
*

Cergy Pontoise University— ENSEA

PROJECT REPORT

Master SIC—2006-2007

By

Abdoulaye BAGAYOKO

Supervisor:

Carmeliza NAVASCA/Lieven De Lathauwer

Title:

NON GAUSSIAN NOISE IN
BLIND SOURCE SEPARATION

Project carried out at

ETIS

The project described in this report was carried out at the laboratory ETIS between
January and April 2007 under the supervision of Carmeliza NAVASCA. We would like
to thank D. Nion for his ALS − l2 codes.

Contents

1 Introduction 1

2 Noises 3
2.1 Gaussian noise . 3
2.2 The α-stable distributions . 4
2.3 The Cauchy distribution . 6
2.4 The Laplace distribution . 7
2.5 Generation of noises . 8

2.5.1 Generation of Cauchy noise . 9
2.5.2 Generation of Laplace noise . 9

3 Tensor decompositions 11
3.1 Practical use of PARAFAC decomposition 11
3.2 The PARAFAC fitting problem formulation 13

4 Description of algorithms 17
4.1 Least squares estimation . 17
4.2 Alternating least squares PARAFAC algorithm 17
4.3 PARAFAC algorithm based on the l1 norm minimization 19

5 Numerical results 23
5.1 Simulation with Gaussian noise . 23
5.2 Simulation with Cauchy noise . 24
5.3 Simulation with Laplace noise . 26

6 Conclusion 27

1 Introduction

One of the main objectives of signal processing is to uncover particular information
hidden in observed data. In some cases, we might want to predict the future samples
or interpolate the missing samples of data using the information from available data. In
other cases, the desired signal might be interleaved with or added to another signal and
we would like to separate them. In almost all of these cases, our task is made difficult by
the fact that the corresponding signal is corrupted with unwanted random disturbances
which we call noise [1].

Noise can arise from several reasons: it can be the product of some neighboring signal
sources, natural or man made or it can result from our measuring processes.
Among various noise models, the additive noise model which can be represented as

x(n) = d(n) + w(n) n = 1, 2, 3... (1)

is by far the more popular. In Eq.(1), x and d represent the corrupted signal and the
clean signal, respectively and w is the noise which is generally assumed to be white and
distributed with a Gaussian distribution. But the Gaussian distribution is less tailed
and can’t represent in general a realistic noise such as impulsive noise. Many signal and
noise sources in the physical world for example present the impulsive behavior, sonar,
satellite communications, econometrics...

One the other hand, the decomposition of tensors (arrays of order equal to 3) has proven
to be useful in a number of applications. The Factor Analysis (PARAFAC) is perhaps
the most striking case [2].
Lastly, the solution of some problems, including the so-called Blind Source Separation
(BSS) has required the use of tensors [2].
BSS finds applications in Sonar, Radar (Chaumette Comon and Muller 1993), Electro-
cardiography (DeLathauwer DeMoor at alterae 2000), Speech (Nguyen-Thi and Jutten
1996; Lee and Lewicki 1999; DeLathauwer 1997), and Telecommunications (Ferreol and
Chevalier 2000; Gassiat and Gamboa 1997; Van der Veen 1996; Castedo and Macchi 1997;
Grellier and Comon 2000), among others. In particular, the surveillance of radiocommu-
nications in the civil context, or interception and classification in military applications,
resort to BSS. Moreover, in Mobile Communications, the mitigation of interfering users
and the compensation for channel fading effects are now devised with the help of BSS;
this is closely related to the general problem of Blind Deconvolution[2] ∗.

The PARAFAC model of a tensor X is given by three matrices, A, B and C, or in
general, the tensor X to decompose is corrupted with noise. The known tensor X̃ is then
given (according to the model of the equation (1)) by

X̃ = X + V (2)

where V is a tensor of noise.
The algorithms of PARAFAC decomposition aim to estimate the matrices A, B and C
given the disturbed tensor X̃. It’s a believe that these algorithms must depend on the
type of the noise.

∗See the references of these applications in [2]

2 1 Introduction

Perhaps the most known algorithm of PARAFAC decomposition is the ALS(Alternating
least squares) algorithm.
ALS algorithm is optimal for Gaussian noise but not for non-Gaussian [3].
The authors of [3] develops an iterative algorithm for the least absolute error fitting of
general multilinear models and shows that this l1 fitting is better for Laplace noise (
which is more tailed distributed than the Gaussian noise).
This project aims to study and compare the least absolute error fitting and the ALS
fitting, for one thing in the case of the Laplace noise in order to be conform to the result
of [3], for another thing in the case of Cauchy noise which will be new to our knowledge.
In this document we will begin to focus on the noises giving some details on the Gaussian
noise, the α-stable distributions and finally glance at the Laplace noise and the Cauchy
noise, particularly . Then, it will follow the PARAFAC decomposition and the description
of the ALS fitting and the least absolute error fitting. Finally, we will discuss about some
simulation results.

2
Noises

In this chapter, we will talk about a class of noise: the α-stable noises and the Laplace
noises. In particular, we will give details about the Cauchy and the Laplace distribution.
To begin, let’s point out some aspects of the Gaussian noise, that will lead to motive the
study of the impulsive noises.

2.1 Gaussian noise

According to the equation (1), the p.d.f (probability density function) of the Gaussian
distribution is completely determined by its mean µ and its variance σ2. A graphic
representation is given by the figure (1).

p(w, µ, σ) =
1√
2πσ

exp(−(w − µ)2

2σ2
) (1)

Figure 1: The Gaussian p.d.f, σ2 = 1 and µ = 0.

Many techniques in signal processing applications are developed to work ideally in Gaus-
sian noise environments. The Gaussian assumption leads to least squares estimation
which is the maximum likelihood estimate for Gaussian data. When we do not have a
priori information about the noise process, it is good to use the Gaussian distribution due
to the Central Limit Theorem which states that a random variable which can be repre-
sented as the sum of infinitely many independent random variables with finite variances
is distributed asymptotically with the Gaussian distribution.
Also the popularity of the Gaussian assumption is due to tractable analytical equations
that are in general linear, as opposed to the non-linear equations when non-Gaussian
distributions are involved. Furthermore, linear combinations of Gaussian variables are
also Gaussian and the output of a linear system to a Gaussian input, is also Gaussian,
which makes the Gaussian distribution the more attractive [1].

Despite all these strong motivations of the Gaussian assumption, the Gaussian p.d.f is an
exponential of the square of the deviation of the random sample from its mean, that is, the
probability associated with the tails, tends to zero quickly. For example, the probability

4 2 Noises

that a sample from a Gaussian random variable deviates from the mean by ±10σ is
estimated at 1.5×10−23. Therefore, there are many signals and noise sources, frequently
encountered in the physical world, which are not Gaussian. It is a common observation
in fields such as audio restoration, sonar, telephone line, satellite communications and
econometrics that a large class of noise encountered in many real-world problems can be
characterized as non-Gaussian and frequently as impulsive [1]. Examples of such noise
are relay switching noise on telephone lines [4], noise on image caused by scratches or
dropouts [5] and measurement errors.

The common property of these noise examples is that they show an impulsive behaviour.
They produce large-amplitude outliers much more frequently than Gaussian noise. These
high amplitude samples correspond to the very low probability parts of the Gaussian
p.d.f, and therefore are the most unlikely to be samples from a Gaussian p.d.f [1].

Figure (2) shows an example of signal corrupted by such noise, a noise on the audio
signal [1].

Figure 2: Corrupted audio data.

These observations show that there is a need of using another probability density
functions which satisfies the impulsive properties.

2.2 The α-stable distributions

The term α-stable is the name given to a class of distributions which is represented in
literature to be the best candidate to describe the impulsive noise [1]. In general, the
α-stable distributions are defined by their characteristic function, which is the Fourier
transform of their p.d.f∗

ϕ(t) =
{

exp
{
jµt− γ |t|α [

1 + jβsign(t) tan(απ
2)

]}
if α 6= 1

exp
{
jµt− γ |t|α [

1 + jβsign(t) 2
π lg |t|]} if α = 1

(2)

where α, β, γ and µ are the parameters which uniquely determine the distribution. In
particular, the characteristic exponent α determines the impulsiveness of the distribution,
that is, the smaller values of α correspond to more impulsive data.
The parameters α, β, γ and µ have the following physical meanings [1]:

(i) The characteristic exponent α is the parameters that sets the degree of the impul-
siveness of the distribution. The smaller values of α correspond to heavier tailed
distributions and hence to more impulsive behavior. The special case of α = 2
corresponds to the Gaussian distribution. The case α = 1 and β = 0 corresponds
to the Cauchy distribution. Figure (3) shows the effect of α with β = 0 †.

∗The α-stable p.d.f cannot be represented in a compact analytical form which makes impossible the
application of popular statistical signal processing techniques (maximum likelihood estimation, Bayesian
estimation) [1].

†When β = 0, the corresponding distribution are called symmetric α-stable distribution because of
the symmetry of their p.d.f

2.2 The α-stable distributions 5

(ii) The symmetry parameter β is . It determines the skewness of the distribution.
When β = 0, the corresponding distribution is called symmetric α-stable distribu-
tion (SaS).

The Gaussian and the Cauchy distributions are both SaS. In the case of the SaS,
power series expansions can be derived from the p.d.f. Moreover, for µ = 0, that is
when the corresponding SaS distributions are centred at the origin, the standard
SaS density function is given by [6] :

fα(x) =





1
πx

∑∞
k=1

(−1)k−1

k! Γ(αk + 1)x−αk sin(kαπ
2) for 0 < α < 1

1
π(x2+1)

for α = 1
1

πx

∑∞
k=0

(−1)k

2k! Γ(2k+1
α)x2k for 1 < α < 2

1
2
√

π
exp

[
−x2

4

]
for α = 2

(3)

Then, we can simulate the behavior of the p.d.f by giving to the variable k, high
values. Figure (4) shows the effect of the parameter β.

(iii) The scale parameter is γ. It is sometimes referred to as the dispersion. The
parameter γmeasures the spread of the samples from a distribution around its
mean. In the particular case of Gaussian distribution, γ is the variance. Figure (5)
shows its effect on the p.d.f graphically.

(iv) finally, the variable µ represents the location parameter. For SaS, µ is the mean
when 1 < α < 2 and the median when 0 < α < 1. A stable distribution is said to
be standard if µ = 0 and γ = 1.

Figure 3: Effect of the Characteristic exponent α, with β = 0,
µ = 0 and γ = 1.

6 2 Noises

Figure 4: Effect of the symmetry parameter β, with α = 1.5,
µ = 0 and γ = 1.

Figure 5: Effect of the dispersion γ, with α = 1, β = 0 and
µ = 0.

Zolotarevs theorem [1] shows that, with the exception of Gaussian case, α-stable dis-
tributions do not have finite variance and since variance is generally associated with
the power of the signal, there is a belief that, signal waveforms represented by α-stable
distribution cannot be physical. But some researchers gave many reasons to use these
distributions (see for example [7]).

Now, we will give some details on some particular noises: the Cauchy noise which is a
symmetric-α-stable distribution with α = 1 and β = 0, and the Laplace noise which is
not in the α-stable distribution class, but presents impulsive properties.

2.3 The Cauchy distribution

The p.d.f of the Cauchy distribution is given by:

fCauchy(x) =
1

πγ
[
1 + (x−x0

γ)2
] for x ∈ (−∞; +∞) (4)

2.4 The Laplace distribution 7

Then the cumulative distribution function is expressed as

FCauchy(x) =
∫ x

−∞
fCauchy(u)du =

1
π

arctan(
x− x0

γ
) +

1
2

(5)

where γ is the scale parameter and x0 is the location parameter of the distribution.
Neither the mean nor the variance is defined. The location parameter x0 represents the
median of the distribution.

Figure (6) represents the p.d.f for different values of the parameters x0 and γ.

Figure 6: Cauchy p.d.f for different values of x0 and γ. For
the case x0 = 0 and γ = 1 we obtain the standard Cauchy
distribution.

Note that, for a given value x0, as γ increases, the more the distribution is tailed and
tends to an impulsive behavior.

2.4 The Laplace distribution

The p.d.f of the Laplace distribution is given by:

fLaplace(x) =
1
2b

exp(−|x− µ|
b

) =
1
2b

{
exp(−µ−x

b) if x < µ

exp(−x−µ
b) if x ≥ µ

(6)

where µ is a location parameter and b > 0 is a scale parameter. Note that if µ = 0 and
b = 1, the positive half-line is exactly an exponential distribution scaled by 1/2.

Figure (7) below represents the p.d.f of the Laplace distribution for different values of
the parameters µ and b.

8 2 Noises

Figure 7: Laplace p.d.f for different values of µ and b.

As we can see on this figure, the Laplace distribution has ”fatter” tails than the normal
distribution. Then the Laplace distribution is better than the Gaussian noise for studying
impulsive noises. The cumulative distribution function is as follows

FLaplace(x) =
∫ x

−∞
fLaplace(u)du

then

FLaplace(x) =
{

1
2 exp(−µ−x

b) if x < µ

1− 1
2 exp(−x−µ

b) if x ≥ µ
= 0.5

[
1 + sign(x− µ)(1− exp(−|x− µ|

b
))

]

(7)

2.5 Generation of noises

In this part, we show a method to generate the sample noises given the corresponding
cumulative distribution. So next, we use the result of this method in programming.
Suppose that F : R → [0, 1] is the cumulative distribution for a random variable X.
Thus,

F (a) = P {X ≤ a} .

Now, let U a uniform random variable on [0, 1]. This means that:

P {U ∈ E} = |E| ‡

for all measurable subsets E ⊂ [0, 1]. Define Y = F−1(U). Then, for any interval (a, b),
we have, by a long string of trivial identities

P(Y ∈ (a, b]) = P
{
F−1 (U) ∈ (a, b]

}
= P {U ∈ F ((a, b])}
= P {U ∈ (F (a) , F (b)]}
= F (b)− F (a)§

= P(X ≤ b)− P(X ≤ a)
= P(a < X ≤ b)
= P(X ∈ [a, b]) .

‡For E = [a, b], |E| = b− a

2.5 Generation of noises 9

Then we conclude that X and Y have the same distribution. In other words if one
have F−1 the inverse of the cumulative distribution, then a good way to simulate the
random variable X is by the random variable Y = F−1(U) assuming that one have a
good (pseudo-)random number generator that can simulate U well.

2.5.1 Generation of Cauchy noise

The cumulative distribution of the Cauchy noise is given by the equation (5) Let u =
FCauchy(x) where u is a uniform random variable on [0, 1] , it follows

x = x0 + γ tan(π(u− 1
2
)) (8)

where x is a sample of the Cauchy noise.
To generate Cauchy noise, we just take the expression (8) with the samples u of the
random distribution on [0, 1] that is generated using the function rand of Matlab.

2.5.2 Generation of Laplace noise

The cumulative distribution of the Laplace noise is given by the equation (7). In the
same way as the Cauchy case above, let u = FLaplace(x), where u is a uniform random
variable on [0, 1]. Then it follows that

x = µ− bsign(u− 0.5) ln(1− 2 |u− 0.5|) (9)

To simplify the expression, let v drawn from the uniform distribution in the interval
(−1/2, 1/2], the variate,

x = µ− bsign(v) ln(1− 2 |v|), (10)

has a Laplace distribution with parameters µ and b.

3 Tensor decompositions

The decomposition of arrays of order higher than 2 has proven to be useful in a number
of applications. The most striking case is perhaps Factor analysis (PARAFAC) where
statisticians early identified difficult problems, tackling the limits of linear algebra. The
difficulty lies in the fact that such arrays may have more factors than their dimensions.
Next, data are often arranged in many-way arrays, and the reduction to 2-way arrays
sometimes results in a loss of information. Lastly, the solution of some problems, includ-
ing the so-called Blind Source Separation (BSS) generally requires the use of High-Order
Statistics (HOS), which are intrinsically tensor objects (McCullagh 1987)[2]. In this
chapter, we describe only the PARAFAC decomposition (which is one of several decom-
position methods for multi-way data),and one after the other, we give a programming
way to simulate this decomposition. PARAFAC is a multi-way method originating from
psychometrics[8]. The model was independently proposed by Harshman[9] and by Carroll
and Chang[10] who named the model CANDECOMP (canonical decomposition).

Consider an I × J ×K three-way array X with elements xijk and F − trilinear decom-
position

xijk =
F∑

f=1

aifbjfckf . (1)

For all i = 1, ..., I, j = 1, ..., J and k = 1, ...,K. Assume aif stands for the (I, f)th
element of I × F matrix A, and similarly, bjf and ckf stand for (j, f)th and (k, f)th
element of J × F and K × F matrices B and C, respectively. Equation(1) is known
as trilinear decomposition or PARAFAC analysis of xi,j,k.If F ≤ (kA+kB+kC

2)− 1, where
kA, kB, kC are the Kruskal rank of the matrices A, B and C respectively, then rank−F
decomposition of the three-way array X is unique[3].

3.1 Practical use of PARAFAC decomposition

A PARAFAC model of a three-way array is then given by three matrices, A, B and C
with elements aif , bj,f and ck,f . The trilinear model is found to minimize the sum of
squares of the residuals, ei,j,k in the model

xi,j,k =
F∑

f=1

ai,fbj,fck,f + ei,j,k. (2)

This equation is shown graphically in Fig.(1) for two components (F = 2).

12 3 Tensor decompositions

Figure 1: A graphical representation of a two-component
PARAFAC model of the data array X

Now, let’s present the matrix representation of the tensor X in PARAFAC decomposition.
Fig.(2) below represents the slicing of the tensor X in some I matrices of dimension
J ×K . We can express the 2-D slabs Xi as:

Xi = BAiC
T , i = 1, ..., I (3)

Figure 2: Horizontal slicing of the tensor.

Here, Ai = Di(A) denotes the operator which takes the ith row of matrix A and produces
a diagonal matrix by placing this row on the main diagonal.
Due to symmetry, there are two other types of slicing

Figure 3: Vertical slicing of the tensor X.

In the same way, we can express Yj as:

Yj = CBjA
T , j = 1, ..., J (4)

3.2 The PARAFAC fitting problem formulation 13

Figure 4: frontal slicing of the tensor X.

Then,

Zk = ACkB
T , k = 1, ..., K (5)

Where Bj and Ck are defined to be the operators which take the jth and the kth row
respectivily of the matrices B and C and produce two diagonal matrices by placing this
row on the main diagonal.

3.2 The PARAFAC fitting problem formulation

Now, let’s stack these slabs as shown on the figure below Fig. (5)

Figure 5: Stack of the slabs Xi.

We can, in the same way stack the ”slabs” Yj and the ”slabs” Zk.
Let X, Y and Z the matrices resulting from stacks:

X =




X1

X2
...

XI




JI×K

=




BA1

BA2
...

BAI


CT = (A¯B)CT (6)

Y =




Y1

Y2
...

YJ




KJ×I

=




BC1

BC2
...

BCJ


AT = (B ¯ C)AT (7)

Z =




Z1

Z2
...

ZK




IK×J

=




CA1

CA2
...

CAJ


BT = (C ¯A)BT (8)

14 3 Tensor decompositions

where ¯ stands for the Khatri-Rao matrix product.
As we pointed out, in practice, the three-way array will contain measurement noise, i.e.,
X̃ = X + V . Then the (ijk)th element of X̃ can be written as

x̃i,j,k = xi,j,k + vi,j,k. (9)

where vijk denote the additive complex i.i.d zero-mean measurement noise with statisti-
cally independent real and imaginary parts.
Considering the case of Xi, i = 1...I stack, we can write

X̃ =




X̃1

X̃2
...

X̃I




JI×K

=




X1

X2
...

XI


 +




V1

V2
...

VI


 (10)

Then, according to the equation (6)

X̃ = X + V = (A¯B)CT + V (11)

The PARAFAC fitting problem is to find the matrices A, B and C given the noisy data
X̃.
Considering the equation(11), the least squares estimation problem is expressed as:

min
A,B,C

∥∥X − (A¯B)CT
∥∥2

F
(12)

Let ∆AB = (A ¯ B), then to estimate the matrix C in least squares sense, given the
matrices A and B, the problem can be formulated as:

Ĉ = arg min
C

∥∥X −∆ABCT
∥∥2

F
(13)

In the same way:

Â = arg min
A

∥∥Y −∆BCAT
∥∥2

F
(14)

B̂ = arg min
B

∥∥Z −∆CABT
∥∥2

F
(15)

where ∆BC = (B ¯ C) and ∆CA = (C ¯A). ‖.‖F denotes the Frobenius matrix norm.

We can build another estimate method of matrices A, B, C based on l1 norm minimiza-
tion. That requires some necessary formulations.
We will assume all data real(imaginary part egal to zero). We introduce the operator
F(•) defined as

s = F(S) ,




S.,1

S.,2
...

S.,L




where S is a real-valued M × L matrix and S.,l denotes its lth column.

3.2 The PARAFAC fitting problem formulation 15

We can are the following property (see [3] for the demonstration):

F(DF) = (I ⊗D)F(F) (16)

where I is the identity matrix of commensurate dimension, D and F are any real-valued
matrices of commensurate dimensions, ⊗ denotes the Kronecker matrix product.
Using this property (16), the absolute error model fitting criterion can be written as:

‖x̃− (IK ⊗ {A¯B})c‖1 (17)

with x̃ = F(X̃), c = F(CT) and IK is the K ×K indentity matrix.
note that expression (17) is the norm of a vector in l1 norm sense.
The absolute error models corresponding to two others kinds of ”slicing” of the tensor
X are:

‖ỹ − (II ⊗ {B ¯ C})a‖1 (18)

and

‖z̃ − (IJ ⊗ {C ¯A})b‖1 (19)

with ỹ = F(Ỹ), a = F(AT), z̃ = F(Z̃) b = F(BT), and II and IJ denote respectivily
the I × I and the J × J identity matrix.
Now, the necessary formulations are made to build the PARAFAC fitting algorithms.

4 Description of algorithms

We will use the equations built in the last section to make two fitting algorithms for the
PARAFAC decomposition. The first is based on the least squares estimation and the
second uses the l1 norm minimization. To understand the first algorithm, let’s begin
with an outline of the least squares estimation.

4.1 Least squares estimation

Consider the bilinear model:

MΦ = Θ + E (1)

where E represents the measurement noise in the model. Φ is the unknown of the model.
Solving this problem in least squares sense, leads to minimize the l2 norm

‖MΦ−Θ‖2
2 (2)

Let Φ̂ the value of Φ that minimizes this norm:

Φ̂ = arg min
Φ
‖MΦ−Θ‖2

2 = arg min
Φ

(MΦ−Θ)T (MΦ−Θ) (3)

Then, Φ̂ checks the following equation:

∂(Φ̂T MT M Φ̂− Φ̂T MT Θ−ΘT M Φ̂ + ΘT Θ)
∂Φ̂

= O (4)

where O is the zero vector with commensurate dimension. It follows that (4)

Φ̂ = (MT M)−1MT Θ (5)

4.2 Alternating least squares PARAFAC algorithm

Algorithms for fitting the PARAFAC model are usually based on alternating least squares.
We aim to find the 2-D matrices A, B and C to solve the problem. We can solve the equa-
tion (13), (14) and (15) formulated the corresponding least squares estimation problem.
From the previous section, the solution to these equations are:

Â = Y T ∆BC(∆BC∆T
BC)−1 (6)

B̂ = ZT ∆CA(∆CA∆T
CA)−1 (7)

Ĉ = XT ∆AB(∆AB∆T
AB)−1 (8)

The alternating least squares algorithm is based on the following statement: given the
matrices B and C, we can estimate the matrice A using the equation (6), and with this
new value of A and the previous value of C, we can estimate the matrice B using the

18 4 Description of algorithms

equation (7), and finally, we estimate the matrice C with the previous values of A and
B using the equation (8). We can reiterate this process and measure the relative error
between the previous value of the resulting tensor and the current value of the resulting
tensor. The convergence is reaching when the error has decreased to a criterion.
Some works in the signal processing community show that convergence is usually guar-
anteed, but convergence to a global minimum is not guaranteed [11].
The pseudo-code of this algorithm can be the following:

(i) Initialize the paramaters, we must initialize two of the three matrices A, B and C.
Let given B and C for example. The tensor X̃ is known, it represents the tensor
X added to the noise. By ”slicing” X̃, do the following operations

• Calculate X =




X1

X2
...

XI




JI×K

• Calculate Y =




Y1

Y2
...

YJ




KJ×I

• Calculate Z =




Z1

Z2
...

ZK




IK×J

(ii) Calculate Â = Y T ∆BC(∆BC∆T
BC)−1

(iii) Calculate B̂ = ZT ∆CA(∆CA∆T
CA)−1

(iv) Calculate Ĉ = XT ∆AB(∆AB∆T
AB)−1

(v) Build X (let’s call X̂current this estimation) with the estimations Â, B̂ and Ĉ. We
can build also Y and Z, but only build a matrix (X or Y or Z) because everyone
contains the same information on the tensor X.

(vi) Calculate the error between X̂current and X̂previous. Where X̂previous represents the
”X̂current” of the previous iteration.

(vii) Do X̂previous = X̂current

(viii) Return to step (ii) until convergence (that is, obtain the desirable error)

4.3 PARAFAC algorithm based on the l1 norm minimization 19

4.3 PARAFAC algorithm based on the l1 norm minimiza-
tion

The estimation problems corresponding to the equations (17), (18) and (19) can be
expressed as:

â = arg min
a
‖ỹ − (II ⊗ {B ¯ C})a‖1 (9)

b̂ = arg min
b
‖z̃ − (IJ ⊗ {C ¯A})b‖1 (10)

ĉ = arg min
c
‖x̃− (IK ⊗ {A¯B})c‖1 (11)

where II , IJ and IK denote respectively the I × I, the J × J and the J × J identity
matrices.
These l1 minimization problems can be solved using the linear programming. To do that,
we must reform the expressions (9), (10)and (11).
Let’s consider the equation (9). Assume yi(for i = 1...IJK) are the elements of the
vector ỹ (In general, for a M ×N matrix M, M̃ = F(M) is a vector of length MN , so
the length of ỹ is IJK, because ỹ = F(Y) and Y is a KJ × I matrix), and assume Ψi

(for i = 1...IJK) are the elements of the vector (II ⊗ {B ¯ C})a. Then

‖ỹ − (II ⊗ {B ¯ C})a‖1 =
IJK∑

i=1

|yi −Ψi| (12)

To Minimize this sum leads to minimize the slack variables qi such that:

|yi −Ψi|+ qi = 0

for i = 1...IJK. Let qi stands for the vector q. So it follows

min
a
‖ỹ − (II ⊗ {B ¯ C})a‖1 ⇔ min

a,q
eTq

subject to
−q ¹ ỹ − (II ⊗ {B ¯ C})a ¹ q

where e = [1, 1, ..., 1]T is a vector of length IJK and ¹ denotes the usual pointwise
ordering.
Now, introduce the vector a defined as:

a =
[

a
q

]

and introduce also the vector eFI−IJK defined as eFI−IJK = [0, . . . 0, 1, . . . 1]T with FI
elements equal to zero (because a is a vector of length FI) and IJK elements equal to
”1” (the same length as the vector q). Then

min
a,q

eTq ⇔ min
a

eT
FI−IJKa (13)

Define ∆BC as:
∆BC = II ⊗ {B ¯ C} = II ⊗∆BC

Then we are:

−q ¹ ỹ − (II ⊗ {B ¯ C})a ¹ q ⇔ −q ¹ ỹ −∆BCa ¹ q

20 4 Description of algorithms

It follows
[−∆BC −IIJK

∆BC −IIJK

]
a ¹

[−ỹ
ỹ

]
(14)

Therefore, we obtain the standard form of the linear programming:

â = arg min
a

eT
FI−IJKa subjet to

[−∆BC −IIJK
∆BC −IIJK

]
a ¹

[−ỹ
ỹ

]
(15)

This linear programming (15) can be efficiently solved using the funtion linprog of Matlab.
Considering the symmetry of the problem, equations (10) and (11) become respectively:

b̂ = arg min
b

eT
FJ−IJKb subjet to

[−∆CA −IIJK
∆CA −IIJK

]
b ¹

[−z̃
z̃

]
(16)

and

ĉ = arg min
c

eT
FK−IJKc subjet to

[−∆AB −IIJK
∆AB −IIJK

]
b ¹

[−x̃
x̃

]
(17)

The pseudo-code of the resulting algorithm is:

(i) Initialize the paramaters, we must initialize two of the three matrices A, B and C.
Let given B and C for example. The tensor X̃ is known, it represents the tensor
X added to the noise. By ”slicing” X̃, do the following operations

• Calculate X =




X1

X2
...

XI




JI×K

and calculate x̃ = F(X); for that, we can make

a function F−mapping, such that, if we apply F−mapping to F , we obtain x̃
(x̃ = F−mapping(X)). We can also make a function inverse−F−mapping to
calculate the inverse of the operator F(•).

• Calculate Y =




Y1

Y2
...

YJ




KJ×I

and call the function F−mapping to calculate

ỹ = F−mapping(y).

• Calculate Z =




Z1

Z2
...

ZK




IK×J

and call the function F−mapping to calculate

z̃ = F−mapping(z).

• Build eFI−IJK, eFJ−IJK and eFK−IJK.

• Build the vectors mA2 =
[−ỹ

ỹ

]
, mB2 =

[−z̃
z̃

]

and mC2 =
[−x̃

x̃

]
.

(ii) Update A:

• Calculate ∆BC = II ⊗
{

B̂ ¯ Ĉ
}

.

• build the matrix mA1 =
[−∆BC −IIJK

∆BC −IIJK

]
.

4.3 PARAFAC algorithm based on the l1 norm minimization 21

• Call linprog : â = linprog(eFI−IJK,mA1, mA2).

• extract ã from â : ã = â(1 : FI). Where â(1 : FI) denotes the vector
extracted from â taking the first to the (FI)th element∗.

• Deduct Â = inverse−F−mapping(ã).

(iii) Update B:

• Calculate ∆CA = IJ ⊗
{

Ĉ ¯ Â
}

.

• build the matrix mB1 =
[−∆CA −IIJK

∆CA −IIJK

]
.

• Call linprog : b̂ = linprog(eFJ−IJK, mB1, mB2)

• extract b̃ from b̂ : b̃ = b̂(1 : FJ). Where b̂(1 : FJ) denotes the vector
extracted from b̂ taking the first to the (FJ)th element .

• Deduct B̂ = inverse−F−mapping(b̃).

(iv) Update C:

• Calculate ∆AB = IK ⊗
{

Â¯ B̂
}

.

• build the matrix mC1 =
[−∆AB −IIJK

∆AB −IIJK

]
.

• Call linprog : ĉ = linprog(eFK−IJK, mC1,mC2).

• extract c̃ from ĉ : c̃ = ĉ(1 : FK). Where ĉ(1 : FK) denotes the vector
extracted from ĉ taking the first to the (FK)th element .

• Deduct Ĉ = inverse−F−mapping(c̃).

(v) Build X (let’s call X̂current this estimation) with the estimations Â, B̂ and Ĉ. We
can build also Y and Z, but only build a matrix (X or Y or Z) because everyone
contains the same information on the tensor X.

(vi) Calculate the error between X̂current and X̂previous. Where X̂previous represents the
”X̂current” of the previous iteration.

(vii) Do X̂previous = X̂current. Return to step (ii) until convergence (that is, obtain the
desirable error)

Due to the complexity of the Matlab function linprog †, this algorithm is very slow as
we will see in the next section. Another alternative exists, interior-point-method. But
we don’t have more time to study this method.

The Matlab code of the two algorithms is jointed at the end of the report.

∗This is the notation of Matlab.
† linprog (f,A,B) solve the linear programming minx fT x subject to Ax ¹ B. See Matlab for more

information.

5 Numerical results

In this part of the report, we will present some simulation results. The two last algo-
rithms are simulated in Matlab environment. We aim to compare PARAFAC l1 and l2
algorithms in case of three noises: the Gaussian noise, the Laplace noise and the Cauchy
noise. For the examples below, let I = 4, J = 5, K = 10 and F = 3. Also, we set two
stopping conditions of the algorithms: param−vect(1) for the time allowed to reach con-
vergence, and param−vect(2) for convergence criterion, i.e. tolerance to decide whether
convergence has been reached (e.g. 10−9)∗

5.1 Simulation with Gaussian noise

Consider the samples of the noise following the Gaussian distribution with mean equal
to zero and unit variance: m = 0 and σ2 = 1. Next, add this noise to a tensor X
with random elements. Assume we don’t know X, but we have only the noisy tensor
X̃. We aim to estimate X given X̃. Using the alternating algorithms above, we plot

the graph corresponding to the error
∥∥∥X̂previous − X̂current

∥∥∥
2

F

† at each iteration. The

tolerance to decide whether the convergence has been reached is set to param−vect(2) =
10−9 and the time allowed is set to param−vect(1) = 60s for the ALS algorithm and
param−vect(1) = 160s for the l1 algorithm ‡. Then, we obtain the figure(1).
In this case, we notice that the ALS § algorithm is more efficient than the algorithm
based on l1 minimization because the error decreases more quickly in the case of ALS.
This result is expected since l2 fitting is the best treatment for Gaussian noise(see [12]).
Furthermore, considering calculation time, the ALS is by far faster than the l1 algorithm.
For example on our machine we obtain, time−ALS−G = 0.0843s and time−l1−G = 65s,
where time−ALS−G and time−l1−G denote the time spent running the ALS algorithm
and the time spent running the l1 algorithm, respectively. Note that this time depends
on the machine and processor, but the ratio may be constant whatever the machine.

∗We take the same notations as in our Matlab program. param−vect is the parameter vector with
three elements: param−vect(1), param−vect(2) and param−vect(3). param−vect(3) is set to 1, so we
compare X̂previous to X̂current to evaluate the relative amount of correction brought by the current
iteration (see the Matlab code).

† ‖•‖F is the Frobenius norm of a matrix. Here X̂ results of the stacking of the tensor X̂. See the
chapter 3 for more information.

‡That permits to compare the two graphs through great numbers of iterations because ALS algorithm
is by far faster than the l1 algorithm.

§Alternating Least Squares: this is the name given to the algorithm based on the least squares
estimation (see chapter 4 for more information).

24 5 Numerical results

0 5 10 15 20 25 30 35 40 45
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

no
rm

 o
f t

he
 r

es
id

ua
ls

 number of iterations

 Evolution of the cost function: Gaussian noise case

ALS

L1

Figure 1: Evolution of the cost function. Tensor with Gaussian
noise in case of ALS and L1 algorithms.σ = 1, m = 0

5.2 Simulation with Cauchy noise

Now, consider the case of Cauchy noise. We choose the same simulation parameters as
in Gaussian case (param−vect vector). To simulate a more tailed distributed noise, let’s
set γ = 4 (see chapter 2) because it’s more impulsive noise than all Gaussian noise. We
obtain the Fig. (2)

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

no
rm

 o
f t

he
 r

es
id

ua
ls

 number of iterations

 Evolution of the cost function: case of Cauchy noise

ALS
L1

Figure 2: Evolution of the cost function. Tensor with Cauchy
noise in case of ALS and L1 algorithms.γ = 4, x0 = 0

We note a net efficiency of the l1 minimization algorithm. The convergence of the l1
minimization algorithm is reached before 30 iterations, while the convergence of the ALS
algorithm is reached after 90 iterations. On the other hand, the time of calculation is
better for the ALS (time−ALS−C = 0.0802s)than for the l1 algorithm (time−l1−C =
160.8s), but as we have mentioned above, this is due to the use of the linear programming
solver available in Matlab. There are some methods to speed up the process of solving
(see [12] and [13]for using interior point method)

5.2 Simulation with Cauchy noise 25

To compare the two algorithms in terms of impulsiveness, we simulate the case of two
different tails of Cauchy distribution: γ = 0.5 (less impulsive noise) and γ = 3 (more
impulsive noise). We obtain Fig. (3).

0 20 40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

no
rm

 o
f t

he
 r

es
id

ua
ls

 number of iterations

 Evolution of the cost function: case of Cauchy noise

ALS−cauchy−0.5

L1−cauchy−0.5

ALS−cauchy−3

L1−cauchy−3

Figure 3: Evolution of the cost function. Tensor with Cauchy
noise in case of ALS and L1 algorithms. Comparison of two
different tails: case1 → γ = 0.5, x0 = 0 and case2 → γ =
3, x0 = 0.

This simulation shows that the more the noise is impulsive, the more the l1 minimiza-
tion algorithm is efficient than the ALS algorithm. Thus, we conclude for tensor with
impulsive noise, the l1 minimization is a better method.

26 5 Numerical results

5.3 Simulation with Laplace noise

For the Laplace noise, let’s choose to compare two different tails (scales) of the distribu-
tion: b = 1 (less tailed noise) and b = 4 (more tailed noise). We obtain Fig.(4).

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

no
rm

 o
f t

he
 r

es
id

ua
ls

 number of iterations

 Evolution of the cost function: Laplace noise case

noise 1. ALS

noise 1. L1

noise 2. ALS

noise 2. L1

Figure 4: Evolution of the cost function. Tensor with Laplace
noise in case of ALS and L1 algorithms. Comparison of two
different tails: case1 → b = 1, µ = 0 and case2 → b = 4, µ =
0.

The convergence is reached for the ALS method after 80 iterations (noise 2) and 93 itera-
tions (noise 1) while with l1 minimization the convergence is obtained after 35 iterations
(noise 2) and 28 iterations (noise 1) with tolerance set to 10−9.
Note that if the tolerance is set to 10−7, the convergence for l1 takes a lot less iteration,
i.e. 8 iterations (noise 1) and 10 iterations (noise 2).

6
Conclusion

In this report, two types of noises have been studied, the α-stable distributed noises
particularly, Gaussian and Cauchy noises, and the Laplace noise. Then, two iterative
algorithms for fitting trilinear PARAFAC models have been studied, too, the alternating
least squares algorithm ALS based on the least squares estimation and the least absolute
error l1 algorithm based on the linear programming. We have compared these two
algorithms in the case of the Cauchy noise, the Laplace noise and the Gaussian noise.
Our results show that the ALS fitting is better for the Gaussian noise, but if we have
Laplace or Cauchy noise, the l1 fitting is more efficient than the ALS. This result may
be expected in the case of any tailed distribution, including the impulsive noises.
However, the algorithm of l1 minimization based on the linear programming is slower
in computation due to the use of the Matlab linear programming function linprog, but
there are some methods to speed up the process (see [12] and [13]for using interior point
method). We do not have any time to use these solving methods.

Bibliography

[1] ERCAN ENGIN KURUOGLU. signal processing in α-stable noise environment: a
least lp-norm approach. PhD thesis, University of Cambridge, November 22 1998.

[2] J. G. McWhirter and I. K. Proudler Eds. Mathematics in signal processing 5. Oxford
University Press, 2001.

[3] Nicholas D. Sidiropoulos Sergiy A. Vorobyov, Yue Rong and Alex B. Gershman.
Robust iterative fitting of multilinear models. IEEE, 53(8), August 2005. transaction
on signal processing.

[4] D. Middleton. Statistical-physical models of electromagnetic interference. IEEE,
EMC-19(3):106–127, 1977. Transactions on Electromagnetic Compatibility.

[5] W.J.Fitzgerald A.C.Kokaram, R.D. Morris and P. J.W. Rayner. Interpolation of
missing data in image sequences. IEEE, 4(11):1509–1519, 1995. Transactions on
Image Processing.

[6] P. Tsakalides. Array signal processing with α-Stable Distributions. PhD thesis,
University of Southern California, 1995.

[7] C. L.Nikias and M.Shao. Signal Processing with α-Stable Distributions and Appli-
cations. John Wiley Sons, 1995.

[8] Rasmus Bro. Parafac. tutorial and applications. ELSEVIER, March 1997. Chemo-
metrics and intelligent laboratory systems.

[9] R.A Harshman. Foundation of the parafac procedure: Model and conditions for
an ’explanatory’ multi-mode factor analysis. UCLA Working papers in phonetics,
16(1), 1970.

[10] J.Chang J.D. Carroll. Analysis of individual differences in multidimensional scal-
ing via n-way generalization of and eckart-young decomposition. Psychometrika,
35(283), 1970.

[11] R. Bro A. Smilde and P. Geladi. Multi-way Analysis With Applications in Chemical
Sciences. John Wiley Sons, 2004.

[12] Nicholas D. Sidiropoulos and Rasmus Bro. Mathematical programming algorithms
for regression-based nonlinear filtering in rn. IEEE, 47(3), March 1999. transaction
on signal processing.

[13] Stephen Boyd and Lieven Vandeberghe. Complex Optimization. Cambridge Press,
2006.

[14] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2.
John Wiley Sons, 1966.

[15] L. De Lathauwer. Decompositions of a higher-order tensor in block terms. SIAM J.
Matrix Anal. Appl., 2006. submitted.

