yn,Zn,𝜶n) + s𝑓n(Zn−1 − Zn) − ∇Z𝑓 (Xn,Yn,Zn−1,𝜶n−1). (4.9)

So, 𝜼n
2 ∈ 𝜕YΨ(Xn,Yn,Zn,𝜶n) and 𝜼n

3 ∈ 𝜕ZΨ(Xn,Yn,Zn,𝜶n). Furthermore, there exist constants L2 and L3 such that||𝜼n
2 ||F ≤ L2||𝝎n − 𝝎n−1||F and ||𝜼n

3 ||F ≤ L3||𝝎n − 𝝎n−1||F .
By the update of 𝜶,

∇𝜶 𝑓 (Xn,Yn,Zn,𝜶n−1) + s𝜂n(𝜶n − 𝜶n−1) + un = 0, (4.10)
where un ∈ 𝜕𝜶g(𝜶n) and g(x) = λ||x||1. Denote 𝜼n

4 as ∇𝜶 𝑓 (Xn,Yn,Zn,𝜶n) + un. Thus, we have that 𝜼n
4 ∈

𝜕𝜶Ψ(Xn,Yn,Zn,𝜶n) and

||𝜼n
4 ||F = ||∇𝜶𝑓 (Xn,Yn,Zn,𝜶n) + un||F

≤ ||∇𝜶𝑓 (Xn,Yn,Zn,𝜶n) − ∇𝜶𝑓 (Xn,Yn,Zn,𝜶n−1)||F + s𝜂n||𝜶n − 𝜶n−1||F
≤ L4||𝝎n − 𝝎n−1||F .

We also get the last inequality by using Lemma 1 and the boundness of {𝝎n}n∈N.

The following theorem shows that the sequence of the LRAT algorithm is convergent to a critical point of Ψ(•).
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Theorem 2. Let {𝝎n}n∈N be a sequence generated by the LRAT algorithm from a starting point 𝝎0. Then, the sequence
{𝝎n}n∈N converges to a critical point 𝝎∗ of Ψ(𝝎).

Proof. By Lemma 3, the sufficient decrease property is satisfied that there is a constant 𝛽 > 0 such that for any n ∈ N,

𝛽||𝝎n − 𝝎n+1||2F ≤ Ψ(𝝎n) − Ψ(𝝎n+1).

By Lemma 5, the iterates' gap has a lower bound by the length of a vector in the subdifferential of Ψ. There is a
constant L > 0 and {𝜼n}n∈N such that for any n ∈ N,

||𝜼n||F ≤ L||𝝎n − 𝝎n−1||F ,
where 𝜼n ∈ 𝜕Ψ(𝝎n).

Furthermore, because Ψ(•) is a KL function, we complete the proof by using theorem 3.1 in the work of
Bolte et al.30

A point 𝝎 = (X,Y,Z,𝜶) is called as a KKT point of problem (3.3) if there are three diagonal matrices H1,H2,H3 ∈ RR×R

and a vector u ∈ 𝜕𝜶g(𝜶) such that

∇X𝑓 (𝝎) + XH1 = 0,∇Y𝑓 (𝝎) + YH2 = 0,∇Z𝑓 (𝝎) + ZH3 = 0
∇𝜶𝑓 (𝝎) + u = 0,N(X,Y,Z) = 1. (4.11)

In the following, we show that the limit point 𝝎∗ = (∗,X∗,Y∗,Z∗,𝜶∗) of the sequence {𝝎n}n∈N is a KKT point of
problem (3.3).

Corollary 1. Let 𝝎∗ = (X∗,Y∗,Z∗,𝜶∗) be the limit point of the sequence {𝝎n}n∈N generated by the LRAT algorithm. If
X∗,Y∗, and Z∗ have a full column rank, the limit point 𝝎∗ is a KKT point of problem (3.3).

Proof. N(X∗,Y∗,Z∗) = 1 is obvious because N(Xn,Yn,Zn) = 1 and the convergence of {𝝎n}n∈N. From (4.10), there
exists a vector u ∈ 𝜕𝜶g(𝜶∗) such that

∇𝜶 𝑓 (𝝎∗) + u = 0.

By the update of X, there is a diagonal matrix Hn
1 such that

∇X𝑓 (Xn−1,Yn−1,Zn−1,𝜶n−1) + sdn(Xn − Xn−1) + XnHn
1 = 0.

By the convergency of {𝝎n}n∈N, we have that Hn
1 is convergent to some diagonal matrix H∗

1 because X∗ has a full
column rank. Furthermore, we can obtain the following:

∇X𝑓 (X∗,Y∗,Z∗,𝜶∗) + X∗H∗
1 = 0.

Similarly, we have

∇Y𝑓 (X∗,Y∗,Z∗,𝜶∗) + Y∗H∗
2 = 0,∇Z𝑓 (X∗,Y∗,Z∗,𝜶∗) + Z∗H∗

3 = 0.

This completes the proof of this corollary.

5 PROBABILISTIC CONSISTENCY OF THE SPARSITY

In this section, we will discuss the probabilistic consistency of the sparsity of the optimal solution to problem (3.3). We
will see that under a suitable choice on the regularization parameter, the optimal solution can recover the true sparsity
in a statistical model with a high probability.

For a given regularization parameter λ > 0, an optimal solution to problem (3.3) is denoted by the following:

(X̂ , Ŷ , Ẑ, �̂�) = arg min
X,Y,Z,𝜶

1
2
|| − [𝜶;X,Y,Z]R||2F + λ||𝜶||1 s.t. N(X,Y,Z) = 1.

As shown in Section 4.1, we can construct a R × (I ∗ J ∗ K) matrix Q̂ = (q̂T
1 , … , q̂T

R)
T = ((X̂ ⊙ Ŷ)⊙ Ẑ)T from (4.3) and

vectorize tensor  into a row vector a.
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For convenience, we introduce new variables: b,𝜽,B for aT ,𝜶T , Q̂T , respectively. Thus, b and 𝜽 are column vectors with
dimension I ∗ J ∗ K and R, and B is a (I ∗ J ∗ K) × R matrix. Furthermore, we have the following equality:

1
2
|| − [𝜶; X̂ , Ŷ , Ẑ]R||2F + ||𝜶||1 = 1

2
||b − B𝜽||22 + λ||𝜽||1. (5.1)

The optimal solution �̂�T for tensor approximation problem (3.3) is also an optimal solution �̂� of a standard l1-regularized
least-squares problem as follows:

min
𝜽

1
2
||b − B𝜽||22 + λ||𝜽||1. (5.2)

Assume that b and B have a sparse representation structure as follows:

b = B𝜽∗ + 𝜺, (5.3)

where all the columns of B are normalized to one. The variable 𝜽∗ is a sparse signal with k nonzero entries (k < R), and
𝜺 is a vector with independent sub-Gaussian entries of mean zero and parameter 𝜎2.

Denote a subgradient vector in 𝜕||𝜽||1 as 𝜷 = (𝛽1, … , 𝛽R)T. The entries of 𝜷 satisfy that for any 1 ≤ i ≤ R, 𝛽 i = sgn(𝜃i)
if 𝜃i ≠ 0 and 𝛽 i ∈ [−1, 1] if 𝜃i = 0. As shown in the Lemma 1 of,35 �̂� is an optimal solution to problem (5.2) if and only if
there exists a subgradient vector �̂� ∈ 𝜕||�̂�||1 such that

−BT(b − B�̂�) + λ�̂� = 0 (5.4)

if and only if there exists a subgradient vector �̂� ∈ 𝜕||�̂�||1 such that

BTB(�̂� − 𝜽∗) − BT𝜺 + λ�̂� = 0. (5.5)

Assume that B is a full column rank matrix. Then, the objective function in problem (5.2) is strictly convex, and the
optimal solution �̂� to problem (5.2) is unique and exactly �̂�T . Denote S and Ŝ as the index sets of nonzero entries in 𝜽∗

and �̂�, respectively. So, the sparse signal 𝜽∗ can be rewritten as (𝜽∗
S

T , 0T)T , and the cardinality of S is k. We will show
in Theorem 3 that the optimal solution �̂�, which is also the �̂�T , of problem (5.2) may become a suitable approximation
for the real sparse signal 𝜽∗. Similar results shown in other works35,36 consider the case BTB∕n → C as n → ∞ or
n−1∕2max𝑗∈Sc ||B𝑗|| ≤ 1, where n is the number of rows in B, whereas in this paper, all the Bj are normalized to one. We can
further obtain a specific probability bound shown in Theorem 3, which relies only on two intrinsic parameters of model.

According to the unknown set S, we can separate columns of the design matrix B as two parts (BS,BSC ), where SC is
the complement of S. Moreover, because BS also have a full column rank, there exists a unique solution �̂�S by solving the
following restricted Lasso problem:

min
𝜽S

1
2
||b − BS𝜽S||22 + λ||𝜽S||1. (5.6)

Furthermore, if (�̂�T
S , 0T)T satisfies the equation (5.5), (�̂�T

S , 0T)T is thus the unique optimal solution �̂� to problem (5.2)
because B has a full column rank. Moreover, we also obtain that the index set Ŝ ⊆ S. From (5.5), if �̂�S satisfies two
equations, then

BT
S BS

(
�̂�S − 𝜽∗

S
)
− BT

S𝜺 + λ�̂�S = 0 (5.7)

and

BT
SC BS

(
�̂�S − 𝜽∗

S
)
− BT

SC𝜺 + λ�̂�SC = 0, (5.8)

where �̂�S ∈ 𝜕||�̂�S||1 and ||�̂�SC ||∞ = max𝑗∈SC |�̂�𝑗| < 1; we have that �̂� = (�̂�T
S , 0T)T satisfies Equation (5.5) and (�̂�T

S , �̂�
T
SC )T ∈

𝜕||�̂�||1. Actually, because �̂�S minimizes the problem (5.6), there exists �̂�S ∈ 𝜕||�̂�S||1 such that Equation (5.7) holds. So, if
it happens with a high probability that Equation (5.8) holds and ||�̂�SC ||∞ < 1, then the event 𝚪 = {(�̂�T

S , 0T)T is the unique
optimal solution �̂� to problem (5.2)} happens with a high probability. Furthermore, the event {Ŝ ⊆ S} also happens with
a high probability. We are going to show these in the following part of this section.

From Equations (5.7) and (5.8), we have that

�̂�SC = BT
SC BS

(
BT

S BS
)−1

�̂�S + BT
SC

(
I − BS

(
BT

S BS
)−1BT

S

)
𝜺

λ
, (5.9)

𝜹S = �̂�S − 𝜽∗
S =

(
BT

S BS
)−1 (BT

S𝜺 − λ�̂�S
)
. (5.10)
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For any j ∈ SC, we have that

𝛽𝑗 = BT
𝑗 BS

(
BT

S BS
)−1

�̂�S + BT
𝑗

(
I − BS

(
BT

S BS
)−1BT

S

)
𝜺

λ
= 𝜇𝑗 + 𝜔𝑗.

We assume that there exists an incoherence parameter 𝛾 ∈ (0, 1] such that ||BT
SC BS(BT

S BS)−1||∞ ≤ 1 − 𝛾 , where matrix
norm ||M||∞ = maxi

∑
𝑗|Mi𝑗|. It is easy to obtain |𝜇𝑗| = |BT

𝑗
BS(BT

S BS)−1�̂�S| ≤ ||BT
SC BS(BT

S BS)−1||∞ ≤ 1 − 𝛾 . Let us consider
𝜔𝑗 = BT

𝑗
(I−BS(BT

S BS)−1BT
S )

𝜺

λ
= 1

λ
(c1𝜀1+· · ·+cn𝜀n), where (c1, … , cn) = BT

𝑗
(I−BS(BT

S BS)−1BT
S ). Thus,𝜔j is a sub-Gaussian

distribution with zero mean and parameter 𝜎2

λ
(c2

1 + · · · + c2
n) = 𝜎2

λ2 BT
𝑗
(I − BS(BT

S BS)−1BT
S )B𝑗 . Because BT

𝑗
B𝑗 = 1, this

parameter is no more than 𝜎2

λ2 . So, Pr(max𝑗∈SC |𝜔𝑗| ≥ t) ≤ 2(R − k) exp(−λ2t2

2𝜎2 ), where k is the cardinality of S. By choosing
t = 1

2
𝛾 , we have that Pr(max𝑗∈SC |𝜔𝑗| ≥ 1

2
γ) ≤ 2(R − k) exp(−λ2γ2

8𝜎2 ). Thus, we have that

Pr
(
max
𝑗∈SC

|𝛽𝑗| > 1 −
γ
2

)
≤ Pr

(
max
𝑗∈SC

|𝜔𝑗| ≥ 1
2
γ
)

≤ 2(R − k) exp
(
−
λ2γ2

8𝜎2

)
. (5.11)

Now, let us consider the upper bound of 𝜹S: ||𝜹S||∞ ≤ ||(BT
S BS)−1BT

S𝜺||∞ + λ||(BT
S BS)−1||∞. Because λ||(BT

S BS)−1||∞ has a
fixed value, we only need to consider the first term. For any i ∈ S, we have that vi = eT

i (B
T
S BS)−1BT

S𝜺 = c1𝜀1 + · · · + cn𝜀n,
where (c1, … , cn) = eT

i (B
T
S BS)−1BT

S . If we assume that λmin(BT
S BS) ≥ 𝜇, then vi is a sub-Gaussian distribution with zero

mean and parameter 𝜎2

λ
(c2

1 + · · · + c2
n) = 𝜎2eT

i (B
T
S BS)−1ei ≤

𝜎2

𝜇
. Thus, Pr(maxi∈S|vi| > t) ≤ 2k exp(− t2𝜇

2𝜎2 ). By choosing

t = λ
2
√
𝜇

, we have that

Pr

(
max

i∈S
|vi| > λ

2
√
𝜇

)
≤ 2k exp

(
− λ2

8𝜎2

)
≤ 2k exp

(
−
λ2γ2

8𝜎2

)
. (5.12)

By combining (5.11) and (5.12), we have the probability inequality Pr({max𝑗∈SC |𝛽𝑗| > 1 − 𝛾

2
} ∪ {maxi∈S|vi| > λ

2
√
𝜇
}) ≤

2R exp(−λ2γ2

8𝜎2 ). Thus, the probability inequality on the complementary set is that

Pr

({
max
𝑗∈SC

|𝛽𝑗| ≤ 1 −
γ
2

}⋂{
max

i∈S
|vi| ≤ λ

2
√
𝜇

})
≥ 1 − 2R exp

(
−
λ2γ2

8𝜎2

)
.

Furthermore, we have that

Pr

(
Γ
⋂{||𝜹S||∞ ≤

λ
2
√
𝜇
+ λ||(BT

S BS
)−1||∞

})
≥ 1 − 2R exp

(
−
λ2γ2

8𝜎2

)
, (5.13)

where 𝚪 = {(�̂�T
S , 0T)Tis the unique optimalsolution �̂� to problem(5.2)}.

From the above discussion, we obtain the following Theorem 3, which illustrates the probabilistic consistency of the
optimal solution �̂� to problem (5.2).

Theorem 3. Suppose that the sparse structure (5.3) exists, the sparse signal 𝜽∗ = (𝜽∗
S

T , 0T)T, and B has a full column
rank. If there exist some parameters 𝛾 and 𝜇, where 0 < 𝛾 < 1 and 𝜇 > 0 such that ||BT

SC BS(BT
S BS)−1||∞ ≤ 1 − 𝛾 and

λmin(BT
S BS) ≥ 𝜇, we have that

Pr

(
{Ŝ ⊆ S}

⋂{||𝜹S||∞ ≤
λ

2
√
𝜇
+ λ||(BT

S BS
)−1||∞

})
≥ 1 − 2R exp

(
−λ2𝛾2

8𝜎2

)
, (5.14)

where Ŝ is the index set of nonzero entries in �̂�, and 𝜹S = �̂�S − 𝜽∗
S and �̂�S is the optimal solution of (5.6). Furthermore, if

the lower bound of the absolute values of elements in 𝜽∗
S is larger than λ( 1

2
√
𝜇
+ ||(BT

S BS)−1||∞), we have that

Pr
(
{Ŝ = S}

)
≥ 1 − 2R exp

(
−
λ2γ2

8𝜎2

)
. (5.15)

Proof. In terms of (5.13), the first inequality (5.14) follows from {Ŝ ⊆ S} ⊇ 𝚪, where 𝚪 = {(�̂�T
S , 0T)T is the unique

optimal solution �̂� to problem (5.2)}.
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If ||�̂�S − 𝜽∗
S||∞ = ||𝜹S||∞ ≤

λ
2
√
𝜇
+ λ||(BT

S BS)−1||∞ and the lower bound of the absolute values of elements in 𝜽∗
S is

larger than λ
2
√
𝜇
+λ||(BT

S BS)−1||∞, it can be checked that the entries in �̂�S and 𝜽∗
S of the same index have the same sign.

From (5.13), we can obtain the second inequality (5.15).

Theorem 3 tells us that if we want to recover the sparsity in (5.3) with a probability p, we should choose a λ such that
1 − 2R exp(−λ2γ2

8𝜎2 ) > 𝑝 when we know the intrinsic parameters γ and 𝜎2. So, to adaptively give a regularization parameter
λ based on the data , we need to give two guesses on the intrinsic parameters γ and 𝜎2. We set λ to zero in Algorithm 1
and compute an estimated tensor ̂ = [�̂�; X̂, Ŷ, Ẑ]R from the tensor data . The parameter 𝜎2 is estimated by using the
variance �̂�2 of all the entries in the difference  − ̂, and the parameter γ is set as �̂� = 1 − max{|⟨Bi,B𝑗⟩||i ≠ 𝑗}, where
Bi is the ith column in B = (X̂⊙ Ŷ)⊙ Ẑ. With regularization parameter λ̂ = 2

�̂�

√
2�̂�2 log(200R), the result of our algorithm

is shown by using the simulated and real data in the next section.

6 NUMERICAL EXPERIMENT

In this section, we have four types of numerical experiments for testing the performance of our algorithm. The codes
of the first three experiments are written in Matlab with simulated data. In all the simulations, the initial guesses are
randomly generated. The stopping criterion used in all experiments depends on two parameters: one is the upper bound
of the number of iteration (e.g., iter_max= 10, 000), and the other is a tolerance to decide whether convergence has been
reached (e.g., conv_tol= e−10). The fourth numerical experiment is executed in C++ with OpenCV for surveillance video
data. These experiments ran on a laptop computer with Intel i5 CPU 3.3 GHz and 8 GB memory.

6.1 Estimated rank
We randomly create a tensor  ∈ R10×10×10 with five rank-one components and then use LRAT to estimate the rank of 
along with the increment of the regularization parameter. The upper bound R of rank() is fixed to 10 in the algorithm,
whereas the regularization parameter λ varies from 0 to 0.1 by step 0.001. As shown in Figure 1, the estimated rank R̂ has
a decreasing trend as the parameter λ increases for these particular random tensor examples. Heuristically, the reason for
this trend lies in the minimization the objective function in (3.3); an increase in 𝜆 reduces the value of ||�̂�||1 and thus the
estimated rank R̂.

6.2 Accuracy of the estimated rank
We randomly generate three kinds of tensors with various dimensions and various rank-one component numbers (cn).
The estimated rank R̂ is calculated with the regularization parameter λ̂ = 2

�̂�

√
2�̂�2 log(200R), where �̂�2 and �̂� are computed

FIGURE 1 Trend of the estimated rank R̂
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TABLE 1 Mean and standard deviation of the estimated
rank R̂

I = J = K = 5 I = J = K = 10 I = J = K = 20

cn = 2 2.28 (0.87) 3.25 (1.31) 5.41 (1.85)
cn = 3 3.15 (0.93) 4.49 (1.12) 7.2 (2.06)
cn = 4 3.6 (0.92) 5.18 (1.16) 8.35 (1.82)
cn = 5 n/a 5.77 (1.29) 9.98 (1.60)
cn = 8 n/a 7.52 (1.01) 10.88 (1.51)
cn = 10 n/a n/a 11.69 (1.50)
cn = 15 n/a n/a 14.11 (1.43)

Note. cn = component numbers.

as discussed in Section 5. Table 1 shows the mean and standard deviation of the estimated rank. Also, the experiments ran
when cn is less than the mode size. Otherwise, no experiments (n/a) ran with cn larger than or equal to the mode size.

For each cn(cn = 2, 3, 4) we randomly generate 100 tensors in R5×5×5 with I = J = K = 5 and then use the LRAT with
the upper bound R = 5 to compute the estimated rank R̂. As shown in Table 1, when the rank-one cn = 3, the average
estimation difference of R̂ − cn is 0.15 and the standard deviation of R̂ is 0.93.

Similarly, for each cn, cn = 2, 3, 4, 5, 8, we randomly generate 100 tensors in R10×10×10, and for cn = 2, 3, 4, 5, 8, 10, 15,
we randomly generate 100 tensors in R20×20×20. The upper bound R is set to I = 10, 20. The mean and standard deviation
of R̂ are shown in the last two columns of Table 1.

6.3 Comparison between LRAT and modALS
In this subsection, we show the comparison between LRAT and modALS7 on a toy model. A tensor inR5×5×5 is randomly
generated with three rank-one components for these experiments. Figure 2(a) demonstrates the residual function || −
[𝜶;X,Y,Z]R||2F for the modALS and LRAT algorithms. The method modALS provided a better accuracy than LRAT; the
residual errors are 10−4 (modALS) and 10−3 (LRAT). However, modALS was able only to generate a CP decomposition
of an input rank of 5 with this accuracy. On the other hand, LRAT gave an estimated rank of 3 and a CP decomposition
with a residual error of 10−3. This is a sensible result that modALS has a low misfit because we know that it specializes
on minimizing the residual function with a required rank input, whereas the LRAT algorithm is designed for the sparse
optimization, as follows:

min
X ,Y ,Z,𝜶

1
2
‖ − [𝜶;X ,Y ,Z]R‖2

F + λ||𝜶||1 s.t. N(X,Y,Z) = 1.

The LRAT monotonically decreases 1
2
||− [𝜶;X ,Y ,Z]R||2F + λ||𝜶||1 as shown in Figure 2(b) and provides an estimate on

the number of rank-one components for any given tensor.

FIGURE 2 Comparison between LRAT and modALS. (a) Residual of LRAT and modALS; (b) objective function of LRAT
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FIGURE 3 Computation results based on LRAT and modALS. (a) 20 frames for Fountain; (b) results from LRAT; (c) results from modALS;
(d) 20 frames for Lobby; (e) results from LRAT; (f) results from modALS

6.4 Application in surveillance video
Grayscale video data is a natural candidate for third-order tensors. Due to the correlation between the subsequent frames
of the video, there exists some potential low-rank mechanism in the data. In this subsection, we apply the LRAT and the
modALS to two surveillance videos* on Fountain and Lobby. For each video of 220 consecutive frames, we choose a region
of interest with a resolution of 30 × 30.

Figure 3 demonstrates simulation results on the LRAT and the modALS. Here, the upper bound R is fixed to 400.
Figure 3 shows 20 frames in the original video data  and those frames estimated by the LRAT and the modALS. The
modALS provides an approximation with three factor matrices of (30+30+220)×400 elements. For the LRAT algorithm,
the regularization parameter λ̂ is set to 2

�̂�

√
2�̂�2 log(200R), where �̂�2 and �̂� are computed as discussed in Section 5. The

estimated number of rank-one components in ̂ is 378 for the Fountain video. The representation of ̂ with three factor
matrices only needs (30 + 30 + 220) × 378 elements. The estimated number of rank-one components is 392 for the Lobby
video, and the representation with three factor matrices needs (30+30+220)×392 elements. Compared with the modALS
algorithm, the LRAT has a smaller estimated rank but sacrifices more cpu time, because the LRAT algorithm requires an
instructive (a starter) choice on λ̂. For this case, we used the modALS algorithm to obtain a starter choice λ̂ for LRAT.

7 CONCLUSION AND FUTURE WORK

We propose an algorithm based on the proximal alternating minimization to detect the rank of tensors. This algorithm
comes from the understanding of the low-rank approximation of tensors from sparse optimization. We also provide some
theoretical guarantees on the convergence of this algorithm and a probabilistic consistency of the approximation result.
Moreover, we suggest a way to choose a regularization parameter for practical computation. The simulation studies
suggested that our algorithm can be used to detect the number of rank-one components in tensors.

The works presented in this paper have potential applications and extensions, especially in video processing and latent
cn estimation. The ongoing work is to apply this low-rank approximation method to moving object detection and video
data compression.

*The original data is from http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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