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Abstract

This thesis studies the numerical methods of different types of tensor decompositions

and their applications.

Numerically, both the tensor CP decomposition and the Block Term Decompo-

sition (BTD) problems can be reformed into several least-squares subproblems so

that they can be solved by an algorithm called the Alternating Least-Squares (ALS)

method (for BTD, we call it the BTD-ALS). However, the ALS/BTD-ALS method

has a swamp phenomena which makes the convergence of the algorithm extremely

slow. Moreover, this algorithm cannot guarantee to converge to a stationary point.

In an attempt to overcome the issue of a swamp, this thesis studies the regularized

alternating least-squares method (RALS) for solving the CP and the BTD (for BTD,

we call it the BTD-RALS). An important aspect of this thesis is a convergence result

of RALS showing that given the existence of stationary points of the ALS/BTD-ALS

method, the limit points of the converging subsequences of the RALS/BTD-RALS

are the stationary points of the original cost functional. Some numerical examples

indicate a faster convergence rate for the RALS/BTD-RALS in comparison to the

usual alternating least-squares method.

In addition, this thesis studies the decompositions for a partially symmetric ten-

sor, called Symmetric Outer Product Decomposition (SOPD) and proposed a Partial

Column-Wise Alternating Least-Squares (PCW-ALS) method for solving such decom-

position. It has been shown that PCW-ALS is better than the usual ALS method in
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terms of the number of iterations and CPU times.

A specific type of BTD, three-way receptor model, is studied in this thesis. The

non-uniqueness of the receptor model is shown based on a new formulation. In the

application of the receptor model, an variant of ALS method called Weighted Alter-

nating Least-Squares (WALS) is introduced.

Two applications of tensor decompositions are provided. One is the application of

the receptor model on an air sampled dataset to identify the different factor sources

at the Washington-Dulles international airport area. The other application is CP

decomposition on the signal processing. It studies a two-channel mixture waveforms

of several sound sources and identify these different sound sources.
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Chapter 1

Introduction

Matrix decompositions have always had an extremely important role in the signal,

circuit and system theory. In particular, the Singular Value Decomposition (SVD)

has been applied in image compression, signal processing, modal analysis and many

other scientific fields [79] . For example, in the study of data from food industry,

the standard multivariate data analysis arranges those data in a two-way structure

[16], where each row of a data matrix denotes a sample and each column expresses

the absorbance at a particular wavelength. Also in studying of air sample in Chemo-

metrics, the data is arranged in a matrix structure [102], where each row is a sample

time and each column denotes one chemical element. However, data can be much

more complex. For instance, sometimes in chemometics, each sample of the fluores-

cence emission is determined at several wavelengths for several different excitation

wavelengths. In this case, the data need one more index. Therefore, it is natural to

think about multi-way arrays which we call tensors. Tensors can be considered as a

generalization of matrices. Similar with the popularity of matrix decomposition, the

study of tensor decomposition becomes an important topic since it can be applied to

data arrays for extracting and explaining their properties [70].

Hitchcock in 1927 first proposed tensor decomposition [48] and [54], which is also

the origin of CANDECOMP/PARAFAC (CP) decomposition. Tensor decomposi-
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tion was a popular method until Tucker proposed Tucker decomposition in the 1960s

[123, 124]. In 1970, due to the work of Harshman[49], Carroll and Chang [17], Hitch-

cock’s idea was named CANDECOMP/PARAFAC (CP). Recently, in 2008, De Lath-

auwer [28, 29, 36] proposed a more general tensor decomposition model which can be

considered a framework that unifies the CP and Tucker decomposition. The author

calls it Block Term Decomposition (BTD). The first two tensor decompositions (CP

and Tucker decompositions) have become the most basic and popular factorizations

and have been applied in chemometrics [4, 102, 57, 43, 52, 128] and signal processing

[36, 31, 32, 26, 82]. In the last decade, the tensor decomposition has attracted more

scientific field including numerical linear algebra [71, 34, 33], data mining[117, 85]

and more. Moreover, several books about multiway data have appeared [73, 72].

The latter one [72] mainly deals with the third-order tensors (three-way data) while

[73] focuses on multiway data applications. There are also several software packages

available for working with tensors and their decompositions [2, 7, 6].

CP decomposition is a natural generalization of matrix singular value decomposi-

tion (SVD). However, the CP does not have similar properties to matrix SVD. One

issue with CP is that the determination of the rank of a tensor is NP-hard [51].

Several papers discuss tensor rank and propose new definitions like maximum rank

and typical rank to describe the rank properties of tensor [77, 62, 118, 63]. Also

the uniqueness of CP decomposition is more complicated, and has become a popular

research area. Kruskal [75, 77] provides a sufficient condition for third-order tensor

uniqueness, and his results were followed by many general extended results. See pa-

pers [27, 61, 116, 114, 115]. The extension of the Eckart-Young theorem is also an

interesting topic [38] since the best rank-r approximation problem for higher-order

tensors is a problem of central importance in the statistical analysis of multiway data

[16, 33, 34].

Another research area is studying the numerical methods for the CP decomposi-
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tion. Currently, most numerical methods for CP begin with a guess for the rank R

since the determination of tensor rank is NP-hard [51]. Basically, starting from a small

R, we keep adding one until we find a perfect fit. This method does cause problems

in practice relating to the degeneracy problem [95]. Among those CP decomposi-

tion algorithms, the alternating least-squares (ALS) [49, 17] method is a popular and

convenient one. But it can take many iterations to converge, such a phenomena is

called the swamp. Moreover, the ALS method is not guaranteed to converge to a

global minimum or even a stationary point. Several papers discuss this problem and

propose some methods to improve the efficiency of ALS [106, 92, 91], where [91] deals

with non-degeneracy problem and is an regularized method which can remove some

swamps.

The fully and partially symmetric tensors have a wide application to the field of

signal processing [19] and the problem of decomposing a fully symmetric tensor into

a sum of a number of rank-one fully symmetric tensors is related to the independent

component analysis (ICA) [20], [60]. Therefore, such symmetric tensor decomposition

has been studied in [21, 14, 31, 69]. However, these methods are not robust, and they

cannot apply to all kinds of symmetric tensors. The method proposed in [31] is only

for fourth-order fully symmetric tensor called Fourth-Order-Only Blind Identification

(FOOBI) and it is based on Joint Diagonalization algorithm. The Higher-Order

Power Method (HOPM) proposed in [69] is only for rank-one approximation of a

fully symmetric tensor and it cannot generalize to rank-R approximation.

Tucker decomposition factors a tensor into a core tensor of the same order with a

matrix multiplied along each mode. In 2000, De Lathauwer, De Moor and Vandewalle

[33] constrained that all the factor matrices must be orthogonal, and they called it the

Higher-Order Singular Value Decomposition (HOSVD). They also show that HOSVD

exists for any higher-order tensor and they provided a convenient method to solve

it. In some applications, a reduced core tensor (the size is much smaller than the

3



original tensor) is always expected, so some methods appear for solving a truncated

HOSVD [74, 34]. The latter paper discusses a method called Higher-Order Orthogonal

Iteration (HOOI) which is faster and simpler.

Several researchers study the BTD model such as De Almeida, Favier and Mota

[25], who give an overview of BTD models and its applications to problems in blind

beamforming and multiantenna coding. De Lathauwer explores the BTD, concludes

that BTD is a general framework that unifies the CP and Tucker decompositions. In

addition, he proposes a numerical method to compute the tensor block term decom-

position [28, 29, 36]. This method is also based on the alternating least-squares algo-

rithm. He further studies the uniqueness properties of BTD which can be considered

a generalization of Krusdal’s theorem. Some applications in wireless communications

are in [36]. Separately, in the study of source of air pollutants in chemometrics, a

three-way receptor model [102] is proposed. The block term decomposition in rank-

(L,L, 1) is actually a special case of the receptor model. A different type of method

called Multilinear Engine (ME) is used to solve the receptor model in [102], which

treats the original problem as a nonlinear optimization.
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Chapter 2

Introduction to tensors

1 Tensor definition and basics

We follow the survey paper [70] and De Lathauwer’s papers [26, 27, 33] to provide

the following definitions. The definition of tensor refers to [38].

Definition 1.1 (Nth-order tensor) Let RI1 ,RI2 , . . . ,RIN be N vector spaces, each of

which has its own coordinate system, and let the vector xi ∈ RIi, i = 1, 2, . . . , N .

There is a multilinear map φ on the space RI1 × RI2 × · · · × RIN defined by

φ(x1, . . . ,xN) 7→ [x
(1)
i1
· · ·x(N)

iN
]I1,...,INi1,··· ,iN=1,

where x
(r)
ir

means the irth element of the rth vector xr.

We use X to denote the right hand of the above map definition and the element of

X is xi1i2...iN = x
(1)
i1
· · ·x(N)

iN
. So X is in RI1×I2×···×IN and is called a N th-order tensor.

This is a general definition in multilinear algebra. Here, we can consider a Nth-

order tensor as a N dimensional array or N -way array [27, 70]. So, if all the above

vector spaces are RIn , then a Nth-order tensor X is a N -way real-valued array, i.e.,

X ∈ RI1×I2×···×IN . If the above vector spaces are CIn , X ∈ CI1×I2×···×IN is a complex-
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valued tensor. Through this thesis, a Nth-order tensor X is always real-valued except

when we specify it as a complex tensor.

Example 1.2 A zero-order tensor is a scalar, a first-order tensor is a vector and a

second-order tensor is a matrix. A third-order tensor T ∈ RI×J×K has three indices,

as shown in Figure 2.1. The element of T is tijk ∈ T , i = 1, 2, . . . , I; j = 1, 2, . . . , J

and k = 1, 2, . . . , K.

Figure 2.1: A third-order tensor: T ∈ RI×J×K

Definition 1.3 (Mode-n fibers) A mode-n fiber of a N th-order tensor is a vector

defined by fixing every index but the nth one. So, for a N th-order tensor T ∈

RI1×I2×···×IN , the mode-n fiber can be denoted as ti1··· in−1 : in+1··· iN.

The following Figure 2.2 is the different mode fibers for the third-order tensor.

Example 1.4 For a matrix, the columns are the mode-1 fibers and the rows are the

mode-2 fibers.

Definition 1.5 (Slices) A slice of a N th-order tensor is a two-dimensional section

defined by fixing all but two indices. If the unfixed indices are it and is, then the

corresponding slice can be expressed as Ti1··· it−1 : it+1··· is−1 : is+1··· iN.

6



(a) The mode-1 fibers: t:jk (b) The mode-2 fibers: ti:k (c) The mode-3 fibers: tij:

Figure 2.2: The three mode-n fibers of a third-order tensor T ∈ RI×J×K

(a) The horizontal slices: Ti : : (b) The lateral slices: T: j : (c) The frontal slices: T: : k

Figure 2.3: The three different slices of a third-order tensor T ∈ RI×J×K

The Figure 2.3 shows the three mode slices (Ti : :, T: j :, T: : k) for the third-order

tensor, we also call them horizontal, lateral and frontal slices respectively.

Definition 1.6 (Mode-n matricization: transforming a tensor into a matrix) [70]

Matricization (or Unfolding) is the process of reordering the elements of an N th-

order tensor into a matrix. The mode-n matricization of a tensor T ∈ RI1×I2×···×IN

is denoted by T(n) and arranges the mode-n fibers to be the columns of the resulting

matrix. The dimension of T(n) is RIn×J , where J = I1 · · · In−1In+1 · · · IN .

If we use a map to express such matricization process for any Nth-order tensor

T ∈ RI1×I2×···×IN , that is, the tensor element (i1, i2, . . . , iN) maps to matrix element

7



(in, j), then there is a formula [70] to calculate j:

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk with Jk =
k−1∏
m=1
m 6=n

Im.

So, given a third-order tensor T ∈ RI×J×K , the mode-1, mode-2 and mode-3 matri-

cizations of T , respectively, are:

T(1) = [t:11, . . . , t:J1, t:12 . . . , t:J2, . . . , t:1K, . . . , t:JK],

T(2) = [t1:1, . . . , tI:1, t1:2 . . . , tI:2, . . . , t1:K, . . . , tI:K],

T(3) = [t11:, . . . , tI1:, t12: . . . , tI2:, . . . , t1J:, . . . , tIJ:].

Example 1.7 Given a third-order tensor X ∈ R3×3×2. The frontal slices of X are

X: : 1 =


1 3 5

2 4 6

7 9 11

 , X: : 2 =


13 15 17

14 16 18

19 21 23

 .

So the three mode-n unfoldings are

X(1) =


1 3 5 13 15 17

2 4 6 14 16 18

7 9 11 19 21 23

 ,

X(2) =


1 2 7 13 14 19

3 4 9 15 16 21

5 6 11 17 18 23

 ,

X(3) =

 1 2 7 3 4 9 5 6 11

13 14 19 15 16 21 17 18 23

 .
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Other ordering exists based on permutation of mode-n unfolding, see [33] and [66].

An alternative way to define the mode-n unfolding is provided in [33], which is

Definition 1.8 (Mode-nmatricization) [33] Assume an N th-order tensor T ∈ RI1×I2×···×IN .

The mode-n matricization (unfolding) T(n) ∈ RIn×(I1I2...In−1In+1...IN ) contains the ele-

ment ti1i2...iN at the position with row number in and column number j, where

j = 1 +
n−1∑
k=1

(ik − 1)Jk +
N∑

l=n+1

(il − 1)J̃l, where Jk =
n−1∏

m=k+1

Im, J̃l =
N∏
m=1
m6=n

Im.

For the same example 1.7, the three mode-n unfolding should be

X(1) =


1 13 3 15 5 17

2 14 4 16 6 18

7 19 9 21 11 23

 ,

X(2) =


1 2 7 13 14 19

3 4 9 15 16 21

5 6 11 17 18 23

 ,

X(3) =

 1 3 5 2 4 6 7 9 11

13 15 17 14 16 18 19 21 23

 .
From the above example, we can see that the difference between these two is just

the order of the fibers of the tensor. In general, this difference in definitions 1.8 and

1.6 does not affect the calculation as long as the same one is used during the process of

calculation. In the following chapters, if we do not mention, the definition1.6 is used.

We will switch to the definition 1.8 in the study of third-order receptor model and

we will mention it in that section. Moreover, sometimes we may need to vectorize a

tensor. Once again, the order of the arrays is not important as long as it is consistent

with its calculation.
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Definition 1.9 (Vectorization) The vectorization of a matrix

M = [m1,m2, · · · ,mn] ∈ Rm×n,

where mi is the ith column of M, is denoted by vec(M) which is a vector of size mn

defined by

vec(M) =



m1

m2

...

mn


.

So, the vectorization of a tensor T ∈ RI1×I2×···×IN is denoted by vec(T ). We define it

by vectorizing its mode-1 unfolding,

vec(T ) = vec(T(1)).

Definition 1.10 (unvec) Given a vector v ∈ RI2, then unvec(v) is a matrix of size

I × I. It is defined by dividing the vector v into I smaller vectors and each of them

is length I, and the ith pieces is the ith column of resulting matrix.

Definition 1.11 (ten) Given a vector v ∈ RI3, then ten(v) is a tensor of size I×I×I.

It is defined as follows: by dividing the vector v into I vectors vi (each one is a smaller

vector of length I2), i = 1, 2, . . . , I, the ith frontal slide of resulting tensor is

ten(v)(:, :, i) = unvec(vi).

Definition 1.12 (Frobenius-norm) The Frobenius norm of a tensor T ∈ RI1×I2×···×IN

is the square root of the sum of the squares of all its elements. The formula is

‖T ‖F =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

t2i1i2···iN .
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This is analogous to the matrix Frobenius norm. So far, it is the only norm we

can very easily to generalize from the matrix case. There are no uniform definitions

of tensor’s eigenvalues, eigenvectors or tensor’s 1-norm, 2-norm, infinite-norm. Lim

[83] (also see Qi [105]) discusses the theory of eigenvalues, eigenvectors for higher-

order tensors. Brazell, Li, Navasca and Tamon in [15] also provide the eigenvalue

decomposition (EVD) for a forth-order symmetric tensor.

2 Basic tensor operations

The tensor space RI1×I2×···×IN is a vector space. So for any two tensors A,B ∈

RI1×I2×···×IN and λ ∈ R, we have

A+ B = C ∈ RI1×I2×···×IN where ci1i2...iN := ai1i2...iN + bi1i2...iN

λ · A = D ∈ RI1×I2×···×IN where di1i2...iN := λ · ai1i2...iN + bi1i2...iN .

Different from matrix, tensor does not have inversion in the common sense. How-

ever, under some specific product on some tensors, we may define the tensor inversion

and the identity tensor so that we can obtain a tensor group. For example, Brazell

et al. [15] defines a tensor group on all the fourth-order tensor. But in general, the

tensor inversion is an open question.

Definition 2.1 (Inner product) The inner product of two same-sized tensors T ,W ∈

RI1×I2×···×IN is the sum of the products of their elements, i.e.,

〈T ,W〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

ti1i2...iNwi1i2...iN .
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Example 2.2 According to the definition of Frobenius norm of a tensor, we have

〈T , T 〉 = ‖T ‖2F .

Definition 2.3 (Outer product) The outer product of two tensors T ∈ RI1×I2×···×IN

and W ∈ RJ1×J2×···×JM is a (N +M)th-tensor denoted by T ◦W, and the element of

T ◦W is defined by

(T ◦W)i1i2...iN j1j2...jM = ti1i2...iNwj1j2...jM ,

for ik = 1, 2, . . . , Ik, k = 1, 2, . . . , N and js = 1, 2, . . . , Js, s = 1, 2, . . . ,M .

Notice that if we take T and W as two vectors (first-order tensors), the outer

product of T and W (as two tensors) is consistent with the outer product of T and

W as two vectors.

Example 2.4 Given N vectors: x(1) ∈ RI1 , x(2) ∈ RI2 , . . . , x(N) ∈ RIN , we can

generate an Nth-order tensor X by using outer product of these vectors, so the

element xi1i2...iN of X is

xi1i2...iN = x
(1)
i1

x
(2)
i2
· · ·x(N)

iN
.

And the tensor X is

X = x(1) ◦ x(2) ◦ · · · ◦ x(N).

Definition 2.5 (Contraction) [26] The contraction 〈T 〉p,q of a tensor T ∈ RI1×I2×···×IN ,

over the indices ip and iq (Ip = Iq), is a (N − 2)th-order tensor and is defined by

(〈T 〉)i1i2...ip−1ip+1...iq−1iq+1...iN =

Ip=Iq∑
r=1

ti1i2...ip−1rip+1...iq−1riq+1...,iN .

More generally, it is possible to define contractions over several indices.
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3 Tensor multiplication

Tensor multiplication is much more complex than the matrix multiplication since each

tensor has many indices. Bader and Kolda [7] discuss the different situations of tensor

multiplication. Here, we can consider only the Tucker-n product (n-mode product)

which defines the multiplication between a tensor and a matrix (or a vector).

Definition 3.1 (Multiplication of a higher-order tensor by a matrix) The n-mode

product of a tensor T ∈ RI1×I2×···×IN and a matrix M ∈ RJ×In, denoted by T ×n M,

is an N th-order tensor Y of size (I1×I2×· · ·×In−1×J×In+1 · · ·×IN). The element

of the new tensor is

(T ×n M)i1i2...j...iN =
In∑
in=1

ti1i2...in...iNmjin .

By using mode-n matricization, we can get

Y = T ×n M⇔ Y(n) = MT(n).

Example 3.2 Let X ∈ R3×3×2 be the tensor defined in example 1.7 and let M =1 2 3

4 5 6

, then the 2-mode product Y = X ×2 M can be calculated, which is

Y: : 1 =


22 49

28 64

58 139

 , Y: : 2 =


94 229

100 244

130 319

 .

There are two properties about the n-mode product, which can be expressed as

following:

Proposition 3.3 [26] Given the tensor X ∈ RI1×I2×···×IN and the matrices M ∈
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RJm×Im, N ∈ RJn×In, so we have:

X ×m M×n N = X ×n N×m M when m 6= n.

Proposition 3.4 [26] Given a N th-order tensor X ∈ RI1×I2×···×IN and the matrices

M ∈ RJn×In, N ∈ RKn×Jn, then we have:

X ×n M×n N = X ×n (NM).

Actually, we can use the n-mode product to describe the matrix multiplication.

For the matrices A ∈ RI×J , B ∈ RK×J and C ∈ RL×I , then we have

ABT = A×2 B

CA = A×1 C.

Therefore, we have

CABT = A×1 C×2 B. (3.1)

De Lathauwer [26] explains the above equation (3.1) as the columns of C are

associated to the “1-mode space” of A; in exactly the same way the columns of B

are associated to the “2-mode space”.

Definition 3.5 (Multiplication of a higher-order tensor by a vector) [70] The n-mode

vector product of a tensor T ∈ RI1×I2×···×IN with a vector v ∈ RIn is denoted by T ×̄nv.

It generates an (N − 1)th-order tensor and the size is I1 × · · · × In−1 × In+1 · · · IN .

The element of the product can be calculated by

(T ×̄nv)i1...in−1in+1...iN =
In∑
in=1

ti1i2...iNvin .
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Example 3.6 For the tensor in example 1.7, we give a vector v = [1 2 3]T, so we

have

X×̄1v =


26 98

38 110

50 122

 , X×̄2v =


22 94

28 100

58 130

 .

Since the n-mode vector product changes the order of the tensor, the following

property is different from the matrix case.

Proposition 3.7 Given a N th-order tensor X ∈ RI1×I2×···×IN and two vectors v ∈

RIn, w ∈ RIm and n < m, so we have

X×̄nv×̄mw = (X×̄nv)×̄m−1w = (X×̄mw)×̄nv.

Definition 3.8 (Matrix Kronecker Product) The Kronecker product of two matrices

A and B is defined as

A⊗B =


a11B a12B . . .

a21B a22B . . .

...
...

 .

Definition 3.9 (Matrix Khatri-Rao Product) The Khatri-Rao product [107] is the

“matching columnwise” Kronecker product. Given matrices A ∈ RI×K and B ∈

RJ×K, their Khatri-Rao product is denoted by A�B. The result is a matrix of size

(IJ ×K) defined by

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ].

If a and b are vectors, then the Khatri-Rao and Kronecker products are identical,

i.e., a⊗ b = a� b.
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These matrix products have some properties (see [86, 107]). We provide some in

the following,

Proposition 3.10 (The mixed-product property) If A,B,C and D are matrices of

such size that one can form the matrix products AC and BD, then

(A⊗B)(C⊗D) = AC⊗BD.

It follows that A ⊗ B is invertible if and only is A and B are invertible. So the

inversion of A⊗B is

(A⊗B)−1 = A−1 ⊗B−1.

Proposition 3.11 (Associative) Given three matrices A ∈ RI1×J1, B ∈ RI2×J2 and

C ∈ RI3×J3, we have

(A⊗B)⊗C = A⊗ (B⊗C).

If J1 = J2 = J3, then

(A�B)�C = A� (B�C).

Example 3.12 Let X ∈ RI1×I2×···×IN and A(n) ∈ RJn×In for all n = 1, 2, . . . , N .

Then we have

Y = X ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)

⇔ Y(n) = A(n)X(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1))T.

The proof of this equation is in [71].
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Chapter 3

Basic tensor decomposition

The idea of tensor decomposition is basically breaking down a tensor into several

simple components. Therefore, we start this chapter from talking about the specific

simple tensors.

1 Simple structure

1.1 Rank-one tensors

Definition 1.1 (Rank-one tensor) A N th-order tensor T ∈ RI1×I2×···×IN is a rank-

one if it can be written as the outer product of N vectors (see Example 2.4 in Chap.

2), i.e.,

T = a(1) ◦ a(2) ◦ · · · ◦ a(N),

where a(r) ∈ RIr , 1 ≤ r ≤ N .

This definition is also a direct generalization of rank-one matrix. The Figure 3.1

illustrates a third-order rank-one tensor X = a ◦ b ◦ c.
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Figure 3.1: Rank-one third-order tensor X = a ◦ b ◦ c. The element is
xijk = aibjck.

1.2 Symmetric tensors

Definition 1.2 (Fully symmetric tensor) A N th-order tensor T ∈ RI1×I2×···×IN is

called cubical if every mode is the same size, i.e., I1 = I2 = · · · = IN = I [21]. A

cubical tensor is fully symmetric if it is invariant under any permutation of its indices.

Thus for a permutation σ of the symbols {i1, i2, . . . , iN}, the elements ti1i2...iN of the

tensor T have the following property,

ti1i2...iN = tσ(i1)σ(i2)...σ(iN ). (1.1)

For example, a third-order tensor X ∈ RI×I×I is symmetric if

xijk = xikj = xjik = xkij = xjki = xkji for all i, j, k = 1, . . . , I.

For some tensors, the elements cannot satisfy the above equation (1.1) for any

arbitrary permutation. For instance, if a third-order tensor X ∈ RI×I×K only satisfies

xijk = xjik for all i, j = 1, . . . , I, k = 1, . . . , K, then we call it partially symmetric

tensor on mode 1 and mode 2. So if a Nth-order tensor T ∈ RI1×I2×···×IN has the

same size on the mode i1, i2, . . . , in, where i1, . . . , in ∈ {1, 2, . . . , N}, i.e., Ii1 = Ii2 =

· · · = Iin , and for any permutation σ on the sets {i1, i2, . . . , in}, the elements satisfy

ti1i2...iN = tσ(i1)σ(i2)...σ(iN ), then we call such tensor T partially symmetric on modes
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i1, i2, . . . , in.

There is some analysis of symmetric tensors. In [14], Comon et al. discuss the

decomposition of a symmetric tensor into a sum of symmetric rank-one tensors under

some rank conditions. Such problem is relevant to the field of algebraic statistics.

Definition 1.3 (Rank-one fully symmetric tensor) A N th-order tensor T ∈ RI×I×···×I

is a rank-one fully symmetric tensor if it is fully symmetric and can be written as the

outer product of N identical vectors, i.e.

T = a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
N

,

where a ∈ RI .

Similarly, we can give the definition of rank-one partially symmetric tensor.

Definition 1.4 (Rank-one partially symmetric tensor) A N th-order tensor T ∈

RI1×I2×···×IN is a rank-one partially symmetric tensor if it is partially symmetric on

modes i1, i2, . . . , in ∈ {1, 2, . . . , N}, and can be written as the outer product of N

vectors, i.e.

T = a(1) ◦ a(2) ◦ · · · ◦ a(N)︸ ︷︷ ︸
N

,

where a(i1) = a(i2) = · · · = a(in).

1.3 Diagonal tensors

Definition 1.5 (Diagonal tensor) A N th-order tensor T ∈ RI1×I2×···×IN is called a

diagonal tensor if ti1i2...iN 6= 0 only for i1 = i2 = · · · = iN .

For a third-order cubical tensor T ∈ RI×I×I , we define its super-diagonal is the

set of elements tiii, i = 1, 2, . . . , I. The following Figure 3.2 shows a diagonal tensor

with 1s on the super-diagonal of the cubic.
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Figure 3.2: Third-order tensor of size I × I × I with ones along the super-
diagonal

So, for a cubical third-order diagonal tensor, its non-zero elements should on the

superdiagonal and all the other elements should be zeros.

We will see the major differences between the matrices and tensors in the following

discussion of basic tensor decomposition.

2 CANDECOMP/PARAFAC decomposition

In 1927, Hitchcock [55, 54] proposed the idea of the polyadic form of a tensor, i.e.,

expressing a tensor as the sum of a finite number of rank-one tensors. Currently, this

decomposition is called the CANDECOMP/PARAFAC (CP) decomposition. The

Parallel Factor Decomposition (PARAFAC) first appeared in [49] in the context of

psychometrics. Independently, Carroll and Chang [17] introduced this decomposition

as the Canonical Decomposition (CANDECOMP) in phonetics.

Recall that a Nth-order rank-one tensor T ∈ RI1×I2×···×IR is the outer product of

N vectors, i.e.,

T = a1 ◦ a2 ◦ · · · ◦ aN .

The CP decomposition factors a tensor as the sum of a finite number of rank-one
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tensors:

T =
R∑
r=1

a
(r)
1 ◦ a

(r)
2 ◦ · · · ◦ a

(r)
N , (2.1)

where a
(r)
i ∈ RIr denotes the rth vector at the ith position for r = 1, . . . , R, i =

1, . . . , N . The following Figure 3.3 shows the CP decomposition for a third-order

tensor.

Figure 3.3: CP decomposition for a third-order tensor

Elementwise, (2.1) is written as

ti1i2...iN =
R∑
r=1

a
(r)
i11a

(r)
i22 · · · a

(r)
iNN

for i1 = 1, . . . , I1, . . . , iN = 1, . . . , IN .

The factor matrices are the combination of the vectors from the rank-one com-

ponents; i.e.,

Ai = [a
(1)
i a

(2)
i · · · a

(R)
i ] ∈ RIi×R i = 1, 2, . . . , N.

In the following discussion, for third-order tensors, we use A = [a1 a2 · · · aR] to

denote A1, B = [b1 b2 · · · bR] to denote A2 and C = [c1 c2 · · · cR] to express A3.

For a fully (partially) symmetric tensor, each component of CP decomposition can

be a rank-one fully (partially) symmetric tensor or not. So, we define a decomposition

for fully (partially) symmetric tensors which decomposes a fully (partially) symmetric

tensor into a summation of rank-one fully (partially) symmetric tensors. We call it
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Symmetric Outer Product Decomposition (SOPD) [21]. Similarly, we can take all the

vectors in the components from the same modes to get a factor matrix of SOPD.

Therefore, it is easy to tell that all factor matrices of fully symmetric tensor are the

same and the factor matrices in the according symmetric modes are the same for the

partially symmetric tensor. We will talk about the numerical methods of SOPD for

partially symmetric tensor in Chap. 5.

Example 2.1 Let X ∈ R3×3×3 be a real-valued third-order tensor, and its mode-1

matricization is

X(1) =


1 4 5 2 7 8 1 5 7

0 4 8 0 6 12 0 6 12

2 6 6 4 11 10 2 7 8

 ,

which has the following decomposition:

X =


1

0

2

 ◦


1

2

1

 ◦


1

2

1

+


1

2

1

 ◦


0

1

2

 ◦


2

3

3

 .

So, the CP decomposition factors this tensor into three factor matrices,

A =


1 1

0 2

2 1

 , B =


1 0

2 1

1 2

 , C =


1 2

2 3

1 3

 .

We define the rank of a tensor T , denoted by rank(T ), to be the smallest R which

satisfies the equation (2.1) [55, 75]. Obviously, for any tensor T ∈ RI1×I2×···×IN , there

is a trivial CP decomposition with R = I1I2 · · · IN . However, such R is not the rank

of T since it is the largest R we can find but not the smallest one.

It is known that one way to define the matrix rank is using the singular value
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decomposition (SVD). We see that the definition of tensor rank is an analogue to

the definition of matrix rank. Actually, the CP decomposition of a given tensor can

be considered as a tensor generalization of the matrix SVD. If we let the tensor in

the equation (2.1) be second-order, which means that the tensor is a matrix, then

CP decomposition is the SVD for the matrix. However, there are several differences

between these two ranks. One is that the rank of a real-valued tensor may be different

over R and C. Kruskal provided an example in [76].

Example 2.2 [76] Let X ∈ R2×2×2 be a real-valued third-order tensor with mode-1

matricization

X(1) =

 1 0 0 1

0 1 −1 0

 .
This tensor is rank three over R and rank two over C. The three real-valued factor

matrices are

A =

1 0 1

0 1 −1

 , B =

1 0 1

0 1 1

 , C =

 1 1 0

−1 1 1

 .
whereas the three complex-valued factor matrices are

A =
1√
2

 1 1

−i i

 , B =
1√
2

1 1

i −i

 , C =

1 1

i −i

 .
Another difference is that the problem of determining the rank of a given ten-

sor is NP-hard [51]. Even the determination of the maximal rank value over the

Nth-order tensor X ∈ RI1×I2×···×IN is still an open problem (it is not bounded by

min{I1, I2, . . . , IN}). Comon and Kruskal separately [24, 77] provide examples to

discuss the ranks of given tensors from the view of upper and lower bounds.
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For a third-order tensor X ∈ RI×J×K , Kruskal in paper [77] provides a weak upper

bound on its maximum rank:

rank(X ) ≤ min{IJ, IK, JK}.

Ten Berge and Kiers [62] (also see [118]) discuss the set of all third-order tensors

of size I × J × 2 and further study the difference between the ranks over R and C.

When we restrict the tensor in some way, we can get a different result. Ten Berge

[63] considers the case where tensor is partially symmetric in two modes and [21]

investigates the special case of a fully tensor over C. For a fully symmetric Nth-order

tensor X ∈ CI×I×···×I , he defines the symmetric rank (over C) [70] of X to be

ranks(X ) = min{R : X =
R∑
r=1

ar ◦ ar ◦ · · · ◦ ar, where A ∈ CI×C},

i.e., the minimum number of fully symmetric rank-one factors.

Additionally, the uniqueness properties of the CP are very different from (and

also much more complicated than) their matrix equivalents. For some history of

uniqueness results of CP, see [110, 119]. Harshman in 1970 [49] presented the earliest

uniqueness result and further provided some results in 1972 [50].

We know that the matrix decomposition cannot be unique. Consider a matrix

M ∈ RI×J with rank R, then it can be writen as

M = ABT =
R∑
r=1

ar ◦ br,

where A ∈ RI×R and BJ×R. If we introduce an orthogonal matrix W ∈ RR×R (not a

identity matrix), then the M has another decomposition,

M = (AW)(BW)T.
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Notice that the SVD of a matrix is unique (assuming all the singular values are

distinct) only because it has the orthogonality constraints and the ordered singular

values.

On the other hand, for the CP decomposition of a third-order tensor,

X =
R∑
r=1

ar ◦ br ◦ cr,

the unique conditions are much weaker. Uniqueness means that this is the only

possible combination of rank-one tensors that sums to X , with the exception of the

elementary indeterminacies of scaling and permutation [70]. The permutation refers

to the fact that for any permutation σ on the indices set {1, 2, . . . , R},

X =
R∑
r=1

aσ(r) ◦ bσ(r) ◦ cσ(r).

The scaling indeterminacy refers to the fact that for αr, βr, γr ∈ R, αrβrγr = 1 for

r = 1, . . . , R,

X =
R∑
r=1

(αrar) ◦ (βrbr) ◦ (γrcr).

The most well-known result on uniqueness is due to Kruskal in 1977 [75, 77] and

depends on the concept of k-rank. The k-rank of a matrix A, denoted by kA, is

defined as the maximum value k such that any k columns are linearly independent

in A. For a third-order tensor T ∈ RI×J×K , he provides a sufficient condition for

uniqueness up to permutation and scalings for the CP decomposition, which is,

kA + kB + kC ≥ 2R + 2.

Later on, De Lathauwer [27] and Jiang and Sidiropoulous [61] gave new sufficient
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conditions for uniqueness by assuming only one full-rank factor with the new bound,

R(R− 1)

2
≤ I(I − 1)(J(J − 1))

4
.

Stegeman discussed the CP decomposition uniqueness in several papers [116, 114,

115], including some results on partially symmetric tensors. The following Table 3.1

shows the uniqueness conditions of CP decomposition and Table 3.2 presents the

uniqueness conditions for the partially symmetric CP decomposition by Stegeman.

In the table 3.1, he also discusses generic uniqueness conditions. We call a property

generic when it holds with probability one when the parameters of the problem are

drawn from continuous probability density functions. For instance, let A ∈ RI×R,

generically, kA = min{I, R} where kA is the k-rank of A. In terms of the generic

uniqueness, Stegeman considers the situation that the first N−1 factor matrices A(1),

. . . , A(N) are generic.

Uniqueness conditions I
n size tensor bound on R bound on R (generic case)

n = 3 4× 4× I3, I3 ≥ R R ≤ 6 R ≤ 9 [114]

n = 4
2× 3× 4× I4, I4 ≥ R R ≤ 6 R ≤ 6 [114]
4× 4× 4× I4, I4 ≥ R R ≤ 9 R ≤ 46 [115]

n = 5
2× 3× 4× 2× I5, I5 ≥ R R ≤ 7 R ≤ 36 [114]
4× 4× 4× 4× I5, I5 ≥ R R ≤ 12 R ≤ 214 [115]

n = 6
2× 3× 2× 2× 2× I6, I6 ≥ R R ≤ 7 R ≤ 58 [114]
4× 4× 4× 4× 4× I6, I6 ≥ R R ≤ 12 R ≤ 214 [115]

Table 3.1: Comparison of tensor rank bounds for the uniqueness of CP
decomposition

In the above two tables, we let the last factor matrix A(N) be full-column rank and

a tall matrix (the number of rows IN is greater than the number of columns R), so

rank(A(N)) = R. The generic case means that the factor matrices A(1), . . . , A(N) are

generic with rank(A(N)) = R. In the last column of Table 3.2, A(1) = A(2) contains

the tensor to be a partially symmetric on mode-1 and mode-2, i.e., the elements of the
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Uniqueness conditions II
n size tensor bound on R with symmetry

n = 3 4× 4× I3, I3 ≥ R R ≤ 6 (A(1) = A(2)) [115]

n = 4 4× 4× 4× I4, I4 ≥ R R ≤ 31 (A(1) = A(2)) [115]

n = 5 4× 4× 4× 4× I5, I5 ≥ R R ≤ 137 (A(1) = A(2)) [115]

n = 6 4× 4× 4× 4× 4× I6, I6 ≥ R R ≤ 87 (A(1) = A(2) and A(3) = A(4)) [115]

Table 3.2: Comparison of rank bounds for the uniqueness of partially tensor
CP decomposition

tensor have the property of ai1i2...iN = ai2i1...iN , for in = 1, 2 . . . , In and n = 1, . . . , N .

The last tensor needs be symmetric on mode-1 and mode-2 as well as mode-3 and

mode-4.

3 HOSVD/Tucker decomposition

We know that the CANDECOMP/PARAFAC (CP) decomposition can be consid-

ered as a tensor generalization of the matrix singular value decomposition. There is

another generalization of the matrix SVD which is called higher-order singular value

decomposition (HOSVD) [33] or Tucker decomposition[123].

In 1963, Tucker first introduced the Tucker [123] decomposition of a higher-order

tensor and proposed a method to compute such a decomposition for a third-order

tensor. The most comprehensive of the early literature is Tucker’s 1966 article [124],

which is generally the one most cited. Later in 2000, the work of De Lathauwer, De

Moor, and Vandewalle [33] showed Tucker’s method is valid for tensors of arbitrary

order and hold for the complex-valued case too. They call it the Higher-Order

Singular Value Decomposition (HOSVD).

Since 1966, Tucker decomposition has been applied in a lot of scientific areas. Hen-

rion [53] provided several examples of applying the Tucker decomposition in chemical

analysis. De Lathauwer and Vandewalle [37] use Tucker in the applications of signal

processing, also see [90]. Moreover, it has also been applied in the field of data mining
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and computer vision [108, 125]; see the survey paper [70] and the references therein.

3.1 HOSVD

Tucker introduces the Tucker decomposition for a third-order tensor T ∈ RI×J×K ,

which decomposes T into a core tensor multiplied by a matrix along each mode.

Thus, we have

T = G ×1 A×2 B×3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr, (3.1)

where A ∈ RI×P , B ∈ RJ×Q and C ∈ RK×R are the factor matrices. The tensor

G ∈ RP×Q×R is called the core tensor and gpqr is the component of G.

Elementwise, the Tucker decomposition in (3.1) is

tijk =
P∑
p=1

Q∑
q=1

R∑
r=1

gpqraipbjqckr, (3.2)

in which aip, bjq, ckr are the entries of the factor matrices, and P , Q, R are the

number of columns in the factor matrices. The Figure 3.4 illustrates the Tucker

decomposition.

De Lathauwer, De Moor, and Vandewalle generalized Tucker’s method to any

higher-order tensor in [33] and provided the following theorem.

Theorem 3.1 (HOSVD) [33] Every complex-valued tensor T ∈ CI1×I2×···×IN can be

written as the product

T = G ×1 U(1) ×2 U(2) ×3 · · · ×N U(N), (3.3)

in which
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Figure 3.4: Tucker decomposition of a third-order tensor

1. U(n) = [u
(n)
1 ,u

(n)
2 , · · · ,u(n)

In
] ∈ CIn×In is a unitary matrix, where u

(n)
i is the ith

column vector of the matrix U(n).

2. G ∈ CI1×I2×···×IN is a complex-valued tensor of which the subtensors Gin=α,

obtained by fixing the nth index to α, have the properties of

(a) all-orthogonality: two subtensors Gin=α and Gin=β are orthogonal for all

possible values of n, α and β subject to α 6= β:

〈Gin=α,Gin=β〉 = 0 when α 6= β, (3.4)

where 〈Gin=α,Gin=β〉 means the inner product of the two tensors.

(b) ordering:

‖Gin=1‖ ≥ ‖Gin=2‖ ≥ · · · ≥ ‖Gin=In‖ ≥ 0 (3.5)

for all possible values of n.

The Frobenius-norms ‖Gin=i‖, symbolized by σ
(n)
i , are n-mode singular values of

T and the vector u
(n)
i is an ith n-mode singular vector.

29



Example 3.2 Let X ∈ R2×2×2 is a third-order tensor whose mode-1 matricization is

X(1) =

 1 2 5 6

3 4 7 8

 .
Then we have the factor matrices

A =

−0.5667 −0.8239

−0.8239 0.5667

 , B =

−0.6414 −0.7672

−0.7672 −0.6414

 , C =

−0.3762 −0.9266

−0.9266 −0.3762

 ,
and mode-1 matricization of the core tensor G ∈ R2×2×2 is

G(1) =

 −14.2254 0.0160 0.0046 0.5438

0.0083 0.2386 1.1159 0.2001

 .
So the exact Tucker decomposition is X = G ×1 A×2 B×3 C. We can check this

by using the equation (3.2). Furthermore, it is a HOSVD decomposition since all

the three matrices are orthogonal, i.e., ATA = I2×2, BTB = I2×2 and CTC = I2×2,

where I2×2 is a 2× 2 identity matrix.

We define the n-rank (also called n-mode rank) of a tensor T ∈ RI1×I2×···×IN

to be the column rank of T(n), denoted by rankn(T ). If we let Rn = rankn(T ) for

n = 1, . . . , N , then we say that T is a rank-(R1, R2, . . . , RN) tensor. This definition

is introduced by Kruskal [77] and it is further studied by De Lathauwer, De Moor,

and Vandewalle [33].

Tucker/HOSVD decomposition is not unique since the Tucker model has rotational

freedom. For the decomposition (3.1), let U ∈ RP×P , V ∈ RQ×Q and W ∈ RR×R be

nonsingular matrices. Then we have

T = G ×1 A×2 B×3 C = (G ×1 U×2 V ×3 W)×1 AU−1 ×2 BV−1 ×3 CW−1.
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So we have a different decomposition with the new core tensor G ×1 U ×2 V ×3 W

and the new three factor matrices AU−1, BV−1 and CW−1.

Therefore, when we use Tucker decomposition for a given tensor, we can simplify

the core tensor so that most of the elements of G are zero. This is a way to improve

the uniqueness. It has been shown that making the core tensor G be a super-diagonal

is impossible (even in the symmetric case) see [70, 21, 23]. However, it is possible

to try to make as many elements very small as possible. This was first observed by

Tucker in [123]. Later, there are some researchers to study this problem; see, e.g.,

[3, 52, 89].
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Chapter 4

Alternating least-squares and

regularized alternating

least-squares

1 Introduction

In this chapter we study the numerical methods for computing a CP decomposition for

a given tensor and introduce a regularized method for PARAFAC. Also, we propose

a convergence result of the regularized method and provide the proof in Section 5.

The tensor decomposition analysis techniques rely on numerical methods in opti-

mization and numerical linear algebra. Recall the definition of CP decomposition for

a given tensor T , from the perspective of optimization, the problem can be written

as

minimizebT ‖T − T̂ ‖2F , where T̂ =
R∑
r=1

ar ◦ br ◦ cr. (1.1)

Alternating least-squares (ALS) method is a popular algorithm for solving the prob-

lem (1.1). Independently, the ALS was introduced by Carol and Chang [17] and

32



Harshman [49] in 1970. It has been extensively applied to many problems across

various engineering [1, 39, 112, 111] and science [73, 113] fields; see the survey papers

[70, 30] and the references therein. For example, Beylkin and Mohlenkamp [11, 12]

utilize ALS to compute optimal separation rank for certain operators like inverse

Laplacian and the multiparticle Schrödinger equation to reduce computational com-

plexity.

The widespread success of ALS can be attributed to its simplicity. Moreover,

Bro et al. [43, 122] found that the ALS gives superior quality solutions with fewer

memory and time requirements than the other CP methods. Despite its success, ALS

has some drawbacks. For example, initialization of the factor matrices, collinearity in

the factor matrices or degeneracy problems may require a high number of iterations

for the ALS method to converge. This slowed convergence characterized by a flat

curve in a log error plot is referred to as the swamp. The following Figure 4.1 which

is also in Section 3 shows a swamp plot of ALS numerically.
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Figure 4.1: A swamp phenomenon. x-axis: the number of iterations; y-
axis: Frobeinus norm of the residual of the original tensor and the tensor
obtained at each iteration.

Swamps can be present in the non-degenerate and degenerate cases. The degener-
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ate case is a more challenging problem; see [96, 84] for some regularization techniques

for the degenerate swamps. In terms of the non-degenerate case, several numerical

techniques have been used to address it. Line search schemes [106, 92] have been used

to accelerate the ALS algorithm. An entirely different approach by De Lathauwer,

Demoor and Vandewalle obviates the swamp issues by considering a simultaneous

matrix diagonalization for CP decomposition [35, 27]. Paatero [93] has applied an

initial regularization along with a gradient descent based method for CP.

A regularization method (RALS) is introduced by Navasca, Kindermann and

De Lathawer [91] for addressing the issues of the swamp occurrences in the non-

degenerate case. It is no more complicated than the ALS algorithm. Unlike the ALS

regularization method found in [96, 84], RALS is an unconstrained optimization prob-

lem since there is no uniform constraint in the penalty terms that are sequentially

changing at each iteration, and hence, the limit points of the sequences of RALS can

be unbounded. Thus, RALS does not address the degeneracy problem. Here we will

show that if a limit point of RALS exists, then it is a critical point of the original

functional. The statement of the theorem (see Theorem 5.1) is following:

Suppose that the sequence {T k} obtained from RALS has limit points, then every

limit point T is a critical point of the above problem (1.1). The proof of the theorem

5.1 is also included in Section 5.

The organization of this chapter is following, in Section 2 we introduce the ALS

method for solving CP decomposition. In Section 3 we analyze the ALS method

in nonlinear programming and introduce the Block Nonlinear Gauss-Seidel (GS)

method. Further in Section 3, we explain the link between ALS and GS and proper-

ties of both are analyzed. At the end of this section, a “swamp” phenomena in the

ALS method is pointed out. In Section 4 we examine the method proposed in [91], a

regularization of the ALS (RALS). Several numerical examples show that RALS con-

verges faster than ALS and can remove some swamps. Later in Section 4, we make
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a link between RALS and Proximal Point Modification of the Gauss-Seidel (PGS)

method. Finally, Section 5 proves that given the existence of some critical points of

the RALS method, the limit points of the converging subsequences of the RALS are

the critical points of the least-squares cost functional.

2 ALS algorithm

2.1 Computing the CP: ALS method

Recall that the CP decomposition of a tensor T decomposes the tensor as a sum of

a finite number of rank-one tensors:

T =
R∑
r=1

a
(r)
1 ◦ a

(r)
2 ◦ · · · ◦ a

(r)
N . (2.1)

In this section, we study the numerical method to solve the above equation, i.e.,

finding the vectors a
(r)
1 , a

(r)
2 , . . . , a

(r)
N , r = 1, 2, . . . , R to satisfy the equation.

The first issue of computing the CP is to determine the rank of a tensor. However,

as mentioned in previous chapter, this problem is NP-hard [51]. Therefore, one com-

mon method is to do CP computation for R = 1, 2, 3, . . . until the first value of R that

can fit the equation (2.1) perfectly. However this method has some issues, for exam-

ple, Paatero [95] shows that a third-order tensor of rank-three can be approximated

arbitrarily closely by a rank-two tensor.

Thus, we assume the number of components R is fixed in the following algorithm

discussion.

A very popular numerical method to compute the CP decomposition for a given

tensor is the Alternating Least-Squares (ALS) method. For the simplicity of the

exposition, we just look at third-order tensors, but all the analysis holds for higher-

order tensors.
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The problem we want to solve is the following: given a third-order tensor T ∈

RI×J×K , compute its CP decomposition with R components of rank-one tensors that

best approximates T . So, it can be considered as an optimization problem:

minimizebT ‖T − T̂ ‖2F , where T̂ =
R∑
r=1

ar ◦ br ◦ cr. (2.2)

This problem is equivalent to

min
A,B,C

‖T −
R∑
r=1

ar ◦ br ◦ cr‖2F , (2.3)

with respect to factor matrices A, B and C.

T̂ satisfies the CP decomposition equation (2.1), so by using the Khatri-Rao

product and tensor matricization, it can be written in three matricized forms,

T̂ =
R∑
r=1

ar ◦ br ◦ cr

⇓

T̂(1) = A(C�B)T,

T̂(2) = B(C�A)T,

T̂(3) = C(B�A)T.

where A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R.

Then for the original problem (2.2), by the three types of matricizations for both

T and T̂ , it has the following three expressions,

min
A,B,C

‖T(1) −A(C�B)T‖2F ,

min
A,B,C

‖T(2) −B(C�A)T‖2F ,

min
A,B,C

‖T(3) −C(B�A)T‖2F .
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These three are equivalent. Instead of solving (2.2) for the three variables one

time, we can use these three equations by fixing all factor matrices but one each time,

then the problem reduces to three coupled linear least-squares subproblems.

We have

Ak+1 = argminbA∈RI×R

‖T(1) − Â(Ck �Bk)T‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2) − B̂(Ck �Ak+1)T‖2F , (2.4)

Ck+1 = argminbC∈RK×R

‖T(3) − Ĉ(Bk+1 �Ak+1)T‖2F ,

where T(1) ∈ RI×JK , T(2) ∈ RJ×IK and T(3) ∈ RK×IJ are the mode-1, mode-2 and

mode-3 matricizations of tensor T .

Thus, given three initial factor matrices A0, B0 and C0, the ALS method solves

the three least-squares subproblems in (2.4) to obtain the factor matrices A, B and

C. Starting from the initial guesses A0, B0, C0, the ALS approach fixes B and C

to solve for A, then fixes A and C to solve for B, and then fixes A and B to solve

for C. This process continues iteratively until some convergence criterion is satisfied.

Therefore, this method translates the original nonlinear minimization problem to

three subproblems where each one is just a least-squares problem.

The full ALS procedure for a third-order tensor is shown in the following Table

4.1. The initial guesses can be random or set by using some theoretic analysis. See

[113] for more analysis on initializing the ALS method.

The number of iterations M is set to a large number; otherwise a convergence

stopping criterion can be used. The notation “/” in the algorithm is MATLAB

notation to calculate the least square solution X = B/A of equation XA = B.

For the general case, a Nth-order tensor T ∈ RI1×I2×···×IN , by fixing the rank R,
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ALS-Algorithm

procedure CP-ALS(T , R,M)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R

for n = 1, . . . ,M do

An+1 ← T(1)/(C
n �Bn)T —— % solving least squares to update A

Bn+1 ← T(2)/(C
n �An+1)T —–% solving least squares to update B

Cn+1 ← T(3)/(B
n+1 �An+1)T —— % solving least squares to update C

end for

return AM , BM , CM

end procedure

Table 4.1: ALS algorithm of CP decomposition with rank R for a third-order
tensor X ∈ RI×J×K

the CP problem is

minimizebT ‖T − T̂ ‖2F , where T̂ =
R∑
r=1

a
(r)
1 ◦ a

(r)
2 ◦ · · · ◦ a

(r)
N , (2.5)

then by matricizing the tensor T̂ , we have

T̂(n) = An(AN �AN−1 � · · · �An+1 �An−1 � · · · �A1)
T.

Therefore, in the algorithm for the third-order tensor, we can use

Ak+1
n = T(n)/(A

k
N �Ak

N−1 � · · · �Ak
n+1 �Ak+1

n−1 � · · · �Ak+1
1 )T

to update the nth factor matrix at the (k + 1)th iteration.
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3 CP as a nonlinear optimization

In this section, we discuss the CP decomposition problem (2.5) and the ALS method

(2.4) from the view of nonlinear optimization.

3.1 Block nonlinear Gauss-Seidel method

Consider the problem:

minimize f(x) (3.1)

subject to x ∈ X = X1 ×X2 × · · ·Xm ⊆ Rn,

where f is a continuously differentiable function from Rn to R and X is the cartesian

product of closed, nonempty and convex subsets Xi ⊆ Rni , for i = 1, . . . ,m, with
m∑
i=1

ni = n. If the vector x ∈ Rn is partitioned into m component vectors xi ∈ Rni ,

then we can consider f as a function from Rn1 × Rn2 × · · ·Rnm to R with

f(x) = f(x1,x2, · · · ,xm).

The Nonlinear Block Gauss-Seidel (GS) [5, 9, 10, 46, 47] method is used to find

a minimizer of such a nonlinear functional. The solution of (3.1) can be found using

the iterative technique,

xk+1
i = argmin

yi∈Xi

f(xk+1
1 , . . . ,xk+1

i−1 ,yi,x
k
i+1, . . . ,x

k
m), (3.2)

which updates the components of x, starting from a given initial guess x0 = (x0
1,x

0
2, . . . ,x

0
m) ∈

X and generating a sequence {xk} = {(xk1,xk2, . . . ,xkm)}.

Naturally, this method makes sense if the minimization in (3.2) is easily solved.

For example, when each xi is a scalar, we can implement GS conveniently. However,
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it can be complicated for the case that xi is a multidimensional vector.

Let us discuss some basic convergence properties of the GS method.

Definition 3.1 (Critical Point) Let f : X → R, X ⊂ Rn be a continuously differen-

tiable function, a critical point of f is a point x̄ ∈ X such that

Of(x)T(y − x) ≥ 0, ∀ y ∈ X, (3.3)

where Of(x) ∈ Rn denotes the gradient of f at x. If X = Rn or if x is an iterior

point of X, then the condition (3.3) reduces to the stationarity condition Of(x) = 0

of unconstrained optimization.

Definition 3.2 (Limit Point) We say that a vector x ∈ Rn is a limit point of a

sequence {xk}∞k=1 in Rn if there exists a subsequence of {xk}∞k=1 that converges to x.

Definition 3.3 (Convex Function) A real-valued function f(x) defined on a convex

set is called convex if for any two points x1 and x2, in its domain and any t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

If furthermore,

f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2),

with x1 6= x2, then f is strictly convex.

Definition 3.4 (Quasiconvex Function) A function f : S → R defined on a convex

subset S of a real vector space is quasiconvex if whenever x, y ∈ S and λ ∈ [0, 1],

then

f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

If furthermore,

f(λx+ (1− λ)y) < max(f(x), f(y)),
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x 6= y, then f is strictly quasiconvex.

Consider the function f in (3.1), which is defined on a subset X = X1 × X2 ×

· · · × Xm, we say that f is quasiconvex with respect to xi ∈ Xi on X if for every

x ∈ X and yi ∈ Xi, we have

f(x1, . . . , txi + (1− t)yi, . . . , xm) ≤ max{f(x), f(x1, . . . , yi, . . . , xm)},

for all t ∈ (0, 1). If furthermore,

f(x1, . . . , txi + (1− t)yi, . . . , xm) < max{f(x), f(x1, . . . , yi, . . . , xm)},

with yi 6= xi, then f is strictly quasiconvex.

Clearly, a convex function is a quasiconvex function. However, a quasiconvex

function may not be a convex function (see the following Figure 4.2a).

(a) Quasiconvex function, but not
convex

(b) Not a quasiconvex function

Figure 4.2: Examples of quasiconvex and non-quasiconvex functions

Theorem 3.5 (Optimality Condition) (a) If x is a local minimum of f over X, then

it satisfies the optimality condition (3.3), i.e.,

Of(x)T(x− x) ≥ 0, ∀ x ∈ X.

(b) If f is convex over X, then the condition of part (a) is also sufficient for x to
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minimize f over X.

If X = Rn or if x is an interior point of X, then the condition is Of(x) = 0.

The convergence of the GS method is studied under different assumptions (see

e.g. [5, 9, 10, 46, 87, 100]).

Theorem 3.6 (see [9]) Suppose that f is continuously differentiable over the set X

of (3.1). Furthermore, suppose that for each i and x ∈ X, the minimum of

min
ξ∈Xi

f(x1, . . . ,xi−1, ξ,xi+1, . . . ,xm)

is uniquely attained. If xk is the sequence generated by GS, then every limit point of

xk is a critical point.

Theorem 3.7 (see [46]) Suppose that the function f in (3.1) is strictly quasiconvex

with respect to xi on X, for each i = 1, . . . ,m − 2 in the sense of definition 3.4 and

that the sequence {xk} generated by the GS method has limit points. Then, every

limit point x of {xk} is a critical point of (3.1).

These theorems show that the GS method can produce a converging sequence with

limit points that are critical points of the problem. But, in general, the GS method

may not converge, in the sense that it may generate a sequence with limit points that

are not critical points of the original problem. A counterexample of Powell [104] (also

see [46]) shows that for a non-convex function, which is component-wise convex but

not strictly quasiconvex with respect to its each component, the limit points obtained

by GS method need not be critical points.
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3.2 Some analysis about ALS

From the CP decomposition (2.5) and the definition of rank-one tensor, we have

‖T − T̂ ‖2F =

I1∑
i1

I2∑
i2

· · ·
IN∑
iN

(ti1i2...iN −
R∑
r=1

a
(r)
i11a

(r)
i22 · a

(r)
iNN

)2.

Then, ‖T − T̂ ‖2F is a function on x to R, and

x = vec([vec(A1), vec(A2), . . . , vec(AN)]) ∈ Rn,

where Ai is the factor matrix of T̂ and n = (I1 + I2 + · · · + IN)R. The vec(·) is

vectorization defined in Chap. 1.

Let vec(Ai) = xi ∈ RIiR, i = 1, 2, . . . , N , so that we partition the vector x ∈ Rn

into N component vectors xi ∈ Rni , i = 1, 2, . . . , N , where ni = IiR. It follows that

x = x1 × x2 × · · · × xN ∈ Rn1 ×Rn2 × · · · ×RnN = Rn. Thus, the CP decomposition

can be reformulated to the following problem,

minimize f(x) =

I1∑
i1

I2∑
i2

· · ·
IN∑
iN

(ti1i2...iN −
R∑
r=1

a
(r)
i11a

(r)
i22 · a

(r)
iNN

)2 (3.4)

subject to x ∈ Rn1 × Rn2 × · · · × RnN = Rn.

According to the ALS algorithm, the updates are in terms of the components of x,

starting from a given initial point x0 = vec([vec(A0
1), vec(A

0
2), . . . , vec(A

0
N)]) ∈ Rn,

and a sequence {(xk1,xk2, . . . ,xkN)} is generated by the following equation

xk+1
i = argmin

yi∈Rni

f(xk+1
1 , . . . ,xk+1

i−1 ,yi,x
k
i+1, . . . ,x

k
N). (3.5)

Notice that this is the exact GS method. Therefore, the ALS algorithm is the

block nonlinear Gauss-Seidel method for solving the CP decomposition of a given

tensor. Since we have studied some convergence properties of the GS method, then
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we can use these GS results to analyze the ALS algorithm.

Recall that the nth subproblem of ALS method at kth iteration is

minbAn∈RIn×R

‖T(n) − Ân(Ak
N �Ak

N−1 � · · · �Ak
n+1 �Ak+1

n−1 � · · · �Ak+1
1 )T‖2.

It is a least-squares problem. Comparing the convergence results of the GS method

with the least-squares cost functionals, we observe that neither one of the hypotheses

in theorem 3.6 or the theorem 3.7 is satisfied. Indeed, the least-squares cost functional

is convex (even quadratic) in each component and therefore, quasiconvex. However, in

the case that the Kathri-Rao product of two factor matrices involved is rank deficient,

then the least-squares function will not be strictly quasiconvex (see the following

proposition).

Proposition 3.8 Let f(x) = ‖Ax − b‖2 where A ∈ Rm×n, m > n, x ∈ Rn and

b ∈ Rm. If A is rank deficient, then f(x) is not strictly convex.

Proof. Since A is rank deficient, then assume rank(A) = r which implies that

dim(Nul(A)) = n − r. Take x, x̃ ∈ Nul(A) where x 6= x̃. Then, according to

the definition of a strictly convex function, for any t ∈ [0, 1], f(tx + (1 − t)x̃) =

‖A[tx+(1−t)x̃]−b‖2 = ‖b‖2 and tf(x)+(1−t)f(x̃) = ‖b‖2. Thus, f(tx+(1−t)x̃) =

tf(x) + (1− t)f(x̃).

It follows from the proposition above that f is not a strictly quasiconvex function

since f(tx + (1 − t)x̃) = f(x) = f(x̃). Thus from theorem 3.7, a limit point of the

ALS sequence is not guaranteed to be a critical point.

3.3 ALS swamp

We have seen in the previous section that there are drawbacks of the ALS method:

it is not guaranteed to converge to a global minimum or even a critical point of (2.5),
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only to a solution where the objective function ceases to decrease. Also we have

seen the numerical results heavily depend on the initial guesses. In this section, we

discuss another artifact of the ALS algorithm which is the so-called swamp. Swamp

behavior occurs when there are exceedingly high number of iterations causing the

convergence rate to slow down dramatically (see [91]). Figure 4.3a shows a swamp

behavior occures in the ALS method for a given third-order tensor of size 5× 5× 5.
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(b) Smallest singular values of Ck �Bk

Figure 4.3: Numerical example for swamp in ALS

Theoretically, we have shown that the least-squares functional is not strictly quasi-

convex when the coefficient matrix is rank deficient, and thus the sequence generated

by ALS method cannot be guaranteed to converge to a critical point of the original

cost function. This indicates one reason for the occurrence of swamps, namely if the

Khatri-Rao products (coefficient matrices) are almost singular, the associated least-

squares functional will be flat. Such analysis is verified by the numerical experiment

where swamps have been observed when the component matrices are ill-conditioned,

or when collinearity occurs in the columns of these factor matrices (the coefficient ma-

trix is rank deficient). For the example in 4.3a, the Figure 4.3b shows the singularity

of the corresponding coefficient matrices (Ck �Bk).
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4 Regularized ALS

Some disadvantages of the ALS method are shown and discussed in the previous sec-

tion. So, several techniques have been proposed for improving the efficiency of ALS

(see [121]). For example, several researchers have proposed improving ALS with line

searches, including the ELS approach of Rajih and Comon [106], which adds a line

search after each major iteration that updates all component matrices simultaneously

based on the standard ALS search directions (see also [92]). Navasca, De Lathauwer,

and Kinderman [91] proposed adding a regularized term to each subproblem for in-

creasing the convergence rate. In this section, we examine the method proposed in

[91], a regularization of the ALS, which we denote by RALS. This technique is also

called the proximal point modification of the Gauss-Seidel method (PGS) (see [9],

[46]). In practice, RALS converges faster than ALS and decreases the high number

of ALS iterations, thereby removing the swamp.

4.1 Tikhonov regularization

Some drawbacks of ALS comes from the least-square problem, as we have seen that

the rank deficiency of coefficient matrix Ck � Bk causes the swamp in Figure 4.3.

Therefore, before we talk about the regularized technique in [91], it is necessary to

introduce a very important and popular regularization method for solving an ill-posed

problem. When we want to solve such a problem,

Ax = b, (4.1)

where A is an m× n matrix with a large condition number, m ≥ n, and b = bt + ε

consists of true data plus a noise. A most common and well-known regularization
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method is called Tikhonov (see [120]) which can be presented as

min
x∈Rn

Jα(x) = min
x∈Rn
{‖Ax− b‖2 + α‖x‖2}, (4.2)

where α ∈ R is called the regularization parameter. So the solution xα to (4.2) solves

the problem

(ATA + αI)x = ATb, (4.3)

where I is the identity matrix of size n × n. It can be easily shown that for any

positive parameter α there exists a unique xα ∈ Rn for which the function Jα (4.2)

attains its minimum [88].

We see that the regularized solution is sought as a minimizer of a weighted com-

bination of the residual norm and a constraint. The regularization parameter gives

the control on the minimization of the constraint. Therefore, the quality of the regu-

larized solution is controlled by the regularization parameter. So the central question

in Tikhonov regularization is how to choose the parameter α in order to produce a

solution xα close to the true noise-free solution xt which solves the equation Ax = bt.

There are several possible strategies that determine the parameter for the Tikhonov

regularization (see [42, 88]). The discrepancy principle is an a-posteriori strategy for

choosing α as a function of an error level [88]. It has been shown that the regulariza-

tion method together with this parameter choice rule results in a convergent method;

i.e., as the noise level ε → 0, the regularized solution will tend to the true one (see

[91, 42]).

Another practical method for choosing α is the L-curve criterion (see [48]). The

method is based on the plot of the norm of the regularized solution versus the norm

of the corresponding residual. The L-curve criterion is used to choose a regularization

parameter related to the L-shaped “corner” of the graph.
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Therefore, the Tikhonov regularization has already been used in the ALS algo-

rithm to improve its efficiency [84, 96]. The Tikhonov functional of the original

problem (2.3) to be minimized is

‖T −
R∑
r=1

ar ◦ br ◦ cr‖2F + λ(‖A‖2F + ‖B‖2F + ‖C‖2F ). (4.4)

If ALS is applied to this regularized functional, then the corresponding subproblem

are

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − Â(Ck �Bk)T‖2F + λ‖Â‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2)
J×IK − B̂(Ck �Ak+1)T‖2F + λ‖B̂‖2F , (4.5)

Ck+1 = argminbC∈RK×R

‖T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T‖2F + λ‖Ĉ‖2F .

Observe that each subproblem is exactly the Tikhonov regularization for the original

subproblem. The penalization terms, ‖Â‖2F , ‖B̂‖2F and ‖Ĉ‖2F are independent of k,

which are viewed as uniform constraints on the norm of the matrices. From [84],

this constrained optimization problem (4.4) always has globally optimal solution.

However, the price to pay here is that the optimal solution is not a critical point of

the problem (2.3), but it is a critical point of the regularized functional [81].

4.2 Regularized ALS

Now, let us introduce another type of regularized ALS method called RALS. Similar

with the discussion of ALS method, we also use third-order tensors to explain how

the RALS method works. Recall that the CP decomposition problem for a given

third-order tensor T in (2.3),

min
A,B,C

‖T −
R∑
r=1

ar ◦ br ◦ cr‖2F
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with respect to the three factor matrices A, B and C. We have recast it to 3 least-

squares subproblems (2.4). The RALS method adds the corresponding regularization

term to each subproblems,

Ak+1 = argminbA∈RI×R

‖T(1) − Â(Ck �Bk)T‖2F + λk‖Ak − Â‖2F ,

Bk+1 = argminbB∈RJ×R

‖T(2) − B̂(Ck �Ak+1)T‖2F + λk‖Bk − B̂‖2F , (4.6)

Ck+1 = argminbC∈RK×R

‖T(3) − Ĉ(Bk+1 �Ak+1)T‖2F + λk‖Ck − Ĉ‖2F ,

where λk > 0 is the regularization parameter. The regularization terms λk‖Ak−Â‖2F ,

λk‖Bk− B̂‖2F and λk‖Ck− Ĉ‖2F are the fitting terms for the factors A, B and C. So,

we can see the difference between (4.5) and (4.6), where the fitting terms of the later

one dependent on the previous results.

In fact, RALS also gives us three least-squares subproblems. For example, the

first subproblem in (4.6) actually is equivalent to solving a least-squares problem:

(C̃k � B̃k)

λk · IR×R

X =

 T(1)
T

λk · (Ãk)T

 , (4.7)

which is different from the least-squares obtained from ALS, that is,

(Ck �Bk)X = T(1)
T. (4.8)

Here, we use Ã, B̃ and C̃ to denote the factor matrices generated by RALS while A,

B and C are generated by ALS.

The following Table 4.2 shows the algorithm of RALS. The number of iterations

N is set to a large number; and a stopping criterion can be used.

As we said in the introduction, RALS addresses the non-degenerate swamp issues.

The Tikhonov regularization of ALS proposed by Paatero in 2000 [96] can deal with
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RALS-Algorithm

procedure CP-RALS(T , R,N, λ)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R, λ0

for n = 1, . . . , N do

W← [(Cn �Bn);λnI
R×R] ∈ R(JK+R)×R

S← [T(1)
T;λn(An)T] ∈ R(JK+R)×I

An+1 ←W/S —— % solving least squares to update A

W← [(Cn �An+1);λnI
R×R] ∈ R(IK+R)×R

S← [T(2)
T;λn(Bn)T] ∈ R(IK+R)×J

Bn+1 ←W/S —— % solving least squares to update B

W← [(Bn+1 �An+1);λnI
R×R] ∈ R(IJ+R)×R

S← [T(3)
T;λn(Cn)T] ∈ R(IJ+R)×K

Cn+1 ←W/S —— % solving least squares to update C

λn+1 ← c · λn —— % update regularization parameter

end for

return AN , BN , CN

end procedure

Table 4.2: RALS algorithm of CP decomposition with rank R and parameter
sequence {λk} for a third-order tensor X ∈ RI×J×K

the degenerate case.

According to [70], a tensor is degenerate if it may be approximated arbitrarily

well by a factorization of lower rank. Both [96] and [38] provide several degenerate

models. Here we give one which is presented in [70].

Example 4.1 (Degenerate example) Let A = [a1 a2] ∈ RI×2, B = [b1 b2] ∈ RJ×2

and C = [c1 c2] ∈ RK×2, and let X ∈ RI×J×K be a third-order tensor defined by

X = a1 ◦ b1 ◦ c2 + a1 ◦ b2 ◦ c1 + a2 ◦ b1 ◦ c1,
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where the each matrix has linearly independent columns. X can be approximated

arbitrarily closely by a rank-two tensor of the following form:

Y = ε(a1 +
1

ε
a2) ◦ (b1 +

1

ε
b2) ◦ (c1 +

1

ε
c2)− ε · a1 ◦ b1 ◦ c1,

where ε is an arbitrary positive number. Thus,

‖X − Y‖ =
1

ε

∥∥∥∥a2 ◦ b2 ◦ c1 + a2 ◦ b1 ◦ c2 + a1 ◦ b2 ◦ c2 +
1

ε
a2 ◦ b2 ◦ c2

∥∥∥∥,
can be made arbitrarily small. Therefore, such a rank-two third-order tensor can be

approximated well by a rank-one tensor.

In [96], several numerical examples show that such regularization can help the

algorithm keep distance from the degenerate swamps, i.e., the degenerate regions

where convergence is slow.

4.3 Regularized parameter choice

Paper [91] discusses the regularized parameter choice for RALS. It basically uses

the discrepancy principle to find a geometrically decaying sequence λk = qk with

0 < q < 1 so that the discrepancy principle essentially terminates the procedure

when the parameter has the same level with the noise. This method works very well.

The parameters are different at different iterations but are the same for the three

subproblems at the same iteration. Following this idea, we can make a more general

parameter choice which provides three geometrically decaying sequences αk = qk1 ,

βk = qk2 and γk = qk3 with 0 < q1, q2, q3 < 1, where αk is for Ak, βk is for Bk and γk

is for Ck.

Next, we will use L-curve method to determine q1, q2 and q3. We show that the

each subproblem also can be considered as a Tikhonov regularization.

Recall that the original subproblems of CP decomposition by the ALS method are
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least-squares in terms of the corresponding factor matrix. The RALS adds an extra

term to each subproblem so that we get a regularization method. Let us look at the

first equation of (4.6) at the kth iteration,

g(Â) = ‖T(1) − Â(Ck �Bk)T‖2F + λk‖Ak − Â‖2F (4.9)

= ‖T(1) −Ak(Ck �Bk)T − (Â−Ak)(Ck �Bk)T‖2F + λk‖Ak − Â‖2F

= h(Â−Ak).

So, the function g(Â) is also a function of (Â−Ak). Then the first equation of (4.6)

is a Tikhonv regularization with parameter λk of the least-squares problem

‖[T(1) −Ak(Ck �Bk)T]− (Â−Ak)(Ck �Bk)T‖2F ,

and the regularization term is just λk‖Ak− Â‖2F . Note, however, that RALS can not

be considered a Tikhonov regularization, but each subproblem can be considered as

a Tikhonov regularization.

Since each subproblem is a classical Tikhonov regularization, we can use L-curve to

find the corresponding regularization parameter for each subproblem at every iteration

k. Therefore, we can obtain αk, βk and γk. By running a large number of simulations,

we can find the ratio for each sequence.

4.4 Proximal point modification of the Gauss-Seidel method

In the preceding section, we have shown that the GS method may not converge

or it needs some convexity/quasiconvexity assumption to guarantee the convergence

results. So, for solving problem (3.1), Grippo and Sciandrone consider a modification
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of GS by adding some extra item in each iteration,

xk+1
i = argmin

yi∈Xi

f(xk+1
1 , . . . ,yi, . . . ,x

k
m) +

1

2
τi‖yi − xki ‖2. (4.10)

This method is called a proximal point modification of the GS (PGS) method (see

[9, 46]). It is also referred as partial proximal minimization [10]. The advantage of

PGS is that it does not require the convexity assumption for convergence to critical

points.

Definition 4.2 The GS and PGS methods are well-defined if every subproblem has

solutions.

Proposition 4.3 (Convergence proposition of PGS (see [46])) Suppose that the PGS

method is well defined and that the sequence {xk} has limit points. Then every limit

point x of {xk} is a critical point of problem (3.1).

In last section, we showed that the ALS method is the GS method for solving CP

decomposition with respect to the factor matrices A, B and C. By using the same

technique for RALS (4.6), through vectorization of the three factor matrices, we have

xk+1
1 = argmin

y1∈Rn1

{f(y1,x
k
2,x

k
3) + λk‖xk1 − y1‖2F},

xk+1
2 = argmin

y2∈Rn2

{f(xk+1
1 ,y2,x

k
3) + λk‖xk2 − y2‖2F},

xk+1
3 = argmin

y3∈Rn3

{f(xk+1
1 ,xk+1

2 ,y3) + λk‖xk3 − y3‖2F}.

Observe that the regularized ALS is the same as PGS method. Now, we can also

analyze the convergence property of RALS through the properties of the PGS method.
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5 Convergence results of RALS

We have already mentioned that even though the ALS algorithm can generate a

converging sequence of factor matrices {(Ak,Bk,Ck)}, it cannot guarantee that the

limit point is a critical point (local minimum). In this section, we will show that the

converging sequence obtained from the RALS method does give us a critical point.

We adapt the proposition in Section 7 of the paper [46] to our problem to give a

convergence result for the RALS method.

Theorem 5.1 Suppose that the sequence {(Ak,Bk,Ck)} obtained from RALS has

limit points. Then every limit point (A,B,C) is a critical point of the Problem 2.3.

Proof. Recall the vectorization of a matrix which allows us to re-express {(Ak,Bk,Ck)}

as (x1,x2,x3) and the cost function as

f(x1,x2,x3) =
K∑
k=1

J∑
j=1

I∑
i=1

(tijk −
R∑
r=1

airbjrckr)
2,

where x1 = vec(A) ∈ RIR, x2 = vec(B) ∈ RJR and x3 = vec(C) ∈ RKR. Let

{xnk}∞k=1 = {(xnk
1 ,x

nk
2 ,x

nk
3 )}∞k=1 be the converging subsequence of {(xk1,xk2,xk3)} which

has the limit point (x1,x2,x3).

The subproblem in the RALS method provides the following inequality:

f(xnk+1
1 ,xnk

2 ,x
nk
3 ) ≤ f(xnk

1 ,x
nk
2 ,x

nk
3 ) + λnk

‖xnk+1
1 − xnk

1 ‖2. (5.1)

Applying the inequality above repeatedly, we have

f(xnk+1
1 ,xnk+1

2 ,xnk+1
3 ) ≤ f(xnk+1

1 ,xnk+1
2 ,xnk

3 )

≤ f(xnk+1
1 ,xnk

2 ,x
nk
3 ) (5.2)

≤ f(xnk
1 ,x

nk
2 ,x

nk
3 ).
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By the Squeeze Theorem, the continuity of f , and the condition that (xnk
1 ,x

nk
2 ,x

nk
3 ) −→

(x1,x2,x3) as k →∞, then we have the following

lim
k→∞

f(xnk+1
1 ,xnk

2 ,x
nk
3 ) = lim

k→∞
f(xnk

1 ,x
nk
2 ,x

nk
3 ) = f(x1,x2,x3).

Now taking the limits in (5.1) for k →∞ on both sides, we have

lim
k→∞
‖xnk+1

1 − xnk
1 ‖2 = 0 (5.3)

which implies

lim
k→∞

(xnk+1
1 ,xnk

2 ,x
nk
3 ) = (x1,x2,x3). (5.4)

Similarly, we obtain

lim
k→∞

(xnk+1
1 ,xnk+1

2 ,xnk
3 ) = (x1,x2,x3). (5.5)

Since every RALS subproblem is well defined, then each point in the subsequence

satisfies the corresponding optimality condition (Theorem 3.5); i.e.

O1f(xnk+1
1 ,xnk

2 ,x
nk
3 ) + 2λnk

(xnk+1
1 − xnk

1 ) = 0, (5.6)

O2f(xnk+1
1 ,xnk+1

2 ,xnk
3 ) + 2λnk

(xnk+1
2 − xnk

2 ) = 0, (5.7)

O3f(xnk+1
1 ,xnk+1

2 ,xnk+1
3 ) + 2λnk

(xnk+1
3 − xnk

3 ) = 0. (5.8)

Then, taking k → ∞ in (5.6–5.8), using the arguments in (5.3), (5.4), (5.5) and the

continuity of Of , we obtain

Oif(x1,x2,x3) = 0, i = 1, 2, 3.
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Thus, this proves that the limit point (x1,x2,x3) is a critical point of the cost

function f(x1,x2,x3). Furthermore, we obtain

OAf(A,B,C) = 0,

OBf(A,B,C) = 0, (5.9)

OCf(A,B,C) = 0.

through the inverse mapping of the vectorization. Therefore, (A,B,C) is a critical

point.

Here are some remarks:

1. Following from the discussion and the theorem above, we showed that the RALS

method solves the same cost function, i.e., minimizing the distance between the

given tensor and the approximation tensor. Moreorver, we proved that the

limit point obtained from RALS is a critical point of the original minimization

problem of ‖T − T̂ ‖2F .

2. The main theorem above solves the CP decomposition on the whole space, so

we use the optimality condition, Of(x1,x2,x3) = 0. If the solution is not in

the whole space, namely, in the problem of non-negative tensor decomposition,

then the optimality condition,Of(x1,x2,x3)
T(y − xi) ≥ 0, must be used.

3. For the ALS method, under the same assumption in Theorem 5.1, the the-

orem may not be true. From the assumption, we know that the sequence

{(Ank ,Bnk ,Cnk)} converges to a limit point (A,B,C), but we cannot obtain

the sequences {(Ank+1,Bnk ,Cnk)} and {(Ank+1,Bnk+1,Cnk)} to converge. Fur-

thermore, we also cannot prove that these two sequences converge to the same

limit point (A,B,C).
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4. The optimality conditions in (5.9) are equivalent to the normal equations of the

subproblems:

T(1)
I×JK(C�B) = A(C�B)T(C�B),

T(2)
J×IK(C�A) = B(C�A)T(C�A),

T(3)
K×IJ(B�A) = C(B�A)T(B�A).

5. Theorem 5.1 is a conditional convergence proof, depending upon the existence

of the ALS limit points. Thus this result does not address the degeneracy prob-

lems. Analysis of the existence of the limits of the (R)ALS is a challenging

problem that would require a careful study of the degenerate cases of the CP

decomposition. The regularization (4.4) considered by Paatero [96] is a good

approach in finding approximation to the degenerate case, but the solutions sat-

isfy the regularized cost functional and not the original least-squares functional.

Moreover, a similar conditional convergent analysis [46] can be established for

the regularized functional (4.4). In fact, if λ > 0, then the cost functional

(4.4) will be component-wise strictly quasiconvex. Thus Theorem 3.7 applies

and hence, the limit points of (4.5) will be critical points of the regularized

functional (4.4).

6 Numerical examples

In this section, we compare the performance of RALS against ALS. We give three

examples of third-order tensor CP decomposition to demonstrate the swamp shorten-

ing property of the iterated regularization and one example of large real third-order

tensor data.
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Example 6.1 Initial Factors Dependent Swamp

Let the matrices

A =


1 2

2 1

3 2

 , B =


2 1

−1 3

1 −1

 , C =


3 1

1 2

2 2

 ,

be the three factor matrices of a third-order tensor T ∈ R3×3×3 of rank-two:

T = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2.
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(b) random initial guess

Figure 4.4: Plots for the example 6.1

In the two figures, the plots show the error ‖T − Test‖2F versus the number of

iterations it takes to obtain an error of 10−5, where Test denotes the obtained tensor

after every iteration.

Two initial guesses are compared in Figure 4.4a and Figure 4.4b in terms of ALS.

In Figure 4.4a, A0 = A, B0 = B

0 1

1 0

 and C0 = C. For Figure 4.4b, we randomly

generated 3×2 matrices as the initial factors. With

{
A,B

0 1

1 0

 ,C} as the initial
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guess, ALS takes 55 iterations to reach an error within 10−5 while it takes 1988

iterations by using random initial guess. Observe in Figure 4.4a that ALS and RALS

have the same convergence speed and take the same number of iterations to reach

an error within 10−5. However, in Figure 4.4b, RALS can reduce the swamp by only

taking 206 iterations in comparison to that of 1988 ALS iterations. Moreover, the

RALS is faster than ALS since the CPU time of RALS is 0.2982s while the ALS is

2.6547s.

In some cases, randomly generated factors can lead to swamp in the implemen-

tation of the ALS. However this swamp phenomena induced by the initial factors is

not observed if the RALS method is used.

Example 6.2 Rank Specific Swamp

Let the matrices

A =

1 2 3

2 1 2

 , B =

 2 1 1

−1 3 1

 , C =

3 1 2

1 2 −1

 .

be the three factor matrices of a third-order tensor T =
3∑
r=1

ar ◦br ◦cr ∈ R2×2×2 that

is a rank-three tensor. Rank-two (see Figure 4.5b) and rank-three (see Figure 4.5a)

approximations are calculated with the following initial matrices:

A0 =

0.1679 0.7127

0.9787 0.5005

 , B0 =

0.4711 0.6820

0.0596 0.0424

 , C0 =

0.0714 0.0967

0.5216 0.8181

 .
The following picture shows the error plots using ALS and RALS separately:

Notice from Figure 4.5a that the rank-three tensor approximations present no

problem in either ALS and RALS. However, in Figure 4.5b, the rank-two tensor

approximation requires only 53 iterations RALS to reach an error within 10−5 while

ALS needs 27322 iterations, which indicates a swamp. We also calculate the CPU
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(b) Rank-two

Figure 4.5: Plots for the example 6.2

time for each ALS and RALS in the swamp situation, which shows that the CPU

time of ALS is 41.1603s while the CPU time of RALS is just 0.0928s.

Further investigation is needed to understand the degeneracy problems with re-

spect to the RALS algorithm.

Example 6.3 Induced Rank-Deficiency Swamp

From the example in the Section 3, the RALS and ALS are compared. Recall that

the rank deficiency of the Khatri-Rao products induce an ALS swamp. In Figure 4.6a,

the error plots show a swamp for ALS with 9707 iterations while RALS exhibits no

swamp with only 884 iterations. Here, we also computer the CPU time for both

algorithms, the RALS is 2.9720 but the ALS takes 28.5156 to converge.

To understand why RALS is not hampered by a swamp, let us look at the normal

equation of the subproblem (we have already mentioned this in the last Section 4.7):

(C̃k � B̃k)

λk · IR×R

X =

 T(1)
T

λk · (Ãk)T


where the least squares solution is Ãk+1. The submatrix λk ·IR×R in (4.7) embeds the

range space of (C̃k�B̃k) in a higher dimensional space while induces a full rank linear
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(b) Singularity of Khatri-Rao

Figure 4.6: Plots for the example 6.3

least-squares subproblem. Thus, the regularization keeps the cost function strictly

component-wise quasiconvex.

In Figure 4.6b, we can see that when the swamp happens in the ALS method, the

smallest singular value of the coefficient matrix Ck � Bk is almost zero. Therefore,

the coefficient matrix is almost rank deficient and the corresponding least-squares

subproblem in the ALS causes the swamp problem.

Example 6.4 Large Real Datasets

Since ALS type algorithms have been particularly useful in real large datasets,

a comparison study of the ALS and RALS algorithms was made on a tensor X ∈

R170×274×35 from the paper of Bro et al. [128] in detecting and characterizing active

photosensitizers in butter. The light exposure experimental data is obtained from

different colors of light, variation in oxygen availability, and time of exposure while

measuring the fluorescence EEMs (excitation emission matrices) and sensory eval-

uation of the samples. Thus the element xijk represents the fluorescence intensity

for sample i at excitation wavelength j and emission wavelength k. CP algorithms

offer decomposition into factors of sample scores, emission loadings and excitation

loadings.

The ALS and RALS algorithms were used to analyze the fluorescence landscapes
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with rank R = 7 and 100 different random initial starters for ALS and RALS were

used on tensor X . The error (‖X k − X k−1‖2F ), we call adjacent error, was used as

the stopping criterion, but the absolute error (‖X −Xfinal‖
2
F ) was measured as well.

The Table 4.3 shows that RALS performed slightly better than ALS with respect to

both relative and absolute errors as well as the number of iterations.

abs. error adj. error iterations
ALS 3850.8 1.2717× 10−4 3025

RALS 3832.9 1.3842× 10−4 2968

Table 4.3: The comparison of ALS and RALS for the real data

7 Conclusion

The RALS method proposed by Navasca, Kindermann and De Lathauwer [91] is a

numerical technique for the classical problem of solving the CP decomposition of a

given tensor. We examined the RALS method to find some theoretical explanations

of what we observed numerically. In many instances, several examples showed that

RALS converges faster than ALS. Moreover, RALS decreases the high number of ALS

iterations, thereby removing the swamp to some degree. Furthermore, our numerical

experiments provide us a numerical justification that ALS swamping is related to the

rank deficiency of the Khatri-Rao products. This phenomena is not present when

the RALS algorithm is implemented. Based on these observations, it is important to

study the theoretical properties of RALS and its differences from ALS. Both the ALS

and the RALS are related to the GS and the proximal modification of GS (PGS),

respectively, by vectorizing the three factor matrices in the cost functionals. Using

the properties of PGS, we have proved that the limit point of a converging sequence

obtained from the RALS algorithm is a critical point of the original ALS problem.

Some difficulties arise when proving the same convergent results for ALS due to the
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lack of strict quasiconvexity. These same difficulties are exhibited numerically as

swamps.
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Chapter 5

Partial column-wise alternating

least-squares

1 Introduction

In this chapter, we study the symmetric outer product decomposition (SOPD) for

partially symmetric and fully symmetric tensors, which decomposes a fully (partially)

symmetric tensor into a number of rank-one fully (partially) symmetric tensors. Such

symmetric tensor decomposition is related to the independent component analysis

(ICA) [20, 60], or blind source separation (BSS), which is used to separate a useful

signal from noise and interferences in signal processing [31, 22].

The existence of the symmetric tensor decomposition for fully symmetric tensors

has been discussed in [21]. It shows that for any order fully symmetric tensor X

over any field, such decomposition always exists. In addition, it shows that such

decomposition is different from the CP decomposition for symmetric tensors. There

are some strict conditions that can guarantee they are the same.

There are several methods proposed for computing the symmetric tensor decom-

position for fully symmetric tensor. Paper [14] introduced a numerical method based
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on a multi-variable polynomial set, which was inspired by Sylvester’s theorem [78]

and reduced the symmetric tensor decomposition to the decomposition of a linear

form as a linear combination of evaluations at distinct points. De Lathauwer in [31]

proposed the Fourth-Order-Only Blind Identification (FOOBI) algorithm factoring a

fourth-order fully symmetric tensor. The algorithm is based on Joint Diagonaliza-

tion for a set of symmetric matrices. Under a convexity assumption and based on the

Higher-Order Power Method (HOPM), Regalia showed a method in [69] to solve rank-

one approximation of a higher-order fully symmetric tensor. But this method cannot

generalize to rank-R approximation. Another possible way is using the classical ALS

method introduced in Chap. 4 to factor the fully symmetric tensors. However, there

are several disadvantages. It cannot guarantee that all the vectors in each component

are same since it updates every factor matrix separated in each iteration. Addi-

tionally, redundant calculation occurs in every iteration, which would cost a lot of

unnecessary time.

For the partially symmetric tensor, ALS can also be used to calculate the symmet-

ric tensor decomposition, in which each component is a rank-one partially symmetric

tensor. But the same problems happen in the partially symmetric case since a tensor

with partially symmetry on some modes has the same factor matrices in the corre-

sponding modes, while the ALS algorithm will calculate each factor in every iteration

no matter whether it has been updated or not. Therefore, we reformulate the problem

and introduce a new algorithm to decompose the partial symmetric tensors. It is also

an iterative method and only calculates the different factor matrices every iteration.

The text is organized as follows. In Section 2, we introduce the partial column-

wise alternating least-squares (PCW-ALS) method to compute the symmetric tensor

decompositions for third-order partially symmetric tensors and two types of fourth-

order partially symmetric tensors. Numerical examples are provided in Section 3 to

compare the ALS and PCW-ALS algorithms for both third-order and fourth-order
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partially symmetric tensor.

2 PCW-ALS algorithm

2.1 SOPD for third-order partially symmetric tensor

In this section, without loss of generality, we consider the symmetric outer product

decomposition of a third-order partially symmetric tensor on mode-1 and mode-2.

Let X ∈ RI×I×K with xijk = xjik for all i, j ∈ {1, 2, . . . , I} and k ∈ {1, 2, . . . , K},

then the SOPD factors such partially symmetric tensor as the sum of a finite number

of rank-one partially symmetric tensors:

X =

Rps∑
r=1

ar ◦ ar ◦ cr. (2.1)

Notice that Rps is not the CP rank of X . For such a partially symmetric tensor X ,

we can also have a CP decomposition which factors the tensor into R (tensor rank)

rank-one tensors:

X =
R∑
r=1

ār ◦ b̄r ◦ c̄r. (2.2)

Since the rank R is defined as the smallest one to make the equation (2.2) holds,

then we have R ≤ Rps. However, for a specific partially symmetric tensor, we do not

know Cwhat R and Rps are. Berge et al. [63] studied the partially symmetric tensors

of order 2× J × J and I × 3× 3 and showed that

• Partially symmetric tensors of size 2× J × J have typical rank {J, J + 1}.

• Fully symmetric tensor of size 3× 3× 3 has typical rank 4.

• Partially symmetric tensor of size 4× 3× 3 has typical rank {4, 5}.
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• Partially symmetric tensor of size 5× 3× 3 has typical rank {5, 6}.

The definition of typical rank is any rank that occurs with probability greater

than zero (i.e., on a set with positive Lebesgue measure).

Comon [21] discussed the CP with rank R and symmetric rank Rs for a fully

symmetric tensor. It shows that

R ≤ Rs,

for a fully symmetric tensor. In some cases, the equality holds. But it is not known

if both ranks are equal on all fully symmetric tensors in general.

Since the difficulty about deciding the number Rps, we can do the SOPD com-

putation for Rps = 1, 2, 3, . . . until the first value of Rps that can fit the equation

(2.1) perfectly. Thus, we assume that the number of components Rps is fixed in the

following discussion.

The problem we want to solve is the following: given a third-order partial sym-

metic tensor X ∈ RI×I×K with xijk = xjik, compute its SOPD with Rps components

of rank-one partial symmetric tensors that best approximates X . So, it can be con-

sidered as an optimization problem:

minimizebX
∥∥∥X − X̂∥∥∥2

F
, where X̂ =

Rps∑
r=1

ar ◦ ar ◦ cr. (2.3)

This problem is equivalent to

min
A,C

∥∥∥∥∥X −
Rps∑
r=1

ar ◦ ar ◦ cr

∥∥∥∥∥
2

F

, (2.4)

with respect to factor matrices A = [a1 a2 · · · aRps ] and C = [c1 c2 · · · cRps ].

Since X̂ satisfies the SOPD equation (2.1), similarly with the ALS method, we

can use the Khatri-Rao product and tensor matricization. Therefore, equation (2.1)
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can be written in the following matricized form:

X̂ =

Rps∑
r=1

ar ◦ ar ◦ cr

⇓

X̂(3) = C(A�A)T,

where X̂(3) ∈ RK×I2 is the mode-3 matricization of tensor X̂ . A ∈ RI×Rps and

C ∈ RK×Rps .

Then for the original problem (2.4), this problem has the following expression,

min
A,C

∥∥X(3) −C(A�A)T
∥∥2

F
. (2.5)

The idea is also using alternative method to update the factor matrices A and C

until some convergence criterion is satisfied. From the above equation, we can fix

one variable to solve for the other one each time, then the problem reduces to the

following subproblems,

Ak+1 = argminbA∈RI×Rps

∥∥∥X(3) −Ck(Â� Â)T
∥∥∥2

F
, (2.6)

Ck+1 = argminbC∈RK×Rps

∥∥∥X(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
. (2.7)

The problem (2.7) is the standard linear least-squares problem. So we need to

focus on (2.6) and find a method to solve for the factor matrix A. According to the
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definition of Khatri-Rao product, we can have

X(3) = Ck(Â� Â)T

⇔ Â� Â = ((Ck)†X(3))
T

⇔ âr ⊗ âr = ((Ck)†X(3))
T(:, r),

⇔ âr · âT
r = unvec

(
((Ck)†X(3))

T(:, r)
)
, r = 1, 2, . . . , Rps. (2.8)

where (·)† denotes the Moore-Penrose pseudoinverse; âr is the rth column of matrix

Â; unvec
(
((Ck)†X(3))

T(:, r)
)

is a matrix which divides the vector to I parts and put

each smaller vector into a matrix of size I × I (see Definition 1.10).

Therefore, instead of solving for the whole matrix Â in (2.6), we can use (2.8) to

solve for it column by column. Then the problem reduces to solving for the column

âr in (2.8), which can be solved alternatively through the same idea that fixing other

variables but one in the objective vector.

For the sake of convenience, we let x ∈ RI = [x1 x2 · · · xI ]T denote the unknown

vector âr and Y = unvec
(
((Ck)†X(3))

T(:, r)
)
∈ RI×I . So we can solve for one

component of the vector x each time by fixing other elements. For example, the first

element x1 can be solved for by rewriting the problem (2.8) to the following



x2
1 x1x2 · · · x1xI

x1x2 x2
2

...
. . .

x1xI x2
I


= Y.

The unknown x1 is involved in the first column and first row, so we can take the first

column and first row of Y to write out the problem, which is

min
x1

(y11 − x2
1)

2 +
I∑
i=2

[
(yi1 − xix1)

2 + (y1i − xix1)
2
]
. (2.9)
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This cost function is a fourth-order polynomial with one variable x1, so it is not hard

to find its minima. Therefore, once we obtain the value of x1, we can move on to the

next element of x so that the column of âr can be obtained enventially.

We call this method Partial Column-Wise ALS (PCW-ALS). Given three

initial factor matrices A0 and C0, it solves the following subproblems

ak+1
r = argminbar∈RI

∥∥unvec (((Ck)†X(3))
T(:, r)

)
− âr · âT

r

∥∥2

F
,

r = 1, . . . , Rps, (2.10)

Ck+1 = argminbC∈RK×Rps

∥∥∥X(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
(2.11)

to obtain the factor matrices A and C. Starting from the initial guesses, the PCW-

ALS approach fixes C to solve for each column ar of A, then fixes A to solve for C.

This process continues iteratively until some convergence criterion is satisfied.

The PCW-ALS algorithm essentially is also a Guass-Seidel method. Therefore,

similar with the ALS method, the PCW-ALS algorithm can only guarantee that the

cost function decreases as the number of iterations increases and can find a solution

where the cost function ceases to decrease.

2.2 SOPD for fourth-order partially symmetric tensors

In this section, we consider the SOPD for two types of fourth-order partial symmetric

tensors. The PCW-ALS method can also be applied to solve the fourth-order cases.

Let us consider the following partially symmetric fourth-order tensor X ∈ RI×I×I×L

with xijkl = xσ(ijk)l, where σ is a permutation on (ijk), so it is symmetric on mode-1,

mode-2 and mode-3. We call it Type I fourth-order partially symmetric tensor. So

the problem we want to solve is as follows,

minimizebX
∥∥∥X − X̂∥∥∥2

F
, where X̂ =

Rps∑
r=1

ar ◦ ar ◦ ar ◦ cr. (2.12)
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Notice that we also use Rps since it is not the CP rank. This problem is equivalent to

min
A,C

∥∥∥∥∥X −
Rps∑
r=1

ar ◦ ar ◦ ar ◦ cr

∥∥∥∥∥
2

F

, (2.13)

with respect to factor matrices A and C.

Since X̂ satisfies the SOPD equation (2.12), by using the tensor matricization, we

have

X̂ =

Rps∑
r=1

ar ◦ ar ◦ ar ◦ cr

⇓

X̂(3) = C(A�A�A)T

where X̂(3) ∈ RL×I3 is the mode-4 matricization of tensor X̂ ; A ∈ RI×Rps and C ∈

RL×Rps .

Then the original SOPD problem (2.13) has the following expression,

min
A,C

∥∥X(4) −C(A�A�A)T
∥∥2

F
. (2.14)

The idea that solving the two factor matrices alternatively can also be used on the

problem (2.14). So assume that C is fixed in (2.14), then we can have

X(4) = C(A�A�A)T

⇔ ar ⊗ ar ⊗ ar = ((C)†X(4))
T(:, r)

⇔ ar ◦ ar ◦ ar = ten(((C)†X(4))
T(:, r)), r = 1, . . . , Rps, (2.15)

where ar is the rth column of matrix A, ten(((C)†X(4))
T(:, r)) is a tensor of size

I × I × I which divides the vector to I2 parts and put each piece into a tensor (see

the Definition 1.11 in Chap. 2).
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So, the PCW-ALS method can be used to solve the problem (2.14). Given the

initial guesses A0 and C0, it solves the following subproblems

ak+1
r = argminbar∈RI

∥∥ten(((C)†X(4))
T(:, r))− âr ◦ âr ◦ âr

∥∥2

F
,

r = 1, . . . , Rps, (2.16)

Ck+1 = argminbC∈RK×Rps

∥∥∥X(4) − Ĉ(Ak+1 �Ak+1 �Ak+1)T
∥∥∥2

F
(2.17)

to obtain the factor matrices A and C. The updating process continues iteratively

until some convergence criterion is satisfied. And the problem (2.16) can be solved the

same way as the third-order version. We solve one element in âr each time by fixing

other elements, so the problem becomes to find the minima of a six-order polynomial

in terms of the unknown element. We repeat it for each element so that the vector

âr can be computed in the least-squares sense.

Now, let us consider a different type of fourth-order partially symmetric tensor,

X ∈ RI×J×I×J with xijkl = xkjil and xijkl = xilkj. This means the tensor is symmetric

in mode-1 and mode-3 and also symmetric in mode-2 and mode-4, we call it Type II

partially symmetric tensor. So the CP problem is as follows,

minimizebX
∥∥∥X − X̂∥∥∥2

F
, where X̂ =

Rps∑
r=1

ar ◦ br ◦ ar ◦ br. (2.18)

Again here the Rps is different from the CP rank for the tensor T . So this problem

is equivalent to

min
A,B

∥∥∥∥∥X −
Rps∑
r=1

ar ◦ br ◦ ar ◦ br

∥∥∥∥∥
2

F

, (2.19)

with respect to factor matrices A = [a1 a2 · · · aRps ] ∈ RI×Rps and B = [b1 b2 · · · bRps ] ∈

RJ×Rps .

In order to solve this problem by PCW-ALS, we need to introduce a different
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type of matricization for forth-order tensor, which is inspired from the matricization

definition in [31].

Definition 2.1 (square matricization) For a fourth-order tensor X ∈ RI×J×K×L, the

square matricization is denoted by mat(X ) ∈ RIK×JL and is defined as

X = mat(X )⇔ (X)(i−1)K+k,(j−1)L+l = Xijkl. (2.20)

So for the partial symmetric tensor X ∈ RI×J×I×J we study here, we use the

square matricization on X̂ , then we have

X̂ =

Rps∑
r=1

ar ◦ br ◦ ar ◦ br

⇓

mat(X̂ ) = (A�A)(B�B)T, (2.21)

where mat(X̂ ) ∈ RI2×J2
is the square matricization. So our original SOPD problem

(2.19) can be written as the following expression,

min
A,B

∥∥mat(X )− (A�A)(B�B)T
∥∥2

F
. (2.22)

Therefore instead of solving two matrices in (2.22), the PCW-ALS approach solves

the following subproblems by given initial guesses A0 and B0,

Ak+1 = argminbA∈RI×Rps

∥∥∥mat(X )− (Â� Â)(Bk+1 �Bk+1)T
∥∥∥2

F
,

Bk+1 = argminbB∈RJ×Rps

∥∥∥mat(X )− (Ak+1 �Ak+1)(B̂� B̂)T
∥∥∥2

F
(2.23)

to update the two factor matrices until some convergence criterion is satisfied. And

both the problems in (2.23) can be solved by using the exact technique as solving
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problem (2.6). Therefore, the updating rule is as follows,

ak+1
r = argminbar∈RI

∥∥∥unvec((mat(X )((B̂� B̂)T)†)(:, r))− âr · âTr
∥∥∥2

F
,

r = 1, 2, . . . , R,

bk+1
r = argminbbr∈RI

∥∥∥unvec(((Ak+1 �Ak+1)†mat(X ))T(:, r))− b̂r · b̂Tr
∥∥∥2

F
.

r = 1, 2, . . . , R.

3 Numerical examples

In this section, we compare the performance of ALS against PCW-ALS for the third-

order partial symmetric tensors and two types of fourth-order partial symmetric ten-

sors. The numerical examples show that the PCW-ALS is better than ALS method

in terms of the number of iterations and the CPU time. Additionally, it can also

reduce some swamps in the implementation of the ALS.

Example 3.1 (third-order partially symmetric tensor) We generate a partial

symmetric tensor X ∈ R17×17×18 by random data, in which xijk = xjik. Consider

a CP decomposition of X with Rps = 17. So it has two different factor matrices

A ∈ R17×17 and C ∈ R18×17, and the decomposition is

X =

Rps∑
r=1

ar ◦ ar ◦ cr.

In the two figures, the plots show the error ‖X − Xest‖2F versus the number of

iterations it takes to obtain an error of 10−10, where Xest denotes the obtained tensor

after every iteration. Since the ALS method needs three initial guesses, here we let

B0 = A0 for it.

In Figure 5.1a, the initial guesses are good. Both algorithms work well, but the

PCW-ALS method is better than the ALS algorithm. The PCW-ALS only takes 120
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(b) random initial guess

Figure 5.1: Plots for the Example 3.1

iterations in comparison to that of 1129 ALS iterations. Moreover, the PCW-ALS

is faster than ALS since the CPU time of PCW-ALS is 3.9919s while the ALS is

6.4126s. Figure 5.1b shows that PCW-ALS can reduce the swamp by only taking 205

iterations to reach an error within 10−10. While the ALS has a swamp and the error

stays in 100 after 20000 iterations.

Example 3.2 (Simulation) For the tensor X given in the Example 3.1, the ALS

and PCW-ALS algorithms are used to decompose it with rank Rps = 17. Both of ALS

and PCW-ALS are used on tensor X with 50 different random initial starters and

and the average results in terms of number of iterations and CPU time are shown in

the Table 5.1. Furthermore, we calculate the standard deviation for those data series

and the results are shown in the Table 5.2.

ALS PCW-ALS
average CPU time 17.1546s 6.1413s

average number of iterations 3445.0 258.7

Table 5.1: The comparison of ALS and PCW-ALS (Mean).

Example 3.3 (CPU time comparison in terms of tensor size) We apply the

ALS method and PCW-ALS method on the third-order partially symmetric tensors
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ALS PCW-ALS
standard deviation of CPU time 25.3297s 8.0604s

standard deviation of number of iterations 3166.4 209.0581

Table 5.2: The comparison of ALS and PCW-ALS (Standard Deviation).

X1 ∈ R10×10×10 with Rps = 10, X2 ∈ R20×20×20 with Rps = 20, . . . , X9 ∈ R90×90×90

with Rps = 90 and compare the CPU times of both methods for the same tensor

size. In order to have a fair comparison, for each tensor Xi, we use the technique in

Example 3.2 to get the average CPU times of both methods. The following Figure 5.2

shows that as the tensor size increases, the CPU time of ALS increases much faster

than the PCW-ALS time.
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Figure 5.2: Plots for the Example 3.3

Example 3.4 (Type I fourth-order partial symmetric tensor) The objective in

this example is a fourth-order partial symmetric tensor X ∈ R8×8×8×5 with Rps = 5,

in which xijkl = xσ(ijk)l, where σ is an any permutation on (ijk). So the ALS and

PCW-ALS algorithms are used to solve for the factor matrices A and C so that it
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has the following decomposition,

X =

Rps∑
r=1

ar ◦ ar ◦ ar ◦ cr.

Figure 5.3 shows that the PCW-ALS algorithm just takes less than 100 iterations

to reach an error within 10−10, however, the ALS algorithm takes 647 iterations.

Additionally, the CPU time of PCW-ALS is 1.5131s while the ALS method is 2.9323s.
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Figure 5.3: Plots for the Example 3.4

Example 3.5 (Type II fourth-order partial symmetric tensor)

Another type of fourth-order partial symmetric tensor X ∈ R12×13×12×13 with

Rps = 12, in which xijkl = xkjil and xijkl = xilkj is factored in this example by using

the PCW-ALS and ALS algorithms. So the decomposition model is

X =

Rps∑
r=1

ar ◦ br ◦ ar ◦ br.

where ar and br are the columns of factor matrices A and B.
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Figure 5.4 shows that the PCW-ALS algorithm takes 3.5113s and 70 iterations to

reach an error within 10−10 while the ALS algorithm takes 9.4803s and 378 iterations.
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Figure 5.4: Plots for the Example 3.5
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Chapter 6

Block term decompositions

1 Introduction

We introduced the Higher-Order Singular Value Decomposition (HOSVD) in Chap.

2. In this chapter, we study the numerical methods for solving a HOSVD for a given

tensor and introduce a new type of tensor decomposition which leads to a framework

that unifies the HOSVD and the CANDECOMP/PARAFAC (CP) decomposition.

Such decomposition is called Block Term Decomposition (BTD)[28, 29, 36]. The

BTD has been used in the area of signal processing [36]. Separately, Hopke et al [102]

propose a receptor model for third-order tensor to study the source of air pollutants.

Essentially, the receptor model is one type of BTD. In addition, the block term

decomposition in rank-(L,L, 1) can be considered as a special case of the receptor

model. In [102], the three-way receptor model with non-negative constraints is solved

by Multilinear Engine (ME) [94].

De Lathauwer [29] introduces an alternating least-squares method to solve for the

BTD of a given tensor which we call BTD-ALS. The algorithm basically breaks the

original problem into several least-squares subproblems. Based on this method, we

introduce a regularized method which adds a regularized item to each subproblem

since the least-squares method has some issues like non-uniqueness. This regularized
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method was introduced by Navasca, Kindermann and De Lathawer [91] for an ALS

algorithm of CP decomposition. Here we call it BTD-RALS. In terms of improving

the efficiency of BTD-ALS, line search schemes [106] [92] can also been used. However,

the line search method is much more complicated than the regularized method.

Additionally, the BTD-ALS method may require a high number of iterations to

converge which may be due to the poor initialization of the factor matrices or the

collinearity in the factor matrices. This slowed convergence characterized by a flat

curve in a log error plot is referred to as the swamp (see Chap. 3). Here, several

numerical examples are provided to show that the regularized method converges faster

than the BTD-ALS which, to some degree, can remove swamps. In addition, we study

the BTD problem and the BTD-ALS method from the view of optimization to show

that the method is in the same framework as the ALS method. Therefore, we can

conclude the same limit point statement (see Theorem 5.1 and Theorem 5.2) for the

BTD-RALS method with the one in Chap. 4.

Suppose that the sequence {T k} obtained from BTD-RALS has limit points, then

every limit point T̄ is a critical point of the following problem:

minimizebT ‖T − T̂ ‖2F , where T̂ is a block term decomposition.

In terms of the uniqueness of Block Term Decomposition for the third-order tensor,

De Lathauwer [29] provided several sufficient conditions so that the BTD can be

essentially unique. We study the relationship of BTD-(L,L, 1) and three-way receptor

model and mathematically prove that the three-way receptor model does not have

unique solution.

The text is organized as follows. In Section 2 we introduce the algorithm for solving

the HOSVD/Tucker decomposition. Different types of BTD are presented in Section

3. Section 4 provides the corresponding algorithms (BTD-ALS) [29] for solving the
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block term decompositions. In Section 5, we connect the BTD-ALS method with

the block nonlinear Gauss-Seidel (GS) method, introduce the regularized alternating

least-squares (BTD-RALS) to solve the BTD problem, and study the properties of

the regularization parameter. The convergence conclusion that given the existence

of some critical points of the BTD-RALS method, the limit points of the converging

subsequences of the BTD-RALS are the critical points of the original problem, is

proven in this section. Several numerical examples are also provided in Section 6

to show that the BTD-RALS converges faster than BTD-ALS and can remove some

swamps. In Section 7, we focus on the receptor model and prove that it cannot have

unique solution mathematically.

2 HOSVD algorithm

2.1 Algorithm to compute HOSVD

Recall that the HOSVD factors an Nth-order tensor T ∈ RI1×I2×···×IN into N orthog-

onal factor matrices A(n), n = 1, 2, . . . , N and a core tensor G in the form

T = G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N). (2.1)

So, given a tensor T , we want to find the orthogonal factor matrices and core tensor

to satisfy the equation (2.1). In [33], Lieven provided a very convenient and efficient

method to compute the HOSVD. In this section, we use a real-valued third-order

tensor to explain their method, which can be generalized to any complex-valued

Nth-order tensor.

By using the matricization on tensors in the equation (3.1), then we can rewrite
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it as the following three equations,

T(1) = AG(1)(C⊗B)T,

T(2) = BG(2)(C⊗A)T,

T(3) = CG(3)(B⊗A)T.

Then, the method in [33] for finding the factor matrices of HOSVD is to take the left

singular vectors of T(1) to be the factor matrix A, the left singular vectors of T(2) to

be the factor matrix B and the left singular vectors of T(3) to be the factor matrix

C. Since all the factor matrices are orthogonal, we can use the equations above to

compute the core tensor G, i.e.,

G(1) = ATT(1)(C⊗B),

G(2) = BTT(2)(C⊗A),

G(3) = CTT(3)(B⊗A).

So from any equation above we have the following formula to calculate the core tensor,

G = T ×1 AT ×2 BT ×3 CT. (2.2)

The following table shows the outline of the HOSVD algorithm for a third-order

tensor.

For an Nth-order tensor, the mode-n matricization on the tensors in the equation

(2.1) gives us

T(n) = U(n)G(n)(U
(N) ⊗ · · · ⊗U(n+1) ⊗U(n−1) ⊗ · · · ⊗U(1))T. (2.3)

Therefore, we can follow the same steps in the above algorithm by using the equation
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HOSVD-Algorithm

procedure HOSVD(T )

A← left singular vectors of T(1)—— % computing the factor matrix A

B← left singular vectors of T(2)—— % computing the factor matrix B

C← left singular vectors of T(3)—— % computing the factor matrix C

G = T ×1 AT ×2 BT ×3 CT—— % computing the core tensor G

return A, B, C, G
end procedure

Table 6.1: HOSVD algorithm for a third-order tensor T ∈ RI×J×K

(2.3).

2.2 Higher-order orthogonal iteration (HOOI)

Recall that the n-rank of a Nth-order tensor T ∈ RI1×I2×···×IN is the rank of its

mode-n matricization. It is clear that Rn = rankn(T ) ≤ In. And if Rn = rankn(T )

for n = 1, 2, . . . , N , we say that T is a full rank-(I1, I2, . . . , IN) tensor.

By the HOSVD Theorem 3.1 in Chap. 3, every Nth-order tensor T can be written

as a product

T = G ×1 U(1) ×2 U(2) ×3 · · · ×N U(N).

So for a given tensor T ∈ RI1×I2×···×IN , we can find an exact Tucker decomposition

with the core tensor G of size I1 × I2 × · · · × IN . When rankn(T ) = Rn < In for

one or more n, then according the work of De Lathauwer, De Moor and Vandewalle

[33], we take the first Rn leading left singular vectors of T(n) as the factor matrix

U(n) ∈ CIn×Rn (U(n)TU(n) = I ∈ CRn×Rn , where I is the identity matrix). This

decomposition is called the truncated HOSVD. Actually, the core tensor of the

truncated HOSVD is also all-orthogonal [33].

Therefore, for a given tensor T ∈ RI1×I2×I3 and given numbers R1, R2, R3 with
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Rn ≤ rankn(T ), the algorithm of the truncated HOSVD is shown in the Table 6.2.

This also can be generalized to any complex-valued Nth-order tensor by using the

equation (2.3).

Truncated HOSVD-Algorithm

procedure Truncated HOSVD(T , R1, R2, R3)

A← R1 left singular vectors of T(1)—— % computing the factor matrix A

B← R2 left singular vectors of T(2)—— % computing the factor matrix B

C← R3 left singular vectors of T(3)—— % computing the factor matrix C

G = T ×1 AT ×2 BT ×3 CT—— % computing the core tensor G

return A, B, C, G
end procedure

Table 6.2: Truncated HOSVD algorithm for a third-order tensor T ∈ RI×J×K

So, we can get a smaller core tensor of size R1×R2×· · ·×RN . However, this is not

like the decomposition in HOSVD theorem 3.1. The truncated HOSVD is not optimal

in terms of giving the best fit as measured by the norm of the difference [70]. So,

for the tensor that rankn(T ) = Rn < In, there are several methods to compute this

decomposition to find a best fit, [64, 74, 34]. In these methods, [34] provides a more

efficient iterative technique for calculating the factor matrices with the corresponding

core tensor and calls it the Higher-Order Orthogonal Iteration (HOOI). This

algorithm is an iterative method and the result of truncated HOSVD can be a good

initial starting set for HOOI.

We present some details of the HOOI method [70] here, for more information,

please refer to [70, 34]. Given a Nth-order tensor T ∈ RI1×I2×···×IN , the Tucker
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decomposition with rank constraints problem is

min
G,A(1),...,A(N)

∥∥T − G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)
∥∥2

F
(2.4)

subject to G ∈ RR1×R2×···×RN ,

A(n) ∈ RIn×Rn

By rewriting the above objective function in vectorized form as

∥∥vec(T )− (A(N) ⊗A(N−1) ⊗ · · · ⊗A(1))vec(G)
∥∥2

F
,

it is straightforward to show that the core tensor G must satisfy

G = T ×1 (A(1))T ×2 (A(2))T ×3 · · · ×N (A(N))T.

We can then rewrite the (square of the) objective function as

∥∥T − G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)
∥∥2

F

= ‖T ‖2F − 2〈T ,G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)〉+ ‖G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N)‖2F

= ‖T ‖2F − 2〈T ×1 (A(1))T ×2 (A(2))T ×3 · · · ×N (A(N))T,G〉+ ‖G‖2F

= ‖T ‖2F − 2〈G,G〉+ ‖G‖2F

= ‖T ‖2F − ‖G‖2F

= ‖T ‖2F −
∥∥T ×1 (A(1))T ×2 (A(2))T ×3 · · · ×N (A(N))T

∥∥2

F
.

Now, we can use an ALS approach to solve the problem (2.4). Because ‖T ‖2F

is constant, (2.4) can be recast as a series of subproblems involving the following
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maximization problem, which solves for the nth component matrix:

min
A(n)

∥∥T ×1 (A(1))T ×2 (A(2))T ×3 · · · ×N (A(N))T
∥∥2

F
, (2.5)

subject to A(n) ∈ RIn×Rn .

The objective function in (2.5) can be written in matrix form as

‖(A(n))TW‖2F with W = T(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)).

The solution can be determined using the SVD by simply setting A(n) to be the Rn

leading left singular vectors of W.

Therefore, the HOOI algorithm for third-order tensor can be shown here. For

a given tensor X ∈ RI×J×K , our goal is to decompose it to be a Tucker model

with the core tensor is G ∈ RP×Q×R. We first use truncated HOSVD to get the

initial factors A0 ∈ RI×P , B0 ∈ RJ×Q and C0 ∈ RK×R. Then the update Ak+1 is

the left P singular vectors of X(1)(C
k ⊗ Bk), Bk+1 is the left Q singular vectors of

X(2)(C
k⊗Ak+1) and Ck+1 is the left R singular vectors of X(3)(B

k+1⊗Ak+1). Same

with the HOSVD, once we get the three factors, the core tensor can be calculated by

(2.2). The following Table 6.3 shows the algorithm for a third-order tensor, where N

is the number of iterations; a stopping criterion can also be used. We can measure

the value of ek = ‖Ak −Ak−1‖2 for each iteration. So, one possible criterion is when

ek is less some very small number ε.

3 Block term decompositions

In this section, we will introduce a more general tensor decomposition which is called

Block Term Decomposition(BTD) [28, 29, 36] and we can see that both the CP

decomposition and Tucker decomposition are the special cases of BTD. Here we also
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HOOI-Algorithm

procedure HOOI(X , P , Q, R)

give initial guess A0 ∈ RI×P , B0 ∈ RJ×Q, C0 ∈ RK×R

for n = 1, . . . , N do

W← X(1)(C
n ⊗Bn)

An+1 ← P left singular vectors of W—— % computing the factor matrix A

W← X(2)(C
n ⊗An+1)

Bn+1 ← Q left singular vectors of W—— % computing the factor matrix B

W← X(3)(B
n+1 ⊗An+1)

Cn+1 ← R left singular vectors of W—— % computing the factor matrix C

end for

G ← X ×1 AT ×2 BT ×3 CT

return A, B, C, G
end procedure

Table 6.3: HOOI algorithm for a third-order tensor T ∈ RI×J×K

use real-valued third-order tensors to explain the block term decomposition. Notice

that all the analysis holds for any complex-valued Nth-order tensor.

3.1 Decomposition in rank-(L,L, 1) terms

Definition 3.1 [29] Let A = [A1 · · · AR] and B = [B1 · · · BR] be two partitioned

matrices. Then we define a product of A and B, denoted �p, which is

A�p B = [A1 ⊗B1 · · · AR ⊗BR]. (3.1)

Notice that this definition can be considered as a generalization of matrix Khatri-
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Rao product, which is defined on two matrices A ∈ RI×K and B ∈ RJ×K as

A�B = [a1 ⊗ b1 a2 ⊗ b2 · · · ].

Definition 3.2 (BTD-(L,L, 1)) [29] A decomposition of a tensor X ∈ RI×J×K in a

sum of rank-(L,L, 1) terms is a decomposition of X of the form

X =
R∑
r=1

Er ◦ cr, (3.2)

in which the rank of the matrices Er ∈ RI×J are L. cr are vectors of length K.

So X is decomposed into a sum of matrix-vector outer products. If we decompose

Er into two matrices, i.e., Er = ArB
T
r , where the matrix Ar ∈ RI×L and the matrix

Br ∈ RJ×L are rank L, then the equation (3.2) can be written as

X =
R∑
r=1

(ArB
T
r ) ◦ cr. (3.3)

The following Figure 6.1 shows the BTD-(L,L, 1) for a third-order tensor.

Figure 6.1: BTD-(L,L, 1) for X ∈ RI×J×K

Recall the CP decomposition (equation (2.1) in Chapter 3), for a third-order
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tensor, X can be written as a sum of outer products of three vectors,

X =
R∑
r=1

ar ◦ br ◦ cr,

where ar, br, cr, r = 1, . . . , R are vectors. When the matrices Ar and Br in the

equation (3.3) reduce to vectors, it is exactly same with the CP formula. Therefore,

we say that CP decomposition is a special case of the BTD-(L,L, 1).

Similar with the analysis of CP, we define A = [A1 · · · AR], B = [B1 · · · BR],

C = [c1 · · · cR] and call them the factor matrices of the BTD. Take the three different

modes matricization on the equation (3.3), we have (see [29])

X(1) = A(C�p B)T,

X(2) = B(C�p A)T, (3.4)

X(3) = C[(B1 �A1)1L, . . . , (BR �AR)1L]T,

where 1L is a column vector of all ones of length L.

3.2 Decomposition in rank-(L,M,N) terms

Definition 3.3 (BTD-(L,M,N)) [29] A decomposition of a tensor X ∈ RI×J×K into

a sum of rank-(L,M,N) terms is a decomposition of T of the form

X =
R∑
r=1

Gr ×1 Ar ×2 Br ×3 Cr, (3.5)

in which Gr ∈ RL×M×N are full rank-(L,M,N) and Ar ∈ RI×L (with I ≥ L), Br ∈

RJ×M (with J ≥M), and Cr ∈ RK×N (with K ≥ N) are full column rank, 1 ≤ r ≤ R.

The decomposition is visualized in the following Figure 6.2.

Recall the Tucker decomposition for a third-order tensor (equation (3.3)), so if
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Figure 6.2: BTD-(L,M,N) for a third-order tensor X

R = 1 in (3.5), the BTD-(L,M,N) is just a Tucker decomposition.

The factor matrices can be defined as A = [A1 · · · AR] ∈ RI×LR, B = [B1 · · · BR] ∈

RJ×MR and C = [C1 · · · CR] ∈ RK×NR. We also define a new core tensor G ∈

RLR×MR×NR, which is a block-diagonal tensor and its diagonal consists of all the

small core tensors Gr, r = 1, 2, . . . , R. Then, the BTD-(L,M,N) can be viewed as

one Tucker model,

X =
R∑
r=1

G1 ×1 Ar ×2 Br ×3 Cr = G ×1 A×2 B×3 C.

The following figure 6.3 shows the decomposition,

Actually, BTD-(L,L, 1) is also a special case of BTD-(L,M,N) [29]. The SVD of

Er in equation (3.2) provides us with a new formula of BTD-(L,L, 1). Since

Er = ArΣrB
T
r ,

then the equation (3.2) is equivalent to

X =
R∑
r=1

(ArΣrB
T
r ) ◦ cr

=
R∑
r=1

Σr ×1 Ar ×2 Br ×3 cr. (3.6)

We consider the diagonal matrix Σr as a tensor of size L × L × 1. Therefore, by
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Figure 6.3: the equivalent decomposition with BTD-(L,M,N) for a third-
order tensor X

comparing the equations (3.6) and (3.5), we can see that BTD-(L,M,N) is a general

decomposition which includes the BTD-(L,L, 1).

Now, we also use the matricization technique to analyze the BTD-(L,M,N) equa-

tion (3.5):

X(1) = A[G1(1) ⊗ e1 . . . GR(1) ⊗ eR](C�p B)T,

X(2) = B[G1(2) ⊗ e1 . . . GR(2) ⊗ eR](C�p A)T, (3.7)

X(3) = C[G1(3) ⊗ e1 . . . GR(3) ⊗ eR](B�p A)T

where ei = [0, . . . , 0, 1, 0, . . . , 0]T is a vector of length R and 1 is at the ith position,

1 ≤ i ≤ R. So [G1(1)⊗ e1 . . . GR(1)⊗ eR] ∈ RLR×MNR is actually a block-diagonal

matrix and the matrices Gi(1), 1 ≤ i ≤ R are on the diagonal position.
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Additionally, by using vectorization of X , the equation (3.5) can be written as

vec(T ) = (A�p B�p C)


vec(Gr)

...

vec(GR)

 , (3.8)

where vec(T ) and vec(Gr), r = 1, 2, . . . , R mean that the vectorization of the tensors

T and Gr, respectively.

De Lathauwer also talks about the BTD uniqueness conditions up to permutation

and scalings in [28, 29, 36]. Recall that in the third-order tensor CP decomposition,

the earliest uniqueness condition is from Kruskal in 1977 [75, 77] which depends on the

concept of k-rank. De Lathauwer introduces an analogous definition and generalizes

Kruskal’s condition to the BTD cases.

4 Numerical computation of BTD

4.1 Algorithm for solving BTD-(L,L, 1)

Given a third-order tensor X ∈ RI×J×K , our problem is

minbX ‖X − X̂‖2F , where X̂ =
R∑
r=1

(ArB
T
r ) ◦ cr. (4.1)

This problem is equivalent to

min
A,B,C

‖X −
R∑
r=1

(ArB
T
r ) ◦ cr‖2F , (4.2)

with respect to the factor matrices A, B and C.

Then we can use the three-modes matricization (3.4), the problem has the follow-
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ing three expressions,

min
A,B,C

‖X(1) −A(C�p B)T‖2F ,

min
A,B,C

‖X(2) −B(C�p A)T‖2F ,

min
A,B,C

‖X(3) −C[(B1 �A1)1L, . . . , (BR �AR)1L]T‖2F .

These three are equivalent. Instead of solving (4.1) for the three variables one

time, we can use these three equations by fixing all factor matrices but one each time.

Then the problem reduces to three coupled linear least-squares subproblems.

We have

Ak+1 = argminbA∈RI×LR

‖X(1) − Â(Ck �p Bk)T‖2F ,

Bk+1 = argminbB∈RJ×LR

‖X(2) − B̂(Ck �p Ak+1)T‖2F , (4.3)

Ck+1 = argminbC∈RK×R

‖X(3) − Ĉ[(Bk+1
1 �Ak+1

1 )1L, . . . , (B
k+1
R �Ak+1

R )1L]T‖2F ,

where X(1) ∈ RI×JK , X(2) ∈ RJ×IK and X(3) ∈ RK×IJ are the mode-1, mode-2 and

mode-3 matricizations of tensor X .

Thus, like the ALS method for the CP decomposition, the method of computing

the block term decomposition in rank-(L,L, 1) is also based on the three equations

in (4.3) to update the three factor matrices A, B and C alternatively. So, given the

initial factor matrices A0, B0 and C0, then at the (k + 1)th iteration, we hold Bk

and Ck to update the factor A to get Ak+1, then Ak+1 and Ck are held to update

B and obtain Bk+1. Similarly, we hold Ak+1 and Bk+1 to obtain Ck+1. Usually,

the Frobenius norm of the error between the given tensor and the updated tensor is

measured at each iteration to provide a convergence stopping criterion. Analogous to

the situation of CP algorithm, the each subproblem is a linear least-squares problem.

The outline of the algorithm of BTD-(L,L, 1) is given in the following Table 6.4 [36].
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BTD-(L,L, 1)-Algorithm

procedure BTD-(L,L, 1)(X , R,N)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R

for n = 1, . . . , N do

An+1 ← X(1)/(C
n �p Bn)T —— % solving least squares to update A

Bn+1 ← X(2)/(C
n �p An+1)T —–% solving least squares to update B

Cn+1 ← X(3)/[(B
n+1
1 �An+1

1 )1L, . . . , (B
n+1
R �An+1

R )1L]T

—— % solving least squares to update C

end for

return AN , BN , CN

end procedure

Table 6.4: Algorithm of BTD-(L,L, 1) with rank R for a third-order tensor
X ∈ RI×J×K

The number of iterations N is set to a large number; and a convergence stopping

criterion can be used. Notice that in the algorithm, we made the number R (the

number of components in the BTD-(L,L, 1) formula) is known. We know that the

problem of determining the rank of a tensor is NP-hard. Similarly, it is NP-hard to

determine the number of components in BTD-(L,L, 1) and BTD-(L,M,N).

4.2 Algorithm for solving BTD-(L,M,N)

The problem we want to solve is the following: given a third-order tensor X ∈ RI×J×K ,

compute the BTD-(L,M,N) with R components that best approximates X . So, it

can be considered as the following problem:

minbX ‖X − X̂‖2F , where X̂ =
R∑
r=1

Gr ×1 Ar ×2 Br ×3 Cr. (4.4)
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This problem is equivalent to

min
A,B,C,Gr

‖X −
R∑
r=1

Gr ×1 Ar ×2 Br ×3 Cr‖2F , (4.5)

with respect to the factor matrices A, B, C and the core tensors Gr, r = 1, 2, . . . , R.

By using the three-modes matricization and vectorization (3.7), (3.8) on the above

equation (4.5), the problem has the expressions

min
A,B,C,Gr

‖X(1) −A · [G1(1) ⊗ e1 . . . GR(1) ⊗ eR] · (C�p B)T‖2F ,

min
A,B,C,Gr

‖X(2) −B · [G1(2) ⊗ e1 . . . GR(2) ⊗ eR] · (C�p A)T‖2F ,

min
A,B,C,Gr

‖X(3) −C · [G1(3) ⊗ e1 . . . GR(3) ⊗ eR] · (B�p A)T‖2F , (4.6)

min
A,B,C,Gr

∥∥∥∥vec(X )− (A�p B�p C) ·


vec(G1)

...

vec(GR)


∥∥∥∥2

F

.

These four are equivalent. So, instead of solving (4.4) for the four variables one

time, we can use these four equations by fixing all factor matrices except one each

time so that the problem reduces to four least-squares subproblems. Then we have

Ak+1 = argminbA∈RI×LR

‖X(1) − Â · [G1
k
(1) ⊗ e1 . . . GR

k
(1) ⊗ eR] · (Ck �p Bk)T‖2F ,

Bk+1 = argminbB∈RJ×MR

‖X(2) − B̂ · [G1
k
(2) ⊗ e1 . . . GR

k
(2) ⊗ eR] · (Ck �p Ak+1)T‖2F ,

Ck+1 = argminbC∈RK×NR

‖X(3) − Ĉ · [G1
k
(3) ⊗ e1 . . . GR

k
(3) ⊗ eR] · (Bk+1 �p Ak+1)T‖2F ,

Gk+1
r = argminbGr∈RL×M×N

∥∥∥∥vec(X )− (Ak+1 �p Bk+1 �p Ck+1) ·


vec(Ĝ1)

...

vec(ĜR)


∥∥∥∥2

F

, (4.7)
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where X(1) ∈ RI×JK , X(2) ∈ RJ×IK and X(3) ∈ RK×IJ are the mode-1, mode-2 and

mode-3 matricizations of tensor X . And vec(X ) is the vectorization of X .

Therefore, we can use an alternating least-squares method to solve for the BTD-

(L,M,N). Given three initial factor matrices A0, B0, C0, and the initial core tensors

G0
r , r = 1, 2, . . . , R, the algorithm solves the four least-squares subproblems in (4.7) to

obtain the factor matrices A, B, C and the corresponding core tensors Gr. Starting

from the initials, the approach fixes B, C and Gr to solve for A, then fixes A, C and

Gr to solve for B, and then fixes A, B and Gr to obtain the factor C. Finally, by

fixing A, B and C, we can calculate Gr by using the fourth equation in (4.7). This

process continues iteratively until some convergence criterion is satisfied. Usually,

two types of stopping criterions are used. One is when the Frobenius norm of the

residual between the given tensor and the updated tensor is small enough, and the

other one is when the difference between the current update of one factor matrix and

the corresponding matrix in the previous iteration is small enough. The outline of

the algorithm BTD-(L,M,N) is given in the table 6.5 [36]. The number of iterations

N is set to a large number; and a convergence stopping criterion can be used.

The two algorithms in [36] require the coefficient matrix in each subproblem to

have at least as many rows as columns, and to have full column rank. Also, in order

to prevent the submatrices of the factor matrix from becoming ill-conditioned, [36]

QR factorization is used to normalize the each submatrix. But such normalization

cannot guarantee the Frobenius norm of the error between the given tensor and the

updated tensor will always decrease. However, if the initial guesses are good enough,

such problem only happens at the beginning iterations and the error will go down

eventually.
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BTD-(L,M,N)-Algorithm

procedure BTD-(L,M,N)(X , R,N)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R, Dr ∈ RL×M×N for

r = 1, 2, . . . , R

for n = 1, . . . , N do

An+1 ← X(1)/[(D1
n
(1) ⊗ e1, . . . ,DR

n
(1) ⊗ eR) · (Cn �p Bn)T]

—— % solving least squares to update A

Bn+1 ← X(2)/[(D1
n
(2) ⊗ e1, . . . ,DR

n
(2) ⊗ eR) · (Cn �p An+1)T]

——% solving least squares to update B

Cn+1 ← X(3)/[(D1
n
(3) ⊗ e1, . . . ,DR

n
(3) ⊗ eR) · (Bn+1 �p An+1)T]

—— % solving least squares to update Cvec(D1)
...

vec(DR)

← (An+1 �p Bn+1 �p Cn+1)\vec(T )

—— % solving least squares to update Dr, r = 1, . . . , R

end for

return AN , BN , CN , DNr , r = 1, . . . , R

end procedure

Table 6.5: Algorithm of BTD-(L,M,N) with rank R for a third-order tensor
X ∈ RI×J×K

5 Regularization method for solving BTD

In this section, we will view the BTD-(L,L, 1) and BTD-(L,M,N) from the perspec-

tive of optimization. We will also make a connection between the BTD-ALS for both

BTD-(L,L, 1) and BTD-(L,M,N) and the Gauss-Seidel (GS) method.
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5.1 BTD-(L,L, 1) as a nonlinear optimization

Recall the BTD-(L,L, 1) problem from Section 4.1. For a given third-order tensor

X ∈ RI×J×K the problem becomes

minbX ‖X − X̂‖2F , where X̂ =
R∑
r=1

(ArB
T
r ) ◦ cr.

So, we have the following expression about the cost functional,

‖X − X̂‖2F =
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

(
L∑
l=1

a
(r)
il b

(r)
jl )c

(r)
k

)2

, (5.1)

where a
(r)
il denotes the il element (ith row and lth column) of the matrix Ar, b

(r)
jl

expresses the jl element of the matrix Br, and c
(r)
k means the kth element in the

vector cr.

Then, ‖X − X̂‖2F is a function from x to R, and

x = vec([vec(A), vec(B), vec(C)]) ∈ Rn,

where A = [A1 . . . AR], B = [B1 . . . BR] and C = [c1 . . . cR] are the factor

matrices of X̂ and n = (IL+ JL+K)R.

Let vec(A) = x1 ∈ RIRL, vec(B) = x2 ∈ RJRL and vec(C) = x3 ∈ RKR. We

partition the vector x ∈ Rn into 3 component vectors xi ∈ Rni , i = 1, 2, 3, where n1 =

IRL, n2 = JRL and n3 = KR. It follows that x = x1×x2×x3 ∈ Rn1×Rn2×Rn3 = Rn.

Thus, the BTD-(L,L, 1) can be reformulated to the following problem,

minimize f(x) =
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

(
L∑
l=1

a
(r)
il b

(r)
jl )c

(r)
k

)2

(5.2)

subject to x ∈ Rn1 × Rn2 × Rn3 = Rn.
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According to the BTD-ALS algorithm, the updates are in terms of the components

of x. Starting from a given initial point x0 = vec([vec(A0), vec(B0), vec(C0)]) ∈ Rn,

a sequence {(xk1,xk2,xk3)} is generated by the following equations

xk+1
1 = argmin

y∈Rn1

f(y,xk2,x
k
3),

xk+1
2 = argmin

y∈Rn2

f(xk+1
1 ,y,xk3), (5.3)

xk+1
3 = argmin

y∈Rn3

f(xk+1
1 ,xk+1

2 ,y).

Recall the block nonlinear Gauss-Seidel method (GS) for solving the nonlinear

minimization problem in Chapter 3. We can see that the BTD-ALS is exactly the

GS method for solving the nonlinear problem (5.2) which is equivalent to the original

BTD-(L,L, 1) problem.

5.2 BTD-(L,M,N) as a nonlinear optimization

For a given third-order tensor, the BTD-(L,M,N) problem (4.4) is

minbX ‖X − X̂‖2F , where X̂ =
R∑
r=1

Gr ×1 Ar ×2 Br ×3 Cr.

So, by expressing the above cost functional in an element-wise way, we have the

following equation,

‖X − X̂‖2F =
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

L∑
l=1

M∑
m=1

N∑
n=1

g
(r)
lmna

(r)
il b

(r)
jmc

(r)
kn

)2

, (5.4)

where g
(r)
lmn is the element of the rth core tensor Gr at the lmn position, a

(r)
il denotes

the element of the matrix Ar at the il position, b
(r)
jm means the element of the matrix

Br at the jm position and c
(r)
kn is the element of the matrix Cr at the kn position.
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Then, ‖X − X̂‖2F is a function from x to R, and

x = vec([vec(A), vec(B), vec(C), vec(G1), . . . , vec(GR)]) ∈ Rn,

where A = [A1 . . . AR], B = [B1 . . . BR] and C = [C1 . . . CR] are the factor

matrices of X̂ . And n = (IL+ JM +KN + LMN)R.

Let vec(A) = x1 ∈ RILR, vec(B) = x2 ∈ RJMR, vec(C) = x3 ∈ RKNR and

vec([vec(G1), . . . , vec(GR)]) = x4 ∈ RLMNR, so that we partition the vector x ∈ Rn

into 4 component vectors xi ∈ Rni , i = 1, 2, 3, 4, where n1 = ILR, n2 = JMR,

n3 = KNR and n4 = LMNR. It follows that x = x1 × x2 × x3 × x4 ∈ Rn1 × Rn2 ×

Rn3 × Rn4 = Rn. Thus, the BTD-(L,M,N) can be reformulated to the following

problem,

minimize f(x) =
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

R∑
r=1

L∑
l=1

M∑
m=1

N∑
n=1

g
(r)
lmna

(r)
il b

(r)
jmc

(r)
kn

)2

(5.5)

subject to x ∈ Rn1 × Rn2 × Rn3 × Rn4 = Rn.

Then, we can see that the BTD-ALS algorithm for solving BTD-(L,M,N) is in terms

of the components of x, starting from a given initial point

x0 = vec([vec(A0), vec(B0), vec(C0), vec(G0
1), . . . , vec(G0

R)]) ∈ Rn,

and a sequence {(xk1,xk2,xk3,xk4)} is generated by the following equations

xk+1
1 = argmin

y∈Rn1

f(y,xk2,x
k
3,x

k
4),

xk+1
2 = argmin

y∈Rn2

f(xk+1
1 ,y,xk3,x

k
4), (5.6)

xk+1
3 = argmin

y∈Rn3

f(xk+1
1 ,xk+1

2 ,y,xk4),

xk+1
4 = argmin

y∈Rn4

f(xk+1
1 ,xk+1

2 ,xk+1
3 ,y).
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So, we can conclude that the BTD-ALS for BTD-(L,M,N) is exactly the GS

method for solving the nonlinear problem (4.5) which is equivalent to the original

BTD-(L,M,N) problem.

We can use some of the convergence properties of the GS method discussed in

Chap. 3 to discuss the BTD-ALS method. In general, the GS method may not

converge in the sense that it may generate a sequence with limit points that are

not critical points of the original problem. Theorem 3.6 and Theorem 3.7 in Chap. 3

provide two different conditions for the convergence of the GS method. One condition

requires the each step to have a unique solution, and the other one requires that the

function f is strictly quasiconvex with respect to all the xi on X except two. We see

that each subproblem in BTD-(L,L, 1) and BTD-(L,M,N) is a least-squares problem

which does not has the unique solution. Also, in Chap. 3, we have showed that the f

is not a strictly quasiconvex function which cannot satisfy the condition of Theorem

3.7. Therefore, in general, we cannot guarantee that the BTD-ALS methods converge

to a global minimum or even a critical point of the original cost functional.

5.3 BTD-ALS swamp

Now, let us discuss another effect of the BTD-ALS algorithm which is called swamp.

Like the ALS method in CP decomposition, we found that the BTD-ALS sometimes

illustrates swamp behavior that needs an exceedingly high number of iterations to

converge. The following Figure 6.4 shows that this swamp behavior occurs in the

BTD-ALS method for BTD-(2, 2, 2) with rank R = 2. The given tensor is a third-

order tensor of size (15× 16× 30).

5.4 Regularized method: BTD-RALS

Some disadvantages of the BTD-ALS method are shown and discussed in the previous

section. Since both the BTD-(L,L, 1) and BTD-(L,M,N) can be transformed to
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Figure 6.4: Numerical example for swamp in BTD-ALS, it takes over 20000
iterations

several least-squared subproblems, they can be solved using an alternating least-

squares method. We can introduce a regularized algorithm proposed by Navasca, De

Lathauwer and Kindermann [91] for improving the ALS method in CP decomposition.

In this section, we examine the regularized method, which we denoted by BTD-RALS

and will show that it is also the proximal point modification of the Gauss-Seidel

method (PGS) ([9, 46]). In addition, several numerical examples are presented later to

show that the BTD-RALS converges faster than ALS and decreases the high number

of BTD-ALS iterations, thereby removing the swamp.

According to the discussion above, we have made an equivalent connection be-

tween the BTD-ALS method and the GS method for solving the BTD nonlinear

optimization problem. Therefore, since the RALS method is also known as Proximal

Point modification of the Gauss-Seidel method (PGS) (Section 4.4 in Chap. 3) which

is a regularized method for the GS, it is natural to bring the regularized ALS method

[91] to regularize the BTD-ALS method.

So, by introducing the regularization parameter λn, we can obtain the correspond-
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ing new algorithms for BTD-(L,L, 1) and BTD-(L,M,N). We call them RBTD-

(L,L, 1) and RBTD-(L,M,N).

We add the regularization item for each subproblem in the equations (3.4),

An+1 = argminbA∈RI×LR

‖X(1) − Â(Cn �p Bn)T‖2F + λn‖Â−An‖2F ,

Bk+1 = argminbB∈RJ×LR

‖X(2) − B̂(Cn �p An+1)T‖2F + λn‖B̂−Bn‖2F , (5.7)

Ck+1 = argminbC∈RK×R

‖X(3) − Ĉ[(B1
n+1 �A1

n+1)1L, . . . , (BR
n+1 �AR

n+1)1L]T‖2F + λn‖Ĉ−Cn‖2F .

So the RBTD-(L,L, 1) algorithm is summarized in the Table 6.6. In the algorithm,

the regularization parameters λn, n = 0, 1, . . . are given by a nonnegative decreasing

sequence. Notice that at each iteration, the parameters are the same for the three

updated factor matrices. Such a parameter choice also follows the RALS algorithm

(see Chap. 3 and [91]).

In terms of RBTD-(L,M,N) algorithm, we regularize the first three equations for

updating the factor matrices A, B and C. The rule of the parameter choice is also

same with the previous regularization. So, the three subproblems in (3.7) become

An+1 = argminbA∈RI×LR

‖X(1) − Â[D1
n
(1) ⊗ e1, . . . ,DR

n
(1) ⊗ eR](Cn �p Bn)T‖2F

+λn‖Â−An‖2F ,

Bn+1 = argminbB∈RJ×MR

‖X(2) − B̂[D1
n
(2) ⊗ e1, . . . ,DR

n
(2) ⊗ eR](Cn �p An+1)T‖2F (5.8)

+λn‖B̂−Bn‖2F ,

Cn+1 = argminbC∈RK×NR

‖X(3) − Ĉ[D1
n
(3) ⊗ e1, . . . ,DR

n
(3) ⊗ eR](Bn+1 �p An+1)T‖2F

+λn‖Ĉ−Cn‖2F .

The details about the algorithm is shown in the Table 6.7.

In the above two algorithms, the regularized parameter choice follows from the

regularized parameter choice rule [88], and also [91] uses it into the RALS algorithm

103



RBTD-(L,L, 1)-Algorithm [91]

procedure RBTD-(L,L, 1)(X , R,N, λn)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R, λ0

for n = 1, . . . , N do

W← [(Cn �p Bn);λnI
LR×LR] ∈ R(JK+LR)×LR

S← [X(1);λn(An)T] ∈ R(JK+LR)×I

An+1 ←W/S —— % solving least squares to update A

W← [(Cn �p An+1);λnI
LR×LR] ∈ R(IK+LR)×LR

S← [X(2);λn(Bn)T] ∈ R(IK+LR)×J

An+1 ←W/S —— % solving least squares to update B

W← [((Bn+1
1 �An+1

1 )1L, . . . , (B
n+1
R �An+1

R )1L);λnI
R×R] ∈ R(IJ+R)×R

S← [X(3);λn(Cn)T] ∈ R(IJ+R)×K

Cn+1 ←W/S —— % solving least squares to update C

end for

return AN , BN , CN

end procedure

Table 6.6: Regularized algorithm of BTD-(L,L, 1) with rank R for a third-
order tensor X ∈ RI×J×K

to make a geometrically decreasing λn for each iteration n. We generalize this method

in [91] to make three different decreasing sequence {αn}, {βn}, {γn} for each factor

respectively. The determination of the ratios p = αn/αn−1, q = βn/βn−1 and r =

γn/γn−1 refers to the L-curve criterion [48]. In the next section, we will provide an

example to compare our parameter choice with the original one.

5.5 Convergence results of BTD-RALS

We have already shown that the BTD-ALS is similar to the ALS using CP decomposi-

tion. Furthermore, the BTD-RALS is also a PGS method. Therefore, the convergence

conclusion in Chap. 4 for the CP decomposition still holds for the BTD-(L,L, 1) and
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RBTD-(L,M,N)-Algorithm [91],

procedure RBTD-(L,M,N)(X , R,N, λn)

give initial guess A0 ∈ RI×R, B0 ∈ RJ×R, C0 ∈ RK×R, Dr ∈ RL×M×N for

r = 1, 2, . . . , R

for n = 1, . . . , N do

W← [(Cn �p Bn) · (D1
n
(1) ⊗ e1, . . . ,DR

n
(1) ⊗ eR)T;λnI

LR×LR]

∈ R(JK+LR)×LR

S← [X(1);λn(An)T] ∈ R(JK+LR)×LR

An+1 ←W/S—— % solving least squares to update A

W← [(Cn �p An+1) · (D1
n
(2) ⊗ e1, . . . ,DR

n
(2) ⊗ eR)T;λnI

JR×JR]

∈ R(IK+JR)×JR

S← [X(2);λn(Bn)T] ∈ R(IK+JR)×JR

Bn+1 ←W/S—— % solving least squares to update B

W← [(Bn+1 �p An+1) · (D1
n
(3) ⊗ e1, . . . ,DR

n
(3) ⊗ eR)T;λnI

KR×KR]

∈ R(IJ+KR)×KR

S← [X(3);λn(Cn)T] ∈ R(IJ+KR)×KR

Cn+1 ←W/S—— % solving least squares to update Cvec(D1)
...

vec(DR)

← (An+1 �p Bn+1 �p Cn+1)\vec(T )

—— % solving least squares to update Dr, r = 1, . . . , R

end for

return AN , BN , CN , DNr , r = 1, . . . , R

end procedure

Table 6.7: Regularized algorithm of BTD-(L,M,N) with rank R for a third-
order tensor X ∈ RI×J×K
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BTD-(L,M,N). So, we state the theorem as follows:

Theorem 5.1 (Convergence result for BTD-(L,L, 1)) Suppose that the sequence

{(Ak,Bk,Ck)} obtained from the BTD-RALS has limit points. Then every limit

point (A,B,C) is a critical point of the Problem (4.2).

Theorem 5.2 (Convergence result for BTD-(L,M,N)) Suppose that the sequence

{(Ak,Bk,Ck,Dkr )} obtained from the BTD-RALS has limit points. Then every limit

point (A,B,C,Dr) is a critical point of the Problem (4.5), where r = 1, 2, . . . , R.

6 Numerical Examples

Example 6.1 (Numerical example for BTD-(L,M,N)) We generate a tensor X ∈

R15×16×30 by random data and consider a block term decomposition of X in rank-

(2, 2, 2) with R = 2. The factor matrices are A = [A1 ∈ R15×2,A2 ∈ R15×2] ∈ R15×4,

B = [B1 ∈ R16×2,B2 ∈ R16×2] ∈ R16×4, C = [C1 ∈ R30×2,C2 ∈ R30×2] ∈ R30×4, and

the two core tensors are D1,D2 ∈ R2×2×2.

X = D1 ×1 A1 ×2 B1 ×3 C1 +D2 ×1 A2 ×2 B2 ×3 C2.

We use the same random initial guesses for both BTD algorithm and RBTD

algorithm and let λ0 = 1, λn = 0.85 · λn−1, n = 1, 2, . . . . The Figure 6.5 shows that

the BTD-RALS algorithm just takes just less than 300 iterations to reach an error

within 10−6 while the regular BTD takes 5041 iterations.

Example 6.2 (Numerical example for BTD-(L,L, 1)) For tensor X ∈ R10×15×28, a

block term decomposition of X in rank-(3, 3, 1) with R = 3. The factor matrices are

A ∈ R10×9, B ∈ R15×9 and C ∈ R28×3. The factorization equation is

X =
3∑
r=1

(ArB
T
r ) ◦ cr.
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Figure 6.5: The comparison of the BTD and RBTD with the same initials

Figure 6.6 shows that the BTD-RALS algorithm just takes 1558 iterations to reach

an error within 10−4, however, the BTD-ALS algorithm does not decrease the error

within 20,000 iterations.
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Figure 6.6: The comparison of the BTD and RBTD with the same initials

Example 6.3 (Comparison of different parameter choice) For this example, we also

use a third-order tensor X ∈ R15×16×30, and the block term decomposition is BTD-

(2, 2, 1) with R = 2. The parameter choice in [91] is λn = 0.85λn−1, so it makes
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the same λn for three factors at the iteration n. Our parameter choices are let

p = αn/αn−1 = 0.65, q = βn/βn−1 = 0.75 and r = γn/γn−1 = 0.85. Observe that we

make the changes on the regularization parameters for the first two factor.

Figure 6.7 shows the result. The swamp occurs for the BTD-ALS method (the

red line). It shows that our parameter choice (blue line) is slightly better than the

original one [91]. The CPU time of our method is 7.81s which is also faster than the

original BTD-RALS, 8.64 (with the same parameter for every factors at the same

iteration).
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Figure 6.7: The blue line is our parameter choice and the black line is the
parameter choice in [91]

7 Receptor model

In this section, we introduce the three-way receptor model [102], which is used in the

study of source apportionment in chemometrics. We point out that the BTD-(L,L, 1)

can be considered as a special case of receptor model with an additional constraint.

In addition, we prove that the receptor model does not have unique solution. In the
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following computation, we use the matricization definition 1.8.

7.1 Receptor model

Definition 7.1 [102] Tensor receptor model decomposes a third-order tensor X ∈

RI×J×K into the form

X =
R∑
r=1

A(r) ◦ b(r), (7.1)

where A(r) ∈ RI×J and b(r) ∈ RK.

Figure 6.8 shows the receptor model of a third-order tensor. We let A = [A(1) A(2) · · · A(R)]

Figure 6.8: Receptor model for X ∈ RI×J×K

and B = [b(1) b(2) · · · b(R)] and call them the two factor matrices of the receptor

model.

7.2 Receptor model and BTD-(L,L, 1)

Let us recall the definition of BTD-(L,L, 1) (Definition 3.2), which decomposes a

third-order tensor X ∈ RI×J×K into a sum of matrix-vector outer products and the

rank of the matrices is L. The formula (see equation (3.2)) of the BTD-(L,L, 1) is

X =
R∑
r=1

Er ◦ cr.
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Therefore, comparing the equation (7.1) and (3.2), we can see that both decompose

the tensor into a sum of matrix-vector outer products. The only difference is that

BTD-(L,L, 1) requires all the matrices Er have the same rank L. So, we can see that

the BTD-(L,L, 1) is a special case of receptor model, and the solution of equation

(3.2) (BTD-(L,L, 1)) is a solution of the receptor model (equation (7.1)).

We have shown that the BTD-(L,L, 1) is rewritten as

X =
R∑
r=1

(ArB
T
r ) ◦ cr

and can be solved by the alternative methods BTD-ALS and BTD-RALS. Therefore,

one solution of the receptor model (7.1) is

A(r) = ArB
T
r , b(r) = cr. (7.2)

Now, we can show a direct way to solve the receptor model (7.1).

Given the third-order tensor X ∈ RI×J×K , we matricize it to be a matrix X ∈

RIJ×K as follows

X(:, k) = vec(X: : k), (7.3)

which means that each column of the resulting matrix X is the vectorization of the

corresponding slice X: : k. Then we calculate the SVD of X

X =
R∑
r=1

σrur ◦ vr =
R∑
r=1

(σrur) ◦ vr =
R∑
r=1

wr ◦ vr,

where wr ∈ RIJ and vr ∈ RK . For each vector wr, we can matricize it to be a matrix

Wr ∈ RI×J by defining

Wr(i, j) = wr((j − 1)I + i).
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Therefore, the solution of the receptor model (7.1) is

A(r) = Wr, b(r) = vr. (7.4)

The reason why we can use the SVD to obtain the solution (7.4) is that when we

using the matricization defined in (7.3), we have

X =
R∑
r=1

A(r) ◦ b(r)

⇓

X =
R∑
r=1

vec(A(r)) ◦ b(r). (7.5)

So we can compute the matrices A(r) and vectors b(r) so that they can satisfy the

equation (7.5). Notice that they can be obtained by easily computing the SVD on

the matrix X.

7.3 Non-uniqueness of receptor model

We have shown that the receptor model at least has two solutions. One is the direct

method by computing the SVD of the matricization of X and is shown in (7.4). And

another one is the solution of BTD-(L,L, 1) (7.2). So it seems that the receptor model

does not have unique solution. In this section, we will mathematically show that the

receptor model equation (7.1) does not have unique solution.

Theorem 7.2 For a given third-order tensor X ∈ RI×J×K and a fixed number R,

there are multiple possible solution sets {A(r),b(r)} can satisfy the equation (7.1). In

addition, there always exists a rotation matrix between two solutions.

Proof. For the equation (7.1), we have the block matrix A and factor matrix B as
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follows,

A = [A(1) A(2) · · · A(R)] ∈ RI×JR,

B = [b(1) b(2) · · · b(R)] ∈ RK×R.

So for such a block matrix A, we define a matrix M(A) by reordering the elements

of A as following:

M(A) = [vec((A(1))T) vec((A(2))T) · · · vec((A(R))T)] ∈ RIJ×R. (7.6)

The reverse ofM is denotedM−1, which implies thatM−1(M(A)) = A andM(M−1(A)) =

A.

Therefore, by taking mode-3 matricizaiton on equation (7.1) so that it can be

rewritten as follows:

X =
R∑
r=1

A(r) ◦ b(r)

m

XT
(3) = M(A) ·BT, (7.7)

where X(3) ∈ RK×IJ is the mode-3 matricization of the given tensor X . M(A) is

defined by (7.6).

Hence, given a third-order tensor X and a fixed number R, the problem that

finding matrices A(r) and vectors b(r), r = 1, . . . , R to satisfy the equation (7.1) is

equivalent to finding matrices A and B to satisfy the equation (7.7).

Let us look at the equation (7.7), if A and B are the solutions of equation (7.7),

then there exists an invertible matrix T ∈ RR×R such that the matrices

Ã = M−1(M(A) ·T), B̃ = B ·T−T
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are also the solutions of (7.7). That is because

M(Ã) · B̃T = M(M−1(M(A) ·T)) · (B ·T−T)T

= M(A) ·T ·T−1 ·BT

= M(A) ·BT

= XT
(3).

And we call the T rotation matrix between the two solution sets {A,B} and {Ã, B̃}.

Therefore, in the application of receptor model, some constraints are needed to

help us find the solutions we expect. We will study this deeply in chapter 7 in the

chemometrics application.
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Chapter 7

Application I: Source

apportionment of time and size

resolved ambient particulate

matter

In this chapter, we provide an application of the tensor decomposition. We have talked

about the CP decomposition, HOSVD decomposition and two types of Block Term

Decomposition. Each decomposition was proposed due to the requirement in the fields

of application like psychometrics, chemometrics and signal processing. According to

Kolda [70], Appellof and Davidson [4] are generally credited as being the first to

use tensor decompositions in chemometrics, and tensors have since become extremely

popular in that field. So we will study one application in the field of chemometrics,

which applies the receptor model (see Chap. 6 [102]) on the environmental data [80].
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1 Introduction

Airport emissions are studied with regard to the local air quality in nearby area of

an airport for years (see [101, 18, 127]). In order to reduce the exposure of pollutants

which emitted from airport operations, it is necessary to quantify the various airport

sources (ground vehicles, landings, etc.) in order to develop a reliable emissions

inventory.

Receptor modeling is the application of data analysis methods to elicit information

on the source of air pollutants. The fundamental principle of receptor modeling is

that mass conservation can be assumed and a mass balance analysis can be used to

identify and apportion sources of airborne particulate matter (PM) in the atmosphere.

Initially, the bilinear multivariate receptor models are used to study a two-dimensional

data sample which involves the time-resolved PM and chemical species. Recently,

according to a study [40], particle size is also a significant factor in the study of

airport emissions. Therefore, the DRUM receptor model [102] is used to study the

size- and time-resolved PM samples in this chapter. It can take the size-composition

variation into account to properly resolve the ambient data for the apportionment of

potential airport emission sources. A weighted alternating least-squares method is

introduced to solve this model and five emission sources are identified successfully.

2 Data description

The original size- and time-resolved aerosol samples were collected using eight-stage

rotating DRUM impactor samplers at Washington-Dulles International Airport. There

measurement campaigns were conducted during 3 different seasons (i) April 17-28,

2009; (ii) January 16-24, 2010; and (iii) July 9-23, 2010. During April, 2009, samples

were collected by deploying one Rotating Drum Impactors (RDI) at the Base Station.

In the winter and summer seasonal campaigns, two RDIs were deployed; one at the
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Fire Station and the other at the Stone House (New Base Station) sites [67].

Particulate matter samples were analyzed by synchrotron X-ray Fluorescence (s-

XRF) [68] using a broad-spectrum X-ray beam generated on beamline 10.3.1 at the

Advanced Light Source Lawrence Berkeley National Laboratory. The s-XRF analysis

provides quantitative elemental data for 27 elements (Mg, Al, Si, P, S, Cl, K, Ca, Ti,

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Mo, and Pb) in 8

size modes (0.1-0.26µm, 0.26-0.34µm, 0.34-0.56µm, 0.56-0.75µm, 0.75-1.15µm, 1.15-

2.5µm, 2.5-5µm and 5-10µm) with 3-hour time resolution on the samples collected

in this campaign, and the total time samples are 357 during the spring, summer and

winter. In addition, mass concentrations were measured using soft beta attenuation.

The summary statistics are presented in Table 7.1.

The data were considered as a function of size, time, and chemical composition

(i.e., elemental species), which can be organized a third-order tensor Xorig ∈ RI×J×K .

If i denotes the chemical species, j particle size, and k the time sample, then a datum

point, xijk, can be expressed as the concentration value of the ith chemical species of

the jth particle size of the kth time sample.

There are two problems that need to be addressed before the sample tensor is

studied. First, the synchrotron XRF does not provide carbon and nitrate values, so

the measured mass minus the reconstructed mass, termed the “unmeasured mass”,

is introduced in the analysis. Another issue is the influence of high-noise variables

(chemical species). For some variables, the data may consist almost entirely of noise

which would increase the errors in computed factors. The question of accepting or

rejecting individual chemical constituents has been studied by Paatero and Hopke

[97]. The signal-to-noise ratio (S/N) and below detection level (BDL) were intro-

duced to determine the noisy variables (containing much more noise than signal).

For uncensored data, a variable is defined to be bad if S/N< 0.2. For censored data,

a sufficiently large numbers of BDL values (> 80%) may also indicate a noisy variable.
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Element Mean
(ng/m3)

Standard
Deviation
(ng/m3)

Median
(ng/m3)

S/Na Number of DBL
valuesb

Mg 61.10 270.69 32.14 2.6503 53
Al 37.02 85.52 12.82 1.7189 6
Si 54.44 113.84 10.00 3.2904 5
P 7.65 29.77 4.75 0.7456 6
S 113.26 721.72 31.21 5.0237 2
Cl 5.46 22.14 0 0.9685 30
K 7.47 11.49 3.29 0.9954 9
Ca 30.64 61.97 3.30 1.0085 0
Ti 2.99 5.37 0.90 0.9978 0
V 0.11 0.22 0.05 0.9960 247
Cr 0.05 0.10 0.02 1.0000 402
Mn 0.46 0.87 0.17 0.9998 85
Fe 23.48 41.48 5.84 1.0004 0
Co 0.07 0.10 0.04 0.9981 497
Ni 0.12 0.33 0.06 1.0000 84
Cu 0.99 1.59 0.36 0.9996 0
Zn 1.69 1.80 1.14 0.9979 0
Ga 0.03 0.04 0.02 0.9994 572
As 0.12 0.26 0.03 0.9998 237
Se 0.22 0.35 0.14 0.9995 299
Br 2.00 0.83 1.81 0.9987 0
Rb 0.21 0.22 0.17 0.9999 482
Sr 0.48 0.24 0.43 0.9999 448
Y 0.49 0.43 0.38 0.9999 603
Zr 0.99 0.66 0.78 0.9997 537
Mo 2.32 1.10 2.07 0.9995 489
Pb 1.06 3.10 0.43 0.9995 331

Table 7.1: The summary statistics of the original data.
a. Signal to noise ratio. b. Number of values below the method detection limit.

Therefore, four chemical species (P, Ga, Y, Zr) were eliminated on the basis of S/N

and large numbers of BDL values, so that the value of I index of the tensor data we

are using in the analysis is 24. It includes 23 chemical elements and the unmeasured

mass. Consequently, the dimension of the tensor X is 24× 8× 357.
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3 Weighted alternating least-squares algorithm

The model we use here to study the tensor sample is the three-way receptor model

which decomposes the tensor into R component tensors, each of them is the outer

product of a matrix and a vector. So according to [102], each matrix of the component

tensor is the profile for a given source. The dimensions are the number of measured

variables and the number of measured size fractions. For each source (factor), the

vector (corresponding to the matrix) is the mass contributions in terms of time, so the

dimension is the number of time samples. And R denotes the number of independent

sources (factors).

The receptor model is introduced in Chap. 6, the tensor is factored according to

it so we can have

X =
R∑
r=1

A(r) ◦ b(r) + E , (3.1)

where X is the third-order tensor of observed data, A(r) is the rth source profile array

and b(r) is the corresponding rth contribution vector. The tensor E having the same

size as X contains the residuals.

In its component form, the model equation becomes:

xijk =
R∑
r=1

a
(r)
ij b

(r)
k + eijk, (3.2)

where a
(r)
ij is the ith species mass fraction of the jth particle size range from the

rth source, b
(r)
k is the rth source mass contribution during the time units for the kth

sample, and eijk is the residual associated with ith species concentration measured

in the kth sample of the jth size range, and R is the total number of independent

sources.

As we have already shown that the receptor model does not have unique solu-
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tions, which means that if one set of factor matrices and vectors {A(r),b(r)} satisfy

the model, then we can also have another set of solutions {Ã(r), b̃(r)}. The relation

between the two sets of solutions is discussed in Chap. 6. Therefore, in order to de-

crease the rotational freedom in the solution, we introduce the uncertainty estimation

which provides a useful tool to decrease the weight of missing and below detection

limit data in the solution. The procedures of Polissar et al. [103] are used to as-

sign measured data and the associated uncertainties as the input data. In addition,

non-negativity constraints are also applied to the factors.

So from this receptor model and the techniques of controlling rotation, our problem

is to find non-negative matrices A(r) and vectors b(r), for r = 1, . . . , R, to minimize

the following objective function:

Q =
I∑
i=1

J∑
j=1

K∑
k=1

(
xijk −

∑R
r=1 a

(r)
ij b

(r)
k

)2

u2
ijk

, (3.3)

where uijk is the uncertainty value associated with data value xijk.

For convenience, the uncertainties uijk are organized into a third-order tensor U

and the size is same as the input tensor X . The objective function (3.3) can then be

written as:

Q =

∥∥∥∥∥∥
(
X −

∑R
r=1 A(r) ◦ b(r)

)
U

∥∥∥∥∥∥
2

F

, (3.4)

where the division between the two tensors is element-wise division. So the optimiza-

tion problem is

minimize
A,B

∥∥∥∥∥∥
(
X −

∑R
r=1 A(r) ◦ b(r)

)
U

∥∥∥∥∥∥
2

F

, (3.5)

subject to A,B are non-negative
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where A = [A(1) A(2) · · · A(R)] and B = [b(1) b(2) · · · b(R)].

In order to solve the problem (3.5), let us study the unweighted receptor model

first. By the mode-1 and mode-3 matricization (see Definition 1.8 in Chap. 2), we

can have the following forms,

X =
R∑
r=1

A(r) ◦ b(r)

⇓

XT
(1) = (D�l B) ·AT

XT
(3) = M(A) ·BT.

Where D is a J × J identity matrix, M(A) is defined by the equation (7.6) in Chap.

6, which is

M(A) = [vec((A(1))T) vec((A(2))T) · · · vec((A(R))T)] ∈ RIJ×R.

The product ‘�l’ is defined as following

D�l B = D�l [b(1) b(2) · · · b(R)]

= [D⊗ b(1) D⊗ b(2) · · · D⊗ b(R)] ∈ RJK×JR. (3.6)

These two variations are equivalent, therefore, we can matricize the uncertainty

tensor correspondingly so that the objective function (3.4) can have the following two

variations:

Q1 =
∥∥(XT

(3) −M(A) ·BT)/UT
(3)

∥∥2

F
, (3.7)

Q2 =
∥∥(XT

(1) − (D�l B) ·AT)/UT
(1)

∥∥2

F
, (3.8)

where UT
(1) and UT

(3) are the mode-1 and mode-3 matricizations of U , and ‘/’ denotes
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element-wise division between two matrices.

We use the same technique as ALS that fixing the factor matrix B to solve for

A in (3.7), and then fixing the factor matrix A to solve for B in (3.8), the problem

(3.5) reduces to two coupled weighted least-squares subproblems. Thus, we can solve

these two subproblems alternatively until some convergence criterion is satisfied:

Ak+1 = argminbA∈RI×JR

∥∥∥(XT
(1) − (D�l Bk) · ÂT)/UT

(1)

∥∥∥2

F
, (3.9)

Bk+1 = argminbB∈RK×R

∥∥∥(XT
(3) −M(Ak+1) · B̂T)/UT

(3)

∥∥∥2

F
, (3.10)

where Ak+1 and Bk+1 are the results obtained at the (k + 1)th iteration.

This method is called Weighted Alternating Least-Squares (WALS) and has

been used in [126] by Wentzell et al. The problem in [126] is to minimize the following

cost function

O = ‖(X−CP)/Σ‖2F ,

where X,Σ ∈ RI×J , C ∈ RI×R and P ∈ RR×J . So the WALS algorithm proposed in

[126] is

Ck+1 = argminbC∈RI×R

∥∥∥(X− ĈPk)/Σ
∥∥∥2

F
,

Pk+1 = argminbP∈RR×J

∥∥∥(X−Ck+1P̂)/Σ
∥∥∥2

F
.

As we can see that the WALS method in [126] solves for the two factor matrices by

using the same objective function. Alternatively we are using two objective functions

Q1 and Q2. The reasoning behind this is that our least squares is more complicated.

The factor matrix A cannot easily be computed by Q1, and similarly B cannot be
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computed by Q2 directly.

The problem (3.9) and (3.10) with non-negativity constraints can be solved column

by column. We take subproblem (3.9) to demonstrate this process. Let xi and ui

denote the ith columns of matrix XT
(1) and UT

(1) respectively, âi denote the ith column

of ÂT. So, we have

∥∥∥(XT
(1) − (D�l Bk) · ÂT)/UT

(1)

∥∥∥2

F
=

I∑
i=1

∥∥(xi − (D�l Bk) · âi)/ui
∥∥2

2
. (3.11)

For each ui, i = 1, 2, . . . , I, we define a matrix Dui as

Dui =



1/(ui)1

1/(ui)1

. . .

1/(ui)JK


∈ RJK×JK , (3.12)

where (ui)s is the sth element of the vector ui, s = 1, 2, . . . , JK.

Therefore, for the each item in the summation (3.11), we have

∥∥(xi − (D�l Bk) · âi)/ui
∥∥2

2

= (xi − (D�l Bk) · âi)T ·Du2
i · (xi − (D�l Bk) · âi)

= (xi − (D�l Bk) · âi)T ·DuT
i ·Dui · (xi − (D�l Bk) · âi)

= (Dui(xi − (D�l Bk) · âi))T · (Dui(xi − (D�l Bk) · âi))

=
∥∥Dui · xi −Dui(D�l Bk) · âi

∥∥2

2
. (3.13)

Noticed that the equation (3.13) is just a least-squares problem with the coefficient

matrix Dui(D�l Bk), where Dui is defined by (3.12). So, instead of computing the

whole matrix ÂT once a time, we can calculate each column âi by (3.13). In addition,

minimizing the objective function (3.13) in terms of âi with non-negativity constraint
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is easy to solve in MATLAB. We will use standard MATLAB least squares function,

‘lsqnonneg’, to impose the non-negativity constraints.

To stop the algorithm, we need to provide a convergence criterion. Usually the

sum of squared residual (SSR) is used as convergence criterion. The criterion stops

the algorithm if the change of objective Q between two iterations is less than some

small number called the tolerance. However, this may not be the best convergence

criterion to cope with our problem. In [45], a new convergence criterion is introduced.

It keeps tracking the change in det(BTB) from one iteration to the next, where ‘det’

is the determinant of the given matrix and the factor matrix B is normalized in each

iteration. det(BTB) is the squared volume of the space spanned by the column space

of B, it has advantages in the resolution process [45].

Therefore, the algorithm will stop if both of the changes (the value of objective

function Q and det(BTB)) between two iterations are sufficiently small (∼ 10−8).

We summarize the algorithm in Table 7.2:

About reducing the rotational freedom, we need to make the following comments.

1. According to Paatero et al. [98], the uncertainty estimates and non-negativity

constraints are generally insufficient to wholly eliminate the rotational problem.

2. Several methods are proposed by Paatero et al. [98] to control the rotations.

One way is constraining individual factor elements, either scores and/or loading,

towards zero values based on some external information about acceptable or

desirable shapes of the factors. Therefore, in our analysis and computation,

constraints based on the a priori information are imposed. Based on an initial

analysis [67], one factor is dominated by large particles with high concentrations

of chlorine. This factor should only be contributing during the January sampling

campaign and can be associated with the use of salt and sand on snow and ice.

Therefore, the mass contribution vector b(r) for this factor is constrained to

zero for the summer and spring samples.
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WALS-Algorithm

Input: Tensors X ,U ∈ RI×J×K , factor numbers R.

Output: Nonegative matrices A ∈ RI×JR, B ∈ RK×R minimize (3.7)

and (3.8).

A0 ∈ RI×JR, B0 ∈ RK×R, k = 0

U1 = UT
(1), U3 = UT

(3), X1 = XT
(1), X3 = XT

(3), D = eye(J)

CC1 = 1, CC2 = 1

while CC1 > tol and CC2 > tol do

for i = 1, . . . , I do

Du = diag(1./U1(:, i))

Ak+1(i, :)T = lsqnonneg (Du · (D�l Bk),Du ·X1(:, i)))

end for

for j = 1, . . . , K do

Du = diag(1./U3(:, i))

Bk+1(j, :)T = lsqnonneg (Du ·M(Ak+1),Du ·X3(:, j))

end for

CC1 =
∥∥(X3−M(Ak+1)Bk+1)./U3

∥∥2

F

CC2 =
∣∣det((Bk)TBk)− ((Bk+1)TBk+1)

∣∣
k = k + 1

end while

A = Ak,B = Bk

Table 7.2: WALS algorithm for receptor model in the source apportionment
application

3. For each chemical element, the mass fraction values across the eight particle

size ranges should be relatively smooth, which means that there should not be

very low or zero concentrations in an intermediate particle size while both its

adjacent particle sizes (smaller one and larger one) have high concentrations.

Thus, a constraint on the size mode is imposed to make sure the change across

the size mode is smooth.

4. The resulting apportionments are only good to a scale constant so the results
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are normalized by regressing the apportioned masses for each source for each

sampling period to the total measured mass as per Hopke et al. [58].

4 Numerical Results and Interpretation

We apply the WALS to the sample tensor X ∈ R24×8×357 to calculate the source profile

matrices A(r) and the corresponding contribution vectors b(r). Two criteria were used

to assess the number of factors. The fits to the data are examined by reviewing the

distributions of scaled residuals. These distributions should be symmetric and the

values should generally range from −3 to +3. In addition, the profiles have to be

physically realistic. The interpretability of the factors includes appropriate behavior

across the particle size dimension since there should be a degree of smoothness in that

direction. The pattern of elements and their appearance in physically meaningful

size ranges were used to access the appropriateness of the various solutions. In our

experiment, five factors are ultimately chosen to adequately reproduce the data and

provide interpretable factors.

Figure 7.1 shows the profiles for each factor (source) for all three sampling cam-

paigns. They are shown as grouped bar plots so that the size variation of the chemical

species in each source profile can be observed. The time series of the source contri-

butions are shown in Figure 7.2. The average mass contributions of each source for

each season to particulate matter less than 10 µm in aerodynamic diameter (PM10)

are presented in Table 7.3.

The first factor shows high concentrations of crustal elements (Al, Si, Fe, Ca, Ti)

peaking in the two largest size ranges. This factor can therefore be attributed to

“soil”. There can be some wind-driven aerosolization of surface solis, but more of the

soil is probably re-suspended by various forms of traffic including the cars bringing

passengers to the airport, ground activities at the airport, along with the taxing,

take-off, and landings of the aircraft.
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The second factor is dominated by large particles with high concentrations of

chlorine, calcium, and magnesium with some iron and other crustal species. This

factor only had contributions only during the January sampling campaign and can

be associated with the use of salt and sand on snow and ice. This factor was only

seen during the January campaign and we constrained the other values to be zero in

the final model.

Factor 3 shows a very different pattern with small particle sulfur, zinc, bromine,

zirconium and molybdenum. This factor is assigned to particles that are emitted

during landings. The sulfur and zinc come from tire wear. These elements are key

constituents in tires. Often a visible puff of smoke is observed at touchdown. There is

considerable frictional heat produced at this instant and particles are generated across

the particle size range. Both zirconium and molybdenum are used in high temperature

greases as might be used to lubricated bearings that would undergo significant heat

stress. The energy deposited in the bearings can be expected to liberate particles

from the lubricants.

Factors 4 and 5 have the highest values of S, but in different size fractions. The

chemical element S in factor 4 peaks in the middle size ranges. Such sizes are indicative

of cloud processed sulfur and a similar factor was observed by Pere-Trepat et al.

[102]. There is some intermixing of the sulfate with coarse particle soil. This sulfate

is transported to the site given the uniformity of contributions at multiple sites. This

factor was an important contributor of particle mass during the summer sampling

campaign.

Factor 5 has high sulfur concentrations in the smallest size bins and shows con-

tributions from crustal species in intermediate sized particles. Small size sulfate is

usually attributed to homogeneous sulfate formation. Given that off-road diesel fuel

has a significantly higher sulfur content than on-road fuel, there may be some contri-

bution from local diesel vehicles such as aircraft tugs and other ground vehicles. It is
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not clear what the source of the soil particles might be in size around 1.0 to 2.5 µm.

This factor was primarily observed in the April 2009 sampling period with a peak

at the Stone House site during the winter. It is likely that there is some admixture

of sand or construction material. Diesel construction equipment could also provide

small particle sulfate.

PM10

(ng/m3)
Base Station
April

Fire Station
January

Stone
House
January

Fire Station
July

Stone
House July

Soil
mean 10000 1708 2422 3622 3758
std dev 6044 1145 2488 2929 3173
median 10995 1495 1664 2733 2412

Salt
mean 0 7240 8338 0 0
std dev 0 3883 3782 0 0
median 0 7703 9040 0 0

Landings
mean 4277 9870 7225 6920 6238
std dev 4254 4147 4717 2995 3398
median 2619 10277 7084 7362 6662

Sulfatea
mean 350 1210 1322 5695 5565
std dev 403 1072 958 2543 2611
median 190 1063 1392 5628 5603

Sulfateb
mean 4498 431 3175 759 606
std dev 3814 498 3545 619 681
median 4153 259 2379 623 481

Table 7.3: Apportionment of PM10 for each site during each sampling cam-
paign.
a. Homogeneous Sulfate. b. Local Sulfate.

5 Conclusions

From the analysis of size- and time-resolved particle sample compositional data, five

emission sources were identified using a weighted alternating least-squares method:

soil, deicing road salt, aircraft landings, transported secondary sulfate, and local

sulfate/construction. The largest source associated with the airport operations was

aircraft landing that had not been previously considered as a significant source of

127



particles.

Figure 7.1: Source profiles for the resolved factors.
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Figure 7.2: The time series of source contributions.
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Chapter 8

Application II: Nonnegative tensor

decomposition with sparseness

constraints on sound separation

Tensor decompositions have many applications in the field of signal processing [36,

31, 32, 26]. The CP decomposition has been used to attempt sound source separa-

tion, with a focus on multi-channel sound source separation [44]. In this chapter,

we provide an application of the tensor CP decomposition with non-negativity and

sparseness constraints [82]. It is shown that two-channel mixture of several sound

sources separated. In addition, we compare the results from Nonnegative Tensor Fac-

torization (NTF) with the results from NTF using spareness constraints and show

that the latter one is more accurate than NTF.

1 Introduction

Sound source separation refers to the problem of synthesizing source signals given a

mixture of those same source signals. FitzGerald, etc. [44] provides the background

and the theoretical analysis about how the sound mixture can be modeled into a
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tensor structure with a CP decomposition. The original tensor T ∈ RI×J×K contains

the power spectrogram of the multi-channel mixed signals. Such T has the following

CP decomposition:

T =
R∑
r=1

ar ◦ sr ◦ gr, (1.1)

so the factor matrices are A = [a1 . . . aR], B = [b1 . . . bR] and G = [g1 . . . gR].

The entries of matrix G are the gains of each independent source from the different

channels and each matrix ar ◦ sT
r is a power spectrogram of a source signals. The

rank R refers to the sum of the number of different notes played by all the instrument

sources. According to [44], at present, there is no method for automatically estimating

the number of factors ( the rank R). Therefore, the data has an inherent tensor

structure and hence, tensor decomposition methods are applied.

Our experiment works on a two-channel mixture of the sound source signals from

a clarinet, a piano and a steel drum, which is the time-domain input signal. Figure

8.1 shows this. Each channel is a 91139 time sampled signal in 2 seconds and is

divided into 89 frames. The power spectrum is calculated within each frame using

the discrete Fourier transform (DFT) for each channel (see Figure 8.2a). Then the

two spectrograms are stacked into a tensor format (see Figure 8.2b). The two-channel

mixture of the signals is a tensor T of size 1024× 89× 2.

For such a tensor T , we want to use the ALS method to factor it, so our problem

is

min
A,S,G

‖T −
R∑
r=1

Ar ◦ Sr ◦Gr‖2F (1.2)

By ALS method, the problem (1.2) is reformulated into the following three subprob-
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Figure 8.1: The two-channel sound signal mixtures

(a) The frequency of the two channels (b) Tensor

Figure 8.2: Tensor structure: the left frequency is the top slice and the right
frequency is the bottom slice, obtaining a rotated tensor T ∈ R1024×89×2

lems:

Ak+1 = argminbA∈RI×R

‖T(1)
I×JK − Â(Gk � Sk)T‖2F ,

Sk+1 =argminbS∈RJ×R

‖T(2)
J×IK − Ŝ(Gk �Ak+1)T‖2F ,

Gk+1 = argminbG∈RK×R

‖T(3)
K×IJ − Ĝ(Sk+1 �Ak+1)T‖2F .

(1.3)

For sound separation applications, we require additional constraints on each of the

subproblems in the ALS algorithm: all the three factor matrices should be nonnegative

and A also needs be sparse since it represents the signals in the frequency basis.
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2 Constrains

2.1 NMF

To obtain nonnegative matrices S and G, the last two subproblems in (1.3) can be

replaced by the optimization problem of finding nonnegative factors W and H from

a nonnegative matrix V :

minimize‖V −WH‖2F , subject to W,H � 0 (2.1)

where W � 0 denotes that all the entries of W are nonnegative. This is called

Nonnegative Matrix Factorization (NMF). Several algorithms have been proposed for

NMF, namely, a gradient-based method by Paatero [99] and a multiplicative updating

algorithm by Lee and Seung [109].

For the factor matrix A, we have to deal with two constraints: sparsity and non-

negativity. We implement two methods differing in the order of how the constraints

are imposed: NMF with sparse constraints [59] (NMF-Sparse) and `1-minimization

with nonnegative constraints (`1-NMF).

2.2 `1-NMF

The first subproblem in (1.3) is reformulated by first vectorizing the equation T(1)
I×JK =

Â(Gk�Sk)T into t = Qâ via column stacking with Q = II×I⊗(Gk�Sk) ∈ RIJK×IR,

t ∈ RIJK and â ∈ RIR. Then the least-squares subproblem is replaced by an `1-

minimization with equality constraints [56]:

min‖â‖`1 subject to t = Qâ. (2.2)

Note that if x ∈ Rn, then ‖x‖`1 =
n∑
i=1

|xi|. The idea behind this model (2.2) is to

construct a sparse and exact solution vector â which matricizes into a sparse factor
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matrix Â satisfying the CP decomposition.

The `1 minimization problem can be recast as linear program [13]:

min 1′â subject to â ≥ 0 and Qâ = t (2.3)

with both equality and inequality constraints.

The link between `1 minimization and linear programs has been known since the

1950’s in the paper of [65]. Moreover, numerical techniques for solving linear programs

have been well studied. In our codes, we implement Matlab’s linear programming al-

gorithm based on the simplex and interior-point methods. To impose the nonnegative

constraint on Â, the approximation from the linear program is further refined by a

nonnegative least-squares method.

2.3 NMF-Sparse

In [59], based on the method proposed in [99] and [109], Hoyer added a sparseness

constraint on the NMF algorithm. Below we summarize the algorithm found in [59]:

for the nonnegative matrix V = T(1)
k−1

1. Initialize W = Ak−1 calculated in a previous ALS iteration and set H = (Gk−1�

Sk−1)T;

2. W←W − µW(WH−V)HT;

3. Project each column of W to a vector that is nonnegative with same `2 norm,

but the `1 norm is set to achieve the desired sparseness.

Here µW = Wia

(WHHT )ia
is small positive multiplicative step from [109]. In [59], Hoyer

provided the projection operator algorithm find the closest (in the Euclidean sense)

nonnegative vector s for any vector x constrained to a given the `1 norm and a given
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`2 norm. The desired sparsity of the factors, Sω and Sh, are defined as

sparseness(Wi) = Sω, sparseness(Hi) = Sh,

where

sparseness(x) =

√
n− ‖x‖`1‖x‖`2√
n− 1

.

for a vector x.

3 Numerical results

Now, we can decompose the tensor T by using the ALS method with those constraints.

We want to compare the results from different constraints and methods for the factor

matrices A. The three are:

• Use NMF on A, so there is no sparseness constraint here;

• Use `1-NMF to solve for A;

• Use NMF-Sparse on A.

So, we describe the algorithm as followings:

1. CP decomposition is applied to T via ALS (1.3) to obtain A, S and G. Then

use one of the following three methods for factor A and apply the nonnegative

matrix factorization method for factors S and G.

• (NMF)–For nonnegative A, solve the first subproblem of (1.3) by NMF.

• (`1-NMF)–For nonnegative sparse matrix A, use `1 minimization with non-

negative constraints (2.2) as the method for the first least-squares subprob-

lem.
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Figure 8.3: Waveforms of original signal, NMF, `1 nonnegative minimization
and NMF with sparseness
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• (NMF-Sparse)–For nonnegative sparse A, use NMF with sparseness con-

straints as a method by using the algorithm in Section (2.3).

• Nonnegative factor matrices S and G are solved by NMF.

2. For each 1 ≤ r ≤ R, construct the source spectrogram, Fr = A(:, r)S(:, r)T .

3. The matrix G gives the ratios of each signal of the instrument in two channels.

let a vector of size R, H = log G(1,:).
G(2,:)

. Using k-means cluster method [41], H is

divided into 3 clusters, where each is from an instrument. So, Hr corresponds

to Fr which should be in the same cluster.

4. Apply phase information [8] for the spectrogram obtained in 2 where the cor-

responding source signal up to the clusters is dominant to Fr. Invert the spec-

trogram to obtain the time domain waveforms. See Figures 8.3a–8.3c.

Figure 8.1 shows the two channel sound signal mixture input formed into a ten-

sor. We compared these methods (NMF-Sparse, `1-NMF) and NMF to the original

waveforms in terms of the time domain waveform plots and frequency plots. Figures

8.3a, 8.3b and 8.3c show the comparison results, the waveform (top) in each figure is

the original sound signal waveform. The rest of the waveforms (second from the top

to bottom) in Figures 8.3a, 8.3b and 8.3c are NMF, `1-NMF and NMF-Sparse, re-

spectively. It can be seen that all three methods can capture the main characteristics

of the sources.

We measure the distance between two signals w and v in a least squared error

sense [8] by the following equation:

E =
N∑
i=1

(|wi| − |vi|)2 (3.1)

where N is the length of the signals. In Figure 8.4, set 1 is the comparison of the

separated clarinet signals, set 2 and set 3 are the separated piano and steel drum

137



1 2 3
0

100

200

300

400

500

600

700
error comparison

 

 
NMF
l1−−NMF
NMF−−sparse

methods 

er
ro

r 

Figure 8.4: Error comparison of the different methods

signals, respectively. It shows that `1-NMF (the green bar) is better than the other

two methods in all three sets.

Although both of `1-NMF and NMF-Sparse obtain a sparse and nonnegative factor

matrix A, we have seen that `1-NMF is better in the least squared error sense. Let

us look at the clarinet spectrogram plots of the separated and original signals. Figure

8.5 shows that the NMF-Sparse method does not capture the spectral density at

frequency between 0 to 0.5× 104 and over 4× 104 while the higher densities appear

in the spectrograms of the NMF and `1-NMF methods.

4 Conclusion

Two methods for hybrid tensor nonnegative decomposition are presented in the appli-

cation of sound source separation. The two methods, the `1-NMF and NMF-Sparse,

are proposed to implement the hybrid tensor decomposition to obtain a sparse and

nonnegative factor due to the sparsity of power spectral. The numerical examples
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Figure 8.5: Spectrograms of the clarinet for the varying methods, the top
left one is the original spectrogram
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show the effectiveness of these techniques. Moreover, the error comparison plots

show the `1 nonnegative minimization (`1-NMF) is better than NMF. The results

of `1-NMF shows that it performs well with respect to the error and the resulting

spectrogram plots of the separated signals which coincide with the actual sound. The

NMF-Sparse method is the worst according to the error comparison. More study is

needed to compare the two methods. Furthermore, we plan to develop more efficient

techniques for sound source separation with better clustering methods.
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Conclusion

This thesis studied the variants of alternating least-squares method for different tensor

decompositions and two applications.

The classical alternating least-squares (ALS) method is proposed to solve the

CANDECOMP/PARAFAC (CP) decomposition for a given Nth order tensor. How-

ever, a phenomenal called swamp that the objective function stays in a value and does

not decrease for a long time happens in the computation of ALS. Then the regularized

alternating least-squares (RALS) method is introduced to reduce the swamp. This

thesis studied the RALS algorithm and proved the convergence property of RALS. In

addition, we analyzed the ALS and provided numerical examples of the comparison

of ALS and RALS.

For the partially symmetric tensor, the decomposition that factors it into a sum-

mation of rank-one partially symmetric tensors is studied in this thesis. We proposed

an alternating method called Partial Column-Wise alternating least-squares (PCW-

ALS) to compute the decomposition for the third-order case and two types of fourth-

order partially symmetric tensor. Numerical examples are provided to compare the

PCW-ALS algorithm with the ALS method. It has been shown that the PCW-ALS

is more efficient than ALS.

The three-way receptor model is for the study of source apportionment of air

pollutants. It is a relaxed version of BTD-(L,L, 1) model. We provided one solution

of this model. Furthermore, based on new formulation, we showed that the three-way
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receptor model does not have unique solution.

Two applications were studied in this thesis. The source apportionment of time

and size resolved ambient particulate matter studied the real data set collected from

Washington-Dulles airport. The three-way weighted receptor model was applied with

non-negativity constraints and a new method called weighted alternating least-squares

(WALS) is used to solve the model. We successfully identified five major emission

sources: soil, road salt, aircraft landings, transported secondary sulfate and local

sulfate/construction.

The nonnegative tensor decomposition with sparseness constraints on sound sep-

aration studied two-channel mixture of sound source signals. The CP decomposi-

tion with non-negativity and sparseness constraints was applied. We proposed two

methods to implement the CP to obtain a sparse and non-negative factor and made

comparison of these methods.
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Arthur Nádas. Airport-related air pollution and noise. Journal of occupational

and environmental hygiene, 5(2):119–129, 2007.

[19] P Comon and P Chevalier. Blind source separation: Models, concepts, algo-

rithms and performance. Unsupervised adaptive filtering, 1:191–237, 2000.

[20] Pierre Comon. Independent component analysis, a new concept? Signal pro-

cessing, 36(3):287–314, 1994.

[21] Pierre Comon, Gene Golub, Lek-Heng Lim, and Bernard Mourrain. Symmetric

tensors and symmetric tensor rank. SIAM Journal on Matrix Analysis and

Applications, 30(3):1254–1279, 2008.

[22] Pierre Comon and Christian Jutten. Handbook of Blind Source Separation:

Independent component analysis and applications. Academic press, 2010.

[23] Pierre Comon and Bernard Mourrain. Decomposition of quantics in sums of

powers of linear forms. Signal Processing, 53(2):93–107, 1996.

[24] Pierre Comon, Jos MF ten Berge, Lieven De Lathauwer, and Josephine Cas-

taing. Generic and typical ranks of multi-way arrays. Linear Algebra and its

Applications, 430(11):2997–3007, 2009.

145
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