
TENSOR DECOMPOSITIONS AND RANK APPROXIMATION OF TENSORS
WITH APPLICATIONS

by

RAMIN GOUDARZI KARIM

CARMELIZA NAVASCA, ADVISOR
COMMETTEE MEMBERS:

BRENDAN AMES
IAN KNOWLES

DA YAN
GUO-HUI ZHANG

A DISSERTATION

Submitted to the graduate faculty of The University of Alabama,
The University of Alabama at Birmingham, and The University of Alabama in

Huntsville in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

BIRMINGHAM, ALABAMA

2019

ABSTRACT

TENSOR DECOMPOSITIONS AND RANK APPROXIMATION OF TENSORS
VIA SPARSE OPTIMIZATION

RAMIN GOUDARZI KARIM

Tensor decompositions are higher-order analogues of matrix decompositions which

have applications in data analysis, signal processing, machine learning and data min-

ing. One of the most challenging problems in the tensor decomposition area is to

approximate the rank of a given tensor. Unlike the matrix case there is no simple

formula to bound the rank of a tensor. In fact, finding the exact rank of a tensor

is an NP hard problem. In this thesis we formulate the tensor rank estimation of a

tensor as an optimization problem and estimate the rank via `1 minimization. We

propose a numerical iterative method based on the proximal alternating minimization

algorithm and discuss the required conditions for the global convergence of the algo-

rithm. The performance of our algorithm is tested on several types of data such as

randomly generated tensors, RGB images and surveillance videos in order to separate

the background and foreground of them.

In addition, this thesis studies the block sampling of the alternating least squares

technique (ALS) and proposes an effective method for the CP decomposition of ten-

sors. The method is tested on randomly generated data as well as real data. The

proposed method converges faster that ALS in some cases when there is a presence

of swamp. In addition, it requires less computations in each iteration. Also, the

application of CP decomposition in image compression is provided.

ii

DEDICATION

TO MY BELOVED PARENTS

iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Carmeliza

Navasca for the continuous support of my PhD study and related research, for hrs

patience, motivation, and immense knowledge. Her guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Guo-Hui Zhang, Dr. Da Yan, Dr. Ian Knowles Dr. Brendan Ames, for their insightful

comments and encouragement, but also for the hard questions which incented me to

widen my research from various perspectives.

Also, I would like to express deep gratitude to UAB Mathematics Department

to provide a helpful environment. I extend my deep gratitude to UAB Mathematics

Department members Dr. Weikard, Dr. Stolz, Dr. Karpeshina, Dr. Zeng, Dr. Starr,

Dr. Nkashama and UAB Computer Science Department members Dr. Zheng, Dr.

Sprague for their knowledge, the support, and the encouragement.

Last but not the least, I would like to thank my family: my parents and to my

sister for supporting me spiritually throughout writing this thesis and my my life in

general.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

CHAPTER 1. Introduction . 1

CHAPTER 2. Introduction to Tensors and Tensor Decompositions 4
2.1. Tensor Definition and Preliminaries 4
2.2. Some Tensor Operations and Matrix Multiplications 10
2.3. Tensor as an Element of Tensor Product Spaces 14
2.4. Tensor Rank . 15

CHAPTER 3. Optimization and Proximal Algorithms 20
3.1. Introduction . 20
3.2. Gradient Methods . 21
3.3. Least Squares Problem . 24
3.4. Proximal Operator . 29

CHAPTER 4. Basic Tensor Decomposition 35
4.1. CANDECOMP/PARAFAC Decomposition 35
4.2. HOSVD/Tucker decomposition . 38
4.3. Alternating Least Squares (ALS) . 41
4.4. ALS as an Optimization Problem . 44
4.5. CP Decomposition as a Nonlinear Least Squares Problem 48

CHAPTER 5. Rank Approximation of Tensors 52
5.1. Introduction . 52
5.2. Preliminaries . 54
5.3. Rank Approximation of a Tensor . 57
5.4. Approximation of Tensor Rank in CP Decomposition 59
5.5. Analysis of Convergence . 62
5.6. Numerical Experiment and Results 68
5.7. Conclusion . 70

CHAPTER 6. Sampling Blocks in ALS . 73
6.1. Introduction . 73
6.2. Sampling the Rank-One Components in ALS 75

v

vi

6.3. Numerical Experiments . 79
6.4. Conclusion . 83

LIST OF REFERENCES . 84

LIST OF FIGURES

Figure Page

2.1 A third order tensor X ∈ RI×J×K . 4

2.2 A cubical order three diagonal tensor with a constant value c along its diagonal. 5

2.3 Mode-1(column) fibers x:jk. 5

2.4 Mode-2(row) fibers xi:k. 6

2.5 Mode-3(tube) fibers xij: . 6

2.6 Horizontal slices of an order-three tensor X(i, :, :). 7

2.7 Lateral slices of an order-three tensor X(:, j, :). 7

2.8 Frontal slices of an order-three tensor X(:, :, k). 7

2.9 Mode-1 matricization of a third order tensor X ∈ RI×J×K 8

2.10 Schematic of a rank one tensor a ◦ b ◦ c. 9

2.11 The universal property of the tensor product 14

2.12 A sequence of rank two tensors converging to a rank three tensor [36]. . 18

4.1 CP decomposition of a cubic tensor X, with factor matrices A = [a1 . . . aR],

B = [b1 . . . bR] and C = [c1 . . . cR]. 36

4.2 Tucker decomposition of a third order tensor 40

vii

viii

4.3 The sparsity of the Jacobian matrix. The blue points show the nonzero

elements of J . 50

4.4 The residual error of the objective function in CP problem versus the number

of iterations in Levenberg-Marquardt algorithm 50

4.5 The comparison between the ALS algorithm and Levenberg-Marquardt on a

randomly generated tensor of size 6×7×8 with rank 6. The x axis represents

the number of iteration and the y axis represents the error of the residual

function in CP formulation. 51

5.1 The BCD algorithm for approximating the rank of a third order tensor. . 61

5.2 The comparison in the residual error of LRAT [77] against the proposed

algorithm. 69

5.3 The original video [11, 65] is of the size 48 × 48 × 51. Column 1 shows

the original (11th,16th,49th) frames, column 2 shows the reconstruction

(background) and column 3 shows the foreground (moving objects). 70

5.4 The original video of this example is of size 240× 320× 500. The left column

represent the original sample frame taken from the original video and the right

column represents the background extraction of the corresponding frame. . 71

5.5 Residual Plot. The x-axis is the number of iterations and y-axis is the relative

error term of ‖X−
∑R

r αrar ◦ br ◦ cr‖2F . 72

5.6 The performance of our algorithm on RGB image. The right image illustrates

the compressed reconstructed version of the original image. 72

6.1 Plot of example (6.3.1). 80

ix

6.2 The left image is the compressed version of the original image by ALS. The

right image is obtained by the SBALS. 82

6.3 The Original image for example 3. 82

CHAPTER 1

Introduction

The CANDECOMP/PARAFAC (CP) decomposition of multi-dimensional arrays

was first introduced by Hitchcock in 1927 [30, 31]. It breaks down a tensor into a sum

of simpler tensors which can be seen as a similar method to the matrix singular value

decomposition (SVD). However, unlike the matrix SVD, the CP decomposition of a

tensor is more complex. The CP decomposition has received much attention in the

different areas of science and engineering such as signal processing, neuroscience, data

science and machine learning [61, 62, 2, 22]. In the last decade, CP decomposition

and Tucker decomposition of tensors have been studied in the framework of numerical

linear algebra, multilinear algebra and numerical analysis [19, 17].

Given a positive integer R, the number of rank one components in the CP decom-

position, there are several of algorithms to find a CP decomposition. Our focus for

computing the CP decomposition is on alternating least squares (ALS). It was first

proposed by Carroll and Chang [15] and has been used widely due to its simplicity

and ease of implementation. However, it can take so many iterations to converge

and it is not guaranteed to converge to a global minimum. Also, initial guess plays a

key role in the convergence of ALS [72]. There are several papers which discuss the

this problem and propose algorithms to improve the efficiency of the alternating least

squares method [49, 51].

One of the most important issues dealing with CP decomposition of a tensor is

to determine the rank of a tensor. The rank determination of a tensor is an NP hard

problem [28]. There are several papers discussing the difficulties estimating the rank

of tensors and suggesting new definitions like maximum attainable rank, border rank

and typical rank of tensors [68, 69]. Moreover, most of the suggested algorithms do

1

2

not provide an estimation on the tensor rank. Most of the numerical methods for

computing CP decomposition require the rank of a given tensor. In addition, they

begin with a lower guess for the tensor rank R and increase it to find a perfect fit

for the residual. Ideally, for noise free data the procedure is to compute the CP

for R = r, r + 1, . . . rank one components and stop when a good residual error is

acquired. In the presence of noise, the problem is even more complex because having

a good fit does not guarantee the rank in this case. However, this method can cause

several computing problems. One of the problems that may occur is the case when

the tensor is degenerate. The degeneracy of tensor is due to the ill-posedness of the

CP formulation.

This thesis is focused on finding a approximation of the tensor rank and its CP

decomposition. The tensor rank problem can be formulated as an optimization prob-

lem

min
α
‖α‖0 s.t. X = [α,A,B,C]R,

where ‖, ‖0 represents the number of nonzero elements of a vector. However, the

`0 norm is not convex. Therefore it is not an actual norm.Inspired by compressive

sensing we work with the `1 regularization. It is known from compressive sensing that

the minimization of `1 norm of α yields the sparse solution of the corresponding linear

system. The `1 regularization term also imposes the boundedness of α and prevents

the norm of the solution to approach to infinity. This resolves the ill-posedness of

the CP problem. Since the objective function is a sum of a smooth and non-smooth

functions, we adopt methods involving the proximal linearization of the objective

function.

In chapter 2, we review the basic definitions and terminologies in the area of tensor

decompositions. Most of the notations and definitions are adopted from [36]. There

are different methods for vectorization and matricization of a tensor which appeared

in the publications. However, the order of the array does not affect the results as long

as we remain consistent through the calculation.

3

In chapter 3, we discuss the necessary concepts of optimization and review the

basic algorithms which will be used in the following chapters. Most of the optimiza-

tion techniques which are used in tensor decompositions are the block coordinate

descent methods of Gauss-Seidel type. The use of proximal algorithms in tensor

decompositions has expanded in recent years [79].

In chapter 4, we formulate the CP decomposition as an optimization problem in

order to find the CP decomposition. The ALS algorithm will be reviewed in the

chapter as well as non linear methods. The performance of different methods are

discussed and compared for variety of tensors.

In chapter 5, we propose an algorithm to approximate the rank of a given tensor.

Most of the results are established for third order tensor. However, it can be extended

to any order. The technique is based on `1 minimization. We also test the method

on surveillance videos and images. Our experiments show a good improvement to the

previous works.

In chapter 6, the block sampling ALS method is proposed. The sampling shows

an improvement in the convergence of ALS when swamp happens. I order to test the

method, we apply the algorithm to an RGB image.

CHAPTER 2

Introduction to Tensors and Tensor Decompositions

2.1. Tensor Definition and Preliminaries

An Nth order tensor X ∈ RI1×I2×...×IN is a real N -dimensional array where its

element is denoted by

[X]i1...iN = xi1...iN , 1 ≤ ij ≤ Ij, 1 ≤ j ≤ N

The order of a tensor is the number of dimensions. By the definition above, vectors

are tensors of order one and matrices are tensors of order two. If I1 = I2 = . . . = IN ,

then the tensor X is called cubic (cubical).

Example 2.1.1. An order-zero tensor is a scalar. A third order tensor has three

indices, i, j and k as illustrated in the Figure 2.1. The element xijk is located on the

i-th row, j-th column and k-th tube of the cube in the figure.

Definition 2.1.1. An N th order tensor X ∈ RI1×I2×...×IN is called diagonal if

xi1i2...iN 6= 0 only if i1 = i2 = . . . = iN . Figure 2.2 illustrates a cubic tensor with a

constant value c along its diagonal.

x111

xI11

x11K

X

Figure 2.1. A third order tensor X ∈ RI×J×K .

4

5

c
c
c
c
c
c
c
c
c
c

Figure 2.2. A cubical order three diagonal tensor with a constant

value c along its diagonal.

Figure 2.3. Mode-1(column) fibers x:jk.

Fibers of a tensor are the higher-order analogue of matrix rows and columns.

A fiber is obtained from a tensor by fixing every index but one. For instance, the

columns of a matrix are mode-1 fibers and the rows are mode-2 fibers. Third-order

tensors have column, row and tube fibers which we denote them as x:jk, xi:k and xij:,

respectively. Figures (2.3), (2.4) and (2.5) show the mode-1 (column), mode-2 (row)

and mode-3 (tube) fibers of X.

Slices are two-dimensional sections of a tensor, which are obtained by fixing all but

two indices. The horizontal, lateral and frontal slices of a third order tensor X are

denoted by X(i, :, :), X(:, j, :) and X(:, :, k) respectively. Figures (2.6), (2.7) and (2.8)

show the horizontal, lateral and frontal slices of a third order tensor X.

Definition 2.1.2. The mode-n matricization (unfolding) of a tensor X ∈ RI1×...×IN

is shown by X(n) and is defined as follow: The (i1, . . . iN) element of tensor maps to

6

Figure 2.4. Mode-2(row) fibers xi:k.

Figure 2.5. Mode-3(tube) fibers xij:

matrix element (in, j) where

j = 1 +
N∑
k 6=n

(ik − 1)Jk, Jk =
k−1∏
m 6=n

Im

Example 2.1.2. Let X ∈ R4×3×2 then the three mode-n unfoldings are

X(1) =


x111 x121 x131 x112 x122 x132

x211 x221 x231 x212 x222 x232

x311 x321 x331 x312 x322 x332

x411 x421 x431 x412 x422 x432



X(2) =


x111 x211 x311 x411 x112 x212 x312 x412

x121 x221 x321 x421 x122 x222 x322 x422

x131 x231 x331 x431 x132 x232 x332 x432



7

Figure 2.6. Horizontal slices of an order-three tensor X(i, :, :).

Figure 2.7. Lateral slices of an order-three tensor X(:, j, :).

Figure 2.8. Frontal slices of an order-three tensor X(:, :, k).

and

X(3) =

x111 x211 x311 x411 . . . x131 x231 x331 x431

x112 x212 x312 x412 . . . x132 x232 x332 x432



8

j

i

k

i

j

k = 1 . . . k = K

Figure 2.9. Mode-1 matricization of a third order tensor X ∈ RI×J×K .

In general, we can define an unfolding for X ∈ RI1×...×IN by choosing a set of row

modes and a set of column modes, for example see [35]. Different orderings have been

used in the literature for ordering the columns for the mode-n unfoldings, however

the specific permutation of columns is not important as long as it remains consistent

throughout the calculations [37]. Figure (2.9) shows the mode-1 unfolding of a third

order tensor X ∈ RI×J×K .

Definition 2.1.3. The inner product of two same-sized tensors X,Y ∈ RI1×...×IN

is the sum of the products of their elements, i.e.,

〈X,Y〉 =
∑
i1...iN

xi1...iNyi1...iN .

This will define a norm of tensor (Frobenius) as follow:

‖X‖F =
√
〈X,X〉 =

(∑
i1...iN

x2i1...iN

)1/2

.

This is analogous to the matrix Frobenius norm.

Definition 2.1.4. The outer product of N vectors a(1) ∈ RI1 , . . . , a(N) ∈ RIN is

an order-N tensor X ∈ RI1×...×IN whose elements are defined as

xi1...iN = a
(1)
i1
. . . a

(N)
iN
, 1 ≤ ij ≤ Ij

An order-N tensor X ∈ RI1×...×IN is rank one if it can be written as the outer

product of N vectors, i.e.,

X = a(1) ◦ . . . ◦ a(N).

9

a

b

c

Figure 2.10. Schematic of a rank one tensor a ◦ b ◦ c.

Figure 2.10 shows the rank one third-order tensor X, The (i, j, k) element of X is

given by aibjck.

X = a ◦ b ◦ c.

Definition 2.1.5. An order N cubic tensor X ∈ RI×I×...×I is called symmetric if

xiσ(1)...iσ(N)
= xi1...iN , i1, . . . , iN ∈ {1, . . . , n},

for all permutations σ : N → N .

For example, a third order tensor X ∈ RI×I×I is symmetric if

xijk = xikj = xjik = xjki = xkij = xkji,

for all i, j, k ∈ {1, . . . , I}.

Definition 2.1.6. (vectorization) Let X ∈ Rm×n be an m× n matrix with ai as

the i-th column of X. The vec(.) operator turns X into a column vector as follows

vec(X) =


a1

a2
...

an


.

10

Likewise, we can define the the vectorization of a tensor X ∈ RI1×...×IN by vector-

izing the mode-1 matricization of X, i.e.

vec(X) = vec(X(1)).

2.2. Some Tensor Operations and Matrix Multiplications

Definition 2.2.1. The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L

is denoted by A⊗B is a matrix of size (IK)× (JL) and is defined as

A⊗B =


a11B a12B . . . a1JB

a21B a22B . . . a2JB

...
...

...

aI1B aI2B . . . aIJB


Proposition 2.1. [75] The basic properties of Kronecker product

(1) (A⊗B)T = AT ⊗BT

(2) (A⊗B)−1 = A−1 ⊗B−1

(3) (A⊗B)(C ⊗D) = AC ⊗BD

(4) A⊗ (B ⊗ C) = (A⊗B)⊗ C

Definition 2.2.2. [64] The Khatri-Rao product of two matrices A ∈ RI×J and

B ∈ RK×J which is denoted by A � B, is a matrix of size (IK) × J and is the

Kronecker product of the corresponding columns of A and B, i.e.,

A�B =
(
a1 ⊗ b1 . . . aJ ⊗ bJ

)
where aj and bj represent the columns of A and B for j = 1, . . . , J .

When a and b are vectors then the definition of Khatri-Rao coincides with the

definition of Kronecker product, i.e. a⊗ b = a� b.

Definition 2.2.3. The Hadamard product of two given matrices A,B ∈ RI×J is

the product of corresponding elements. It is denoted by A ∗B and is a matrix of size

11

I × J :

A ∗B =


a11b11 a12b12 . . . a1Jb1J

a21b21 a22b22 . . . a2Jb2J
...

...
...

aI1bI1 aI2bI2 . . . aIJbIJ


.

Hence the Hadamard product is an element-by-element product.

Proposition 2.2. Some properties of Hadamard product [64]

(1) A ∗B = B ∗ A

(2) (A ∗B)T = AT ∗BT

(3) A ∗ (B ∗ C) = (A ∗B) ∗ C

(4) A ∗ (B + C) = A ∗B + A ∗ C

(5) (A�B)T (A�B) = ATA ∗BTB

Definition 2.2.4. (Moore-Penrose Inverse) Let A ∈ Rm×n, then the a pseudoin-

verse of A is defined as a matrix A† ∈ Rn×m satisfying all of the following four

conditions:

(1) AA†A = A

(2) A†AA† = A†

(3) (AA†)T = AA†

(4) (A†A)T = A†A

It can be shown that the pseudoinverse of a matrix always exists and is unique

[57]. When A has full rank, A† can be expressed as a simple algebraic formula. If A is

full column rank (the columns of A are linearly independent), then ATA is invertible

therefore A† = (ATA)−1AT and when A is full row rank (the rows of A are linearly

independent), then AAT is invertible and A† = AT (AAT)−1.

Proposition 2.3. Some properties of pseudoinverse

(1) (A†)† = A

(2) (AT)† = (A†)T

12

(3) (cA)† = c−1A†, c 6= 0

(4) (A�B)† = ((ATA) ∗ (BTB))†(A�B)T

Let X ∈ RI1×...×IN be a rank one tensor obtained from outer product of N vectors,

in particular assume

X = a(1) ◦ . . . ◦ a(N),

then there is a relation between the vectorization (matricization) of X and the Kro-

necker product of the vectors. For instance for a third order tensor X = u ◦ v ◦ w

where u ∈ R2, v ∈ R3 and w ∈ R2, we can see that

vec(X) =



u1v1w1

u2v1w1

...

u1v3w2

u2v3w2


= w ⊗ v ⊗ u

this result can be generalized easily for order N tensor X = a(1) ◦ . . . ◦ a(N), i.e.

vec(X) = vec(a(1) ◦ . . . ◦ a(N)) = a(N) ⊗ . . .⊗ a(1).

The modal unfoldings (matricizations) of rank one tensors have a useful structure as

well, one can verify by a simple Kronecker multiplication that

X(1) =

u1v1w1 . . . u1v3w2

u2v1w1 . . . u2v3w2

 = u⊗ (w ⊗ v)T ,

X(2) =


u1v1w1 . . . u2v1w2

u1v2w1 . . . u2v2w2

u1v3w1 . . . u2v3w2

 = v ⊗ (w ⊗ u)T ,

and

X(3) =

u1v1w1 . . . u2v3w1

u1v1w2 . . . u2v3w2

 = w ⊗ (v ⊗ u)T .

13

In general, if a(n) ∈ RIn for n = 1, . . . N , and

X = a(1) ◦ . . . ◦ a(N) ∈ RI1×...×IN ,

then its modal unfoldings (matricizations) are rank-1 matrices:

(2.1) X(n) = a(n)
(
a(N) ⊗ . . .⊗ a(n+1) ⊗ a(n−1) ⊗ . . .⊗ a(1)

)T
.

The n-mode (vector) product of a tensor X ∈ RI1×...×IN with a vector v ∈ RIn produces

a N − 1 order tensor X×n v where its elements are defined as follows

(X×n v)i1...in−1in+1...iN =
In∑
in=1

xi1...iNvin .

Note that X×n v is a new tensor of size I1 × . . .× In−1 × In+1 × . . .× IN . A tensor

can be multiplied by several vectors in this way. For example assume that v(n) ∈ RIn

for n = 1, . . . , N , then multiplying in all modes will produce a scalar:

X×Nn=1 v
(n) = X×1 v

(1) ×2 . . .×N v(N)

=

IN∑
i1=1

. . .

IN∑
iN=1

xi1...iNv
(1)
i1
. . . v

(N)
iN
.

The n-mode multiplication in every mode except mode n results in a vector of length

In, i.e.

X×Nm6=n v(m) = X(n)v
(−n),

where

v(−n) = v(N) ⊗ . . .⊗ v(n+1) ⊗ . . .⊗ v(1).

Similarly the multiplication in every mode except n and p results in a matrix of size

In × Ip.

14

RI1 × . . .× RIN RI1×...×IN

RI1 ⊗ . . .⊗ RIN

⊗

◦

φ

Figure 2.11. The universal property of the tensor product

2.3. Tensor as an Element of Tensor Product Spaces

Recall that in multilinear algebra, a tensor is simply an element in the tensor

product of vector spaces [26]. The tensor product RI1⊗ . . .⊗RIN with the multilinear

map ⊗ always exists. One can easily check that the outer product defined in (2.1.4)

is multilinear [44]. In particular the mapping

◦ : RI1 × . . .× RIN → RI1×...×IN ,

is linear on each component. So by the universal property of the tensor product, there

exists a unique linear mapping φ such that the diagram (2.11) commutes, note that

since ⊗ generates the tensor product space RI1 ⊗ . . .⊗ RIN , dimensions of RI1×...×IN

and RI1 ⊗ . . . ⊗ RIN are equal, therefore φ is an isomorphism. If we consider the

canonical basis of RI1 ⊗ . . .⊗ RIN ,

{e(1)i1 ⊗ . . .⊗ e
(N)
iN
| 1 ≤ ij ≤ Ij, j = 1, . . . N}

then φ can be described as

φ

(∑
i1,...,iN

xi1...iN e
(1)
i1
⊗ . . .⊗ e(N)

iN

)
= X.

Therefore there is a one to one correspondence between the elements of tensor product

space RI1 ⊗ . . . ⊗ RIN and the multi-way arrays in the space RI1×...×IN . As a vector

space, the tensor space RI1×...×IN can be equipped with scalar multiplication and

addition:

[cX]i1...iN = cxi1...iN ,

and

[X + Y]i1...iN = xi1...iN + yi1...iN .

15

2.4. Tensor Rank

Any given tensor X ∈ RI1×...×IN can always be decomposed as

(2.2) X =
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r .

The rank of a tensor denoted by rank(X) is the smallest positive integer R such that

the above decomposition is exact [30, 31], where ”exact” means that the equality

holds in (2.2). A decomposition of a tensor in the form (2.2) where R =rank(X) is

called the rank decomposition of X. The definition of the rank of a tensor is analogous

to the one in matrices, however there are many differences. One difference is that a

tensor may have different ranks over R and C. For example consider the third order

tensor X ∈ R2×2×2 with frontal slices

X(:, :, 1) =

1 0

0 1

 , X(:, :, 2) =

 0 1

−1 0


has the rank decomposition over R with the vectors

a
(1)
1 =

1

0

 , a
(1)
2 =

0

1

 , a
(1)
3 =

 1

−1

 ,

a
(2)
1 =

1

0

 , a
(2)
2 =

0

1

 , a
(2)
3 =

1

1

 ,

and

a
(3)
1 =

 1

−1

 , a
(3)
2 =

1

1

 , a
(3)
3 =

0

1

 .

The proof that this given tensor is rank three over R can be found in [42]. On the

other hand, the rank decomposition of X can be obtained over C by the following

vectors:

a
(1)
1 =

1√
2

 1

−i

 , a
(1)
2 =

1√
2

1

i

 ,

16

a
(2)
1 =

1√
2

1

i

 , a
(2)
2 =

1√
2

 1

−i

 ,

and

a
(3)
1 =

1

i

 , a
(3)
2 =

 1

−i

 .

lk For further discussion about this example see [71]. Another major difference be-

tween matrix and tensor rank is that unlike matrices there is no direct relation be-

tween the dimensions of a tensor and its rank. Recall that in matrix case, the re-

lation rank(X) ≤ min{I, J} is always valid. For example, consider a square matrix

X ∈ R2×2 whose elements are drawn from the standard normal distribution (e.g.

randn(2,2) in MATLAB) , it can be shown that with probability one the rank of

such a matrix is equal to two. In contrast, a randomly generated third order tensor

X ∈ R2×2×2 may have different ranks over R, In fact

rank(X) =


2, with probability π/4

3, with probability 1− π/4.

However it has rank two over C with probability equal to one. Consider the space of

all tensors X ∈ RI1×...×IN with rank R over R, we denote this space with T I1×...×INR ,

in particular

(2.3) T I1×...×INR = {X ∈ RI1×...×IN |rank(X) = R}

we say that R is a typical rank of X ∈ RI1×...×IN if the measure of set T I1×...×INR is not

zero. For example, by the above discussion, a third order tensor X ∈ R2×2×2 has two

typical ranks two and three over R but only one typical rank over C. When there

is only one typical rank (that occurs with probability one then) we call it generic

rank. Table (2.1) shows the typical rank of some third order tensors with different

dimensions over R.

Consider the third order tensor X ∈ RI×J×K where

X = a ◦ a ◦ b+ a ◦ b ◦ a+ b ◦ a ◦ a

17

Size of Tensor Typical rank Citation

2× 2× 2 2, 3 [42]

3× 3× 2 3, 4 [41]

5× 3× 3 5, 6 [69]

I × J × 2, I ≥ 2J 2J [70]

I × J × 2 I, I + 1 [70]

I × J ×K, I ≥ JK JK [68]

Table 2.1. Typical rank of third order tensors over R

where ‖a‖ = ‖b‖ = 1 and 〈a, b〉 6= 1. This tensor has rank three [54], however it can

be approximated by the following sequence of rank two tensors [36]:

Xn = n

(
a+

1

n
b

)
◦
(
a+

1

n
b

)
◦
(
a+

1

n
b

)
− na ◦ a ◦ a

note that Xn → X as n→∞. Although X has rank three, it can be well approximated

by a sequence of rank two tensors. In such cases we say X has the border rank two.

This shows if we let R to be equal to border rank of X, then the following optimization

problem is ill-posed

min
ar,br,cr

‖X−
2∑
r=1

ar ◦ br ◦ cr‖2F ,

meaning that the minimum does not exists. In other words the set T I1×...×INR defined

in (2.3) is not closed under the induced topology of Frobenius norm. This exam-

ple illustrates a special case in tensor rank which is called degeneracy. A tensor is

degenerate if it can be approximated arbitrarily small by a sequence of lower rank

tensors. As this example shows, the factors become nearly proportional to each other

and the norm of some factors approaches to infinity as n→∞. Figure (2.12) shows

the degeneracy problem of estimating a rank three tensor Y by a sequence of rank

two tensors. In this example, a sequence {Xk} of rank two tensors make a better

estimation of Y as k → ∞. The best approximation of Y lies in the border of rank

18

Figure 2.12. A sequence of rank two tensors converging to a rank

three tensor [36].

two and rank three tensors. However the limit of the sequence does not belong to the

space of rank two tensors due the lack of closedness of the space of rank two tensors.

For third order tensors, the rank may be as large as min(IJ, JK, IK). In fact this

is the maximum attainable rank for the third order tensors. This upper bound, al-

though not very tight, is important because it states that the tensor rank is finite. It

is also useful to have the lower bound for the third order tensors. we have

(2.4) max(I, J,K) ≤ rank(X) ≤ min(IJ, JK, IK).

In the case where a best low approximation does not exist, we consider the concept

of border rank. The border rank of a tensor is defined as the minimum number of

rank one tensors that approximate a given tensor with arbitrary small residual error.

Mathematically, given X ∈ RI1×...×IN , the rank of X is defined as

(2.5) rankB(X) = min{r|for ε > 0, ∃ E , ‖E‖ < ε rank(X + E) = r},

A trivial inequality holds between the border rank and the rank of a tensor:

19

rankB(X) ≤ rank(X).

CHAPTER 3

Optimization and Proximal Algorithms

3.1. Introduction

Recall that the CP problem can be formulated as an optimization problem. In

this chapter we review some basic methods and algorithms which we will use in the

next chapters. Most of the algorithms we use for tensor decomposition and rank

approximation are of the type of block coordinate descent (BCD). Block coordinate

descent methods of Gauss-Seidel type minimizes the objective function cyclically over

each block while fixing the remaining blocks at their last value. The optimization

problems we focus on have the following form

(3.1) min
x
F (x1, . . . , xs) = f(x1. . . . , xs) +

s∑
i=1

ri(xi),

where the variable x has s blocks x1, . . . , xs. The BCD updates for the problem

(3.1) can have different forms:

(1) The primal update minimizes the objective function over a specific block:

(3.2) xk+1
i ∈ argmin

xi

F (xk+1
1 , . . . xk+1

i−1 , xi, x
k
i+1, . . . , x

k
s).

Alternating least squares (ALS) is an example of this type of update. The

primal update is the most used form in BCD. However, the convergence of

the method relies on the convexity and differentiability of F . When F is not

convex or differentiable, it may cycle and stagnate [58] or can get stuck in a

nonstationary point [5].

(2) The proximal update minimizes the objective function plus a proximal term

over a specific block at each iteration:

(3.3) xk+1
i ∈ argmin

xi

F (xk+1
1 , . . . xk+1

i−1 , xi, x
k
i+1, . . . , x

k
s) +

Li
2
‖xi − xki ‖22.

20

21

This update was also applied on ALS in order to reduce the swamp [49]. The

convergence of the method has been discussed in [4].

(3) The proximal linear update minimizes Lf , the linearized f , with an additional

proximal term over each block:

(3.4) xk+1
i ∈ argmin

xi

Lf (xi) + ri(xi) +
Li
2
‖xi − xki ‖22,

where

Lf (xi) = f(xki) + 〈xi − xki ,∇if(xki)〉.

The proximal linear update is new but very similar to the block coordinate

gradient descent (BCGD) which was discussed in [67]. This update is used

in chapter 5 in order to solve the rank approximation problem of a tensor.

In the next section, we discuss basic optimization techniques. Then, we continue by

reviewing some basic proximal algorithms which will be used later on chapter five.

3.2. Gradient Methods

In this section we review the standard gradient methods for minimizing a given

objective function f . We start with the following definition:

Definition 3.2.1. [9] A vector x∗ is called a local minimum of f , if there exists

an ε > 0 such that

f(x∗) ≤ f(x), when ‖x∗ − x‖ < ε.

It is called a global minimum of f if

f(x∗) ≤ f(x) x ∈ Rn.

Proposition 3.1. (First order necessary condition) Let x∗ be a local minimum

of f : Rn → R, and assume that f is continuously differentiable, then

∇f(x∗) = 0.

22

Given the initial point x0 ∈ Rn, an iterative descent method generates a sequence

of points {xk} such that

f(xk+1) < f(xk), k = 0, 1, . . .

This process successively improves the current solution estimate and we hope to reach

the minimum of f . One way to obtain the vector xk+1 from xk is to search along the

half line of vectors of the form

xk+1 = xk + αkdk,

where αk ≥ 0 represents the step-size that we take at each iteration and dk ∈ Rn is

the search direction. From the first order Taylor series expansion around xk, we have

f(xk+1) = f(xk) +∇f(xk)T (xk+1 − xk) + o(‖xk+1 − xk‖2)

= f(xk) +∇f(xk)T (xk + αkdk − xk) + o(αk)

= f(xk) + αk∇f(xk)Tdk + o(αk).

Since the term αk∇f(xk)Tdk dominates o(αk) near zero, we must have∇f(xk)Tdk <

0 in order to have a descent iteration. This is equivalent to say that the search direc-

tion must make an obtuse angle with the gradient vector at point xk. A very natural

candidate for search direction is dk = −∇f(xk) whenever ∇f(xk) 6= 0. We call the

algorithms of this type gradient methods. In general, the gradient methods have the

following form

xk+1 = xk − αkDk∇f(xk),

where Dk is a positive definite symmetric matrix. Note that

∇f(xk)TDk∇f(xk) > 0

due to the positive definiteness of Dk.

23

Example 3.2.1. The simplest choice of Dk is Dk = I, where I represents the

identity matrix. This methods is called the steepest descent. Despite the simplicity of

the method it often leads to a slow convergence.

Example 3.2.2. In Newton method, we let Dk =
(
∇2f(xk)

)−1
at each iteration,

provided that the Hessian matrix ∇2f(xk) is positive definite at each iteration.

The Newton method can be interpreted as minimizing the quadratic model of the

objective function around the current point xk. Let mk represent the quadratic model

of the objective function f around xk, i.e.

mk(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk)

then we find the minimum of mk by equating its gradient to zero,

∇mk(x) = ∇f(xk) +∇2f(xk)(x− xk) = 0

and we obtain the xk+1 as the minimum of mk(x):

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk).

The general form of the Newton method can be expressed as

xk+1 = xk − αk
(
∇2f(xk)

)−1∇f(xk),

with the step size αk > 0. Unlike the steepest descent method, Newton method

converges very fast asymptotically.

Proposition 3.2. [52] Suppose that f is twice differentiable and that the Hessian

∇2f(x) is Lipschitz continuous near the minimizer x∗ and is positive definite, then

the Newton method has the following properties:

(1) if the initial guess x0 is sufficiently close to x∗, the sequence {xk} converges

to x∗;

(2) the rate of convergence of {xk} is quadratic; and

(3) the sequence of gradient norms {‖∇f(xk)‖2} converges to zero quadratically.

24

3.3. Least Squares Problem

3.3.1. Linear Least Squares. Consider the overdetermined linear system

(3.5) Ax = b,

where A ∈ Rm×n, b ∈ Rm and m ≥ n. The vector x∗ is called the least-squares

solution of (3.5) if it solves the following minimization problem

(3.6) min
x∈Rn

1

2
‖Ax− b‖22.

When A is full column rank, i.e. rank(A) = n, then it can be shown that the

optimization problem (3.6) has a unique solution. In particular the unique solution

of (3.6) can be expressed by the following normal equation:

(3.7) ATAx = AT b.

Note that the above normal equation is obtained by the first order optimality condi-

tion. If we let f be the objective function in the equation (3.6), then we have

∇f(x) = AT (Ax− b), ∇2f(x) = ATA.

Thus, when A is full rank the Hessian matrix of f is positive definite which means f

is strictly convex so it must have a unique minimizer. The full rankness of A implies

invertibility of ATA. Hence the unique solution of (3.6) has the following closed form

x∗ = (ATA)−1AT b.

When rank(A) = m, ATA is not invertible so the optimization problem (3.6) has

infinitely many solutions. However, it can be shown that the vector

x∗ = AT (AAT)−1b,

is the only solution among all the solutions with minimum `2 norm. When A has many

rows (m is large), calculating (AAT)−1 is very expensive. The Kaczmarz’s algorithm

[34] is an iterative technique to find the solution of (3.6) without calculating (AAT)−1.

The global convergence of Kaczmarz’s algorithm was discussed in [56]. In general,

25

A†b provides the solution with the minimum norm, so we have the following theorem

[14]:

Theorem 3.1. Consider the least squares problem stated in (3.6). If rank(A) = r,

then the vector x∗ = A†b minimizes the objective function on Rn. Furthermore among

all vectors in Rn that minimizes (3.6), x∗ is the unique vector with minimal norm.

3.3.2. Nonlinear Least Squares. Let f : Rn → Rm (m ≥ n) be a smooth

function. We want to find a vector x∗ such that ‖f‖22 is minimized, In other words

we are interested to solve the following minimization problem

(3.8) min
x∈Rn

1

2
‖f(x)‖22.

Let us denote the objective function in (3.8) by F , then

F (x) =
1

2

m∑
i=1

(fi(x))2 =
1

2
‖f(x)‖22.

Provided that f has continuous second partial derivatives, we can calculate the gra-

dient and Hessian of F :

(3.9)
∂F

∂xj
(x) =

m∑
i=1

fi(x)
∂fi
∂xj

(x),

therefore the gradient vector of F is

∇F (x) = JT (x)f(x),

where J(x) represents the Jacobian of f , i.e.

(J(x))ij =
∂fi
∂xj

(x).

We can calculate the Hessian of F by the equation (3.9):

(3.10)
∂2F

∂xj∂xk
(x) =

m∑
i=1

(
∂fi
∂xj

(x)
∂fi
∂xk

(x) + fi(x)
∂2fi

∂xj∂xk
(x)

)
which shows that

∇2F (x) = JT (x)J(x) +
m∑
i=1

fi(x)∇2fi(x).

26

A simple case is when f has the linear form

f(x) = b− Ax,

where the vector b ∈ Rm and matrix A ∈ Rm×n. In this case J(x) = −A for all x and

we have that

F ′(x) = −AT (b− Ax).

In MATLAB, the command ”A \ b” returns the least squares solution computed

via orthogonal transformation. In the next two sections we review two of the most

effective algorithms for solving the non linear least squares problems.

3.3.3. The Gauss-Newton Method. The Gauss-Newton method is a very ef-

fective method for solving nonlinear least squares problem. It is based on the first

derivative of component functions fi, i = 1, . . .m. In special cases it can provide

quadratic rate of convergence as the Newton method does for optimization problems

[24]. Consider the linear approximation of f near a vector x (for small ‖h‖), i.e.

(3.11) f(x+ h) ≈ l(h) = f(x) + J(x)h,

Then the objective function F can be approximated by l as follow

F (x+ h) ≈ L(h) =
1

2
‖l(h)‖22

=
1

2
l(h)T l(h)

=
1

2
f(x)Tf(x) + hTJT (x)f(x) +

1

2
hTJT (x)J(x)h

= F (x) + hTJT (x)f(x) +
1

2
hTJT (x)J(x)h

Note that ∇L(h) = JTf + JTJh and ∇2L(h) = JTJ , so hGN can be obtained by

solving the following normal equation

(3.12) (JTJ)hGN = −JTf.

27

If the Jacobian matrix is full rank then JTJ is positive definite and hGN is determined

uniquely at each iteration. This is a descent direction for F because

hTGN∇F (x) = hGN(JTf) = −hTGN(JTJ)hGN < 0

due to the positive definiteness of JTJ .

3.3.4. The Levenberg-Marquardt Method. Levenberg-Marquardt algorithm

was first published in 1944 by Kenneth Levenberg [46] and was rediscovered in 1963

by Donald Marquardt [48]. The step hLM is obtained by the following modification

to (3.12), i.e.

(3.13) (JTJ + µI)hLM = −JTf, µ > 0,

where µ is the damping parameter. The advantages of damping parameter is the

following:

(1) For all µ > 0, the coefficient matrix is positive definite. This ensures that

hLM is a descent direction. Also hLM is uniquely determined at each iteration.

(2) For large values of µ, we can neglect the term JTJ , so the method reduces

to gradient descent method:

hLM ≈ −
1

µ
JTf,

which is ”good” if the iterates are far from the solution.

(3) For small values of µ, the method is similar to Gauss-Newton, i.e. hLM ≈

hGN . This is ”good” if we are close enough to the solution. Also the quadratic

rate of convergence can be obtained from it.

In order to update the damping parameter µ we define the gain ratio

σ =
F (x)− F (x+ hLM)

L(0)− L(hLM)
,

28

where the denominator represents the predicted gain by the linear model L,

L(0)− L(hLM) = −hTLMJTf −
1

2
hTLMJ

TJhLM

= −1

2
hTLM

(
2JTf + JTJhLM

)
=

1

2
hTLM

(
µhLM − JTf

)
> 0.

If σ is large, then the linear model L is a good approximation of F , so we are interested

in taking a larger step by reducing µ. On the other hand a small value of σ indicates

that L is a poor approximation of F , therefore we increase µ in order to get closer

to gradient descent method which takes shorter step length. Algorithm (2) describes

the Levenberg-Marquardt method. The stopping criterion for the algorithm is when

Algorithm 1 Levenberg-Marquardt Method

Initialize x = x0, ν = 2, A = J(x)TJ(x), g = J(x)Tf(x)

while stopping criteria not met do

solve (A+ µI)hLM = −g

xnew = x+ hLM

σ = (F (x)− F (xnew))/(L(0)− L(hLM)

if σ > 0 then

x = xnew, A = J(x)TJ(X), g = J(x)Tf(x)

µ = µ/3, ν = 2

else

µ = mu ∗ ν, ν = 2 ∗ ν

end if

end while

we are close to a stationary point, i.e. F ′(x∗) = g(x∗) = 0, so we can impose the

condition

‖g‖∞ ≤ ε,

29

where ε is very small, positive number. Another stopping criterion is when we get a

very small change in x, i.e.

‖xnew − x‖ ≤ ε(‖x‖+ ε),

finally, like all iterative processes we need to put a maximum number of iterations

to avoid falling into an infinite loop. There are other methods which effectively solve

the nonlinear least squares problem such as Dog Leg method, quasi Newton methods,

etc [47]. However, we only use the Levenberg-Marquardt Method in the following

chapters therefore we do not state them here.

3.4. Proximal Operator

3.4.1. Proximal Mapping. In this section, we introduce the proximal operator

for a closed proper convex function and review the basic properties of it. We follow

the notations used in [53]. The proximal operator plays a key role in the analysis of

the convergence of specific algorithms which will be introduced in the future chapters.

Definition 3.4.1. [53] Let f : Rn → R∪+∞ be a closed proper convex function,

the proximal operator of f with parameter λ > 0, proxλf : Rn → R, is defined by

proxλf (y) = argmin
x

(
f(x) +

1

2λ
‖x− y‖22

)
,

where ‖.‖22 represents the usual Euclidean norm.

Note that the function minimized on the righthand side is strongly convex so it

has a unique minimizer for every y ∈ Rn. The convex assumption in the definition

above can be removed but this will result in having a set-valued operator, i.e. the

minimizer of the function on the righthand side of the equation is not unique. In this

case the proximal operator still remains well-defined:

Proposition 3.3. [60] Let f : Rn → R ∪ ∞ be a proper closed function with

inf f > −∞. Then for every λ > 0 the set proxλf is nonempty and compact.

30

Example 3.4.1. The indicator function δC of a closed nonempty convex set C ⊂

Rn is defined as

δC(x) =


0 x ∈ C,

+∞ x /∈ C.

The proximal operator of δC reduces to the Euclidean projection onto C, i.e.

proxλδC (y) = argmin
x

(
δC(x) +

1

2λ
‖y − x‖22

)
= argmin

x∈C
‖y − x‖2 = ΠC(y)

Example 3.4.2. Let f(x) = |x|, then we have that

proxλf (y) =


y − λ v ≥ λ

0 |y| ≤ λ

y + λ y ≤ −λ

This operation is called soft thresholding.

If f : Rn → R ∪ {+∞} is fully separable, i.e.

f(x) =
n∑
i=1

fi(x),

then (proxλf (y))i = proxλfi(yi), this means the proximal operator of fully separable

function reduces to evaluating the proximal operator of scalar function.

Example 3.4.3. Let f : Rn → R be the `1 norm, i.e.

f(x) = ‖x‖1 =
n∑
i=1

|xi|,

then the proximal operator of f with parameter λ > 0 becomes

(proxλf (y))i =


yi − λ yi ≥ λ

0 |yi| ≤ λ

yi + λ yi ≤ −λ.

31

Proposition 3.4. [53] (Basic properties of proximal operator) Let λ, γ > 0 be

positive constants,

(1) If f(x) = γg(x) + C, then

proxλf (y) = proxγλg(y).

(2) If f(x) = g(x) + aTx+ C, then

proxλf (y) = proxλg(y − λa).

(3) If f(x) = g(Qx), where Q is an orthogonal matrix, then

proxλf (y) = QTproxλg(Qy).

Definition 3.4.2. [6] The infimal convolution of closed proper convex functions

f and g, denoted by f�g, is defined as

(f�g)(y) = inf
x

(f(x) + g(y − x)).

Given λ > 0, the Moreau envelope of f with parameter λ, denoted by Mλf is the

infimal convolution of λf and a scaled `2 norm, i.e.

Mλf (y) = (λf)�

(
1

2
‖.‖22

)
(y) = inf

x

(
f(x) +

1

2λ
‖x− y‖22

)
.

There is a close relation between the proximal operator of a function and the Moreau

envelope of it, proxf returns the (unique) minimizer of Mf ,

Mf (y) = f(proxf (y)) +
1

2
‖y − proxf (y)‖22

It can be shown that Mf is differentiable [6] and the derivative of Mf is given by

(3.14) ∇Mλf = λ−1(I − proxλf).

Furthermore, ∇Mλf is Lipschitz continuous, with constant λ−1, i.e.

‖∇Mλf (y1)−∇Mλf (y2)‖2 ≤ λ−1‖y1 − y2‖2,

for any y1, y2 ∈ Rn.

32

Example 3.4.4. Let C be a closed convex set in Rn. The distance function dC is

defined as

dC(x) = inf
y∈C
‖x− y‖.

This can be expressed as the infimal convolution of δC and (1/2)‖.‖22, i.e.

dC(x) = δC�
1

2
‖.‖22.

3.4.2. Proximal Algorithms. In this subsection we review some basic proximal

algorithms for solving convex and non-convex optimization problems. Consider the

problem

(3.15) min f(x) + g(x)

where f and g are closed proper convex functions and f is differentiable. The proximal

gradient method is

xk+1 = proxλkg(x
k − λk∇f(xk))

where λk > 0 is a step size. It can be shown [7] that the the proximal gradient

method converges with rate O(1/k) when ∇f is Lipschitz continuous with constant

L and λk = λ ∈ (1, 1/L]. It is clear that when g(x) = 0, the proximal gradient method

reduces to the standard gradient descent method. When g(x) = δC(x), the proximal

gradient method is called the projected gradient method [9]. The accelerated version

of proximal gradient method includes the extrapolation term in the algorithm:

yk+1 = xk + ωk(xk − xk−1)

xk+1 = proxλkg(y
k+1 − λk∇f(yk+1))

where ωk ∈ (0, 1) is the extrapolation parameter. There are several ways to determine

ωk at each iteration. A very simple choice [76] takes

ωk =
k

k + 3
.

For more information about accelerated proximal gradient methods and analysis of

convergence of the method see [8].

33

Algorithm 2 Proximal gradient method

Initialize x0, β ∈ (0, 1),

while stopping criteria not met do

xk+1 = proxλg(x
k − λ∇f(xk))

λ = βλ

end while

The alternating direction method of multipliers (ADMM) is another method for

solving problems of the form (3.15). It is also knows as Douglas-Rachford slitting.

For the iteration counter k we have

xk+1 = proxλf (z
k − uk)

(3.16) zk+1 = proxλg(x
k+1 + uk)

uk+1 = uk + xk+1 − zk+1.

For the convergence condition of this method see [12]. The advantage of ADMM

is that the terms in the objective function (3.15) are handled separately and the

functions are accessed through the proximal operators. ADMM is quite effective when

computing the proximal operators of f and g is simple but evaluating the proximal

of f + g is not easy.

When g = δC is the indicator function of a closed convex set C, the proximal

operator of g is the projection onto C. In this case, ADMM reduces to a method

of minimizing f over C which only uses the proximal operator of f . ADMM can be

interpreted as an augmented Lagrangian method. Note that the objective function

in (3.15) can be rewritten as

(3.17) min f(x) + g(z), s.t. x− z = 0.

The augmented Lagrangian associated with the problem (3.17) is

Lλ(x, z, y) = f(x) + g(z) + yT (x− z) +
λ

2
‖x− z‖22,

34

where λ > 0 and y is the dual variable. The ADMM method can then be expressed

xk+1 = argmin
x

Lλ(x, z
k, yk)

zk+1 = argmin
z

Lλ(x
k+1, z, yk)

yk+1 = yk + λ(xk+1 − zk+1).

In each step, Lλ is minimized over only one variable while it uses the most recent

value of the other primal and dual variable. There are a number of widely used

proximal algorithms, see, for example [12] and [53]. However, we do not use them in

the future chapters so we do not state them here.

CHAPTER 4

Basic Tensor Decomposition

4.1. CANDECOMP/PARAFAC Decomposition

The main idea of tensor decomposition is to break it down to a group of simple

structured tensors. Hitchcock [30], [31] introduced the idea of the polyadic decom-

position of a tensor by breaking a tensor into the sum of a finite number of rank

one tensors in 1927. Carroll and Chang [15] introduced CANDECOMP in 1970.

Harshman [29] introduced PARAFAC in the context of principle component analysis.

Currently, this decomposition is called the CANDECOMP/PARAFAC (CP) decom-

position. The CP decomposition factorizes a tensor into a sum of rank one tensors.

Given X ∈ RI1×...×IN and R ∈ N, we would like to write the tensor in the following

form

(4.1) X ≈
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r ,

Equivalently, when we take the scalar weights for each rank one tensor component,

it becomes

X ≈
R∑
r=1

αra
(1)
r ◦ . . . ◦ a(N)

r .

For each 1 ≤ n ≤ N , we define the factor matrix A(n) as

A(n) = (a
(n)
1 . . . a

(n)
R).

It is clear that A(n) is an In ×R matrix for 1 ≤ n ≤ N . If R is the actual rank of X,

the CP decomposition is called the rank decomposition of X and we have the equality

instead of approximation in equation (4.10):

(4.2) X =
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r .

35

36

X

≈

a1

b1

c1

+ . . . +

aR

bR

cR

Figure 4.1. CP decomposition of a cubic tensor X, with factor ma-

trices A = [a1 . . . aR], B = [b1 . . . bR] and C = [c1 . . . cR].

Example 4.1.1. Let X ∈ R2×2×2 with frontal slabs

X(:, :, 1) =

4 2

2 1

 , X(:, :, 2) =

9 4

5 2

 ,

then X has the following rank decomposition

X = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2,

with three factor matrices

A =

1 2

1 1

 , B =

1 2

0 1

 , C =

0 1

1 2

 .

Figure (4.1) illustrates the CP decomposition of a third order tensor.

4.1.1. Uniqueness of CP. For simplicity, let us focus on the third order tensor

X ∈ RI×J×K . Assume that the CP decomposition of X is given by the following three

factor matrices

(4.3) A =
(
a1 . . . aR

)
, B =

(
b1 . . . bR

)
, C =

(
c1 . . . cR

)
.

We adopt the following shorthand notation to represent the right hand side of the

equation (4.2)

(4.4) [A(1), . . . , A(N)] =
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r .

37

CP is unchanged by scaling; it means for a constant c 6= 0, we have that

[A,B,C] = [cA, c−1B,C] = [cA,B, c−1C] = [A, cB, c−1C].

In general for any three non-zero scalars a, b, c where abc = 1 we have

[A,B,C] = [aA, bB, cC].

This shows that the CP decomposition is not unique. Furthermore if Π is a permu-

tation matrix then

[A,B,C] = [AΠ, BΠ, CΠ]

Assume that Π12 is a permutation matrix which exchanges the first two columns of a

given matrix, then

[A,B,C] = [AΠ12, BΠ12, CΠ12] =
R∑
r=1

ar ◦ br ◦ cr.

So the uniqueness of CP problem is restricted to scaling and permutation of fac-

tor matrices. In addition Kruskal in 1977 [43] showed that the uniqueness of CP

decomposition under some specific rank of factor matrices conditions.

Definition 4.1.1. Given a tensor X ∈ RI×J×K, we say that its CP is essen-

tially unique if the factor matrices A,B,C are uniquely determined (up to scaling

and permutation).

Definition 4.1.2. The Kruskal rank kA of an I×R matrix A is defined to be the

largest positive integer k such that any k columns of A are linearly independent.

It is clear that kA ≤ rank(A) ≤ min{I, R} for example let

A =

1 0

2 0


then kA = 0 but rank(A) = 1.

38

Theorem 4.1. [43] Assume that X = [A,B,C], where A ∈ RI×R, B ∈ RJ×R and

C ∈ RK×R. If kA + kB + kC ≥ 2R + 2, then rank(X) = R and the CP decomposition

of X is essentially unique.

The result of this theorem was generalized later in 2000 [63].

Theorem 4.2. Given X = [A(1), . . . , A(N)]. If
∑N

n=1 kA(n) ≥ 2R+N − 1, then the

CP decomposition of X is essentially unique.

4.2. HOSVD/Tucker decomposition

Any matrix AI×J with rank(A) = R can be decomposed via SVD as A = UΣV T ,

where UI×I and VJ×J are orthogonal matrices and ΣI×J is a diagonal matrix with

positive entries. Therefore we can write

A =
R∑
r=1

Σ(r, r)UrV
T
r .

The goal of higher order SVD (HOSVD) is to generalize SVD to tensors. The Tucker

decomposition was first introduced in 1963 [73], It decomposes a tensor into a core

tensor multiplied by a matrix on each mode. For example if X ∈ RI×J×K is a third

order tensor, then

(4.5) X ≈ S×1 A×2 B ×3 C =
P∑
p=1

Q∑
q=1

R∑
r=1

spqrap ◦ bq ◦ cr = [S;A,B,C],

where A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R are the orthogonal factor matrices. The

core tensor S ∈ RP×Q×R indicates the level of interaction between the components.

The elementwise formulation of (4.5) can be expressed as

(4.6) xijk ≈
P∑
p=1

Q∑
q=1

R∑
r=1

spqraipbjqckr, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . K.

Here P,Q,R are the number of columns in the factor matrices A,B,C respectively. It

can be seen that the CP decomposition is a particular case of Tucker decomposition

39

when P = Q = R and the core tensor S is diagonal. The Tucker model can be

generalized to N dimensional tensors

(4.7) X = S×1 A
(1) ×2 A

(2) ×3 . . .×N A(N) = [S;A(1), A(2), . . . , A(N)],

or, elementwise, as

(4.8) xi1i2...iN =

R1∑
r1=1

. . .

RN∑
rN=1

sr1r2...rNa
(1)
i1r1

a
(2)
i2r2

. . . a
(N)
iNrN

, in = 1, . . . , IN .

Equation (4.7) can also be expressed in the matrix form using tensor matricization.

The result will be N matrix equations:

(4.9) X(n) = A(n)S(n)(A
(N) ⊗ . . .⊗ A(n+1) ⊗ A(n−1) ⊗ . . . A(1))T ,

for n = 1, . . . , N . For a given N th-order tensor X ∈ RI1×...×IN , we define the n-rank

of it to be the column rank of X(n) which we denote as rankn(X). If Rn = rankn(X),

then we say that X is a rank-(R1, . . . , RN) tensor. It is clear that Rn ≤ In for each

n = 1, . . . , N .

Theorem 4.3. [25] (HOSVD) If X ∈ RI1×...×IN and

X(n) = UnΣnV
T
n

are the SDVs of its modal unfoldings, then it HOSVD is given by

X = S×1 U1 ×2 . . .×N UN

where

S = X×1 U
T
1 ×2 U

T
2 . . .×N UT

N .

Moreover,

‖S(n)(i, :)‖2 = σi(X(n)) i = 1, . . . , rank(X(n)).

40

Figure 4.2. Tucker decomposition of a third order tensor

Let X ∈ RI1×...×IN . Then n-rank of X is the column rank of X(n). We denote

the n-rank of X by Rn = rankn(X) for n = 1, . . . , N and we say that X is a rank-

(R1, R2, . . . , RN) tensor. The idea of n-rank was first introduced by Kruskal [42]

and was developed by De Lathauwer [20] later. For a given tensor X, the Tucker

decomposition of rank (R1, R2, . . . , RN), where Rn = rankn(X) can be found easily.

The Figure (4.2) illustrates the Tucker decomposition of a third order tensor. In

general, Tucker decomposition is not unique. Consider a third order tensor X with

factor matrices A,B,C and the core tensor S, then for any invertiable matrices U ∈

RP×P , V ∈ RQ×Q and W ∈ RR×R we have

X ≈ [S;A,B,C] = [S×1 U ×2 V ×3 W ;AU−1, BV −1, CW−1].

So we can modify the core matrix S without worsening the fit by correct modifications

to the factor matrices. One way to resolve this non uniqueness property of Tucker

decomposition is to impose an extra condition on the core tensor S. For instance we

can obtain the unique core with the most zero elements [74].

41

4.3. Alternating Least Squares (ALS)

Recall that the CP decomposition of a tensor decomposes a given tensor into the

sum of a rank one tensors, i.e.

(4.10) X ≈
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r .

In order to measure the approximation term in (4.2) the Frobenius norm of a tensor

is used, so the problem is to minimize the Frobenius norm difference of X and the

summation of the rank one tensors. In particular, the related optimization problem

has the following form

(4.11) min
a
(1)
r ,...,a

(N)
r

1

2

∥∥∥∥∥X−
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r

∥∥∥∥∥
2

F

applying the factor matrices notation the optimization problem has the following form

(4.12) min
A(1),...,A(N)

1

2
‖X− [A(1), . . . , A(N)]‖2F

In order to introduce the ALS algorithm, we need the following lemma first. The

lemma states the relation between the modal unfolding (matricization) of the sum-

mation of rank one tensors and the Khatri-Rao product of the factor matrices.

Lemma 4.1. Let

X =
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r ,

and

A(n) =
(
a
(n)
1 . . . a

(n)
R

)
, n = 1, . . . , N.

Then we have

(4.13) X(n) = A(n)
(
A(N) � . . .� A(n+1) � A(n−1) � . . .� A(1)

)T
for all n = 1, . . . , N .

42

Proof. Note that for n ∈ {a, . . . , N} we have

X(n) =

(
R∑
r=1

a(1)r ◦ . . . ◦ a(N)
r

)
(n)

=
R∑
r=1

(
a(1)r ◦ . . . ◦ a(N)

r

)
(n)

using the equation (2.1) the last equality becomes

X(n) =
R∑
r=1

a(n)r

(
a(N)
r ⊗ . . .⊗ a(n+1)

r ⊗ a(n−1)r ⊗ . . .⊗ a(1)r
)T

=
(
a
(n)
1 . . . a

(n)
R

)(
a
(N)
1 ⊗ . . .⊗ a(1)1 . . . a

(N)
R ⊗ . . .⊗ a(1)R

)T
= A(n)(A(N) � . . .� A(n+1) � A(n−1) � . . .� A(1))T

�

We also see that the Frobenius norm of a tensor is equal to the Frobenius norm

of any of its modal unfoldings (matricizations), hence

(4.14) ‖X− [A(1), . . . , A(N)]‖F = ‖X(n) − [A(1), . . . , A(N)](n)‖F ,

for n ∈ {1, . . . , N}. This relation comes useful in the process of the ALS algorithm

which we describe in the next section.

4.3.1. The ALS Scheme. In this subsection we review the ALS scheme. ALS

is an iterative method for finding the CP decomposition of a given tensor. It is

effective, fast and easy to implement. For the purpose of simplicity, first we look at

only the third order tensors, later the we describe the algorithm for arbitrary order N

tensors. The problem we want to solve is: given a third order tensor X ∈ RI×J×K and

positive integer R we want to calculate the CP decomposition of X such the residual

is minimized, i.e.

min
1

2
‖X− Y‖2F s.t. Y =

R∑
r=1

ar ◦ br ◦ cr.

43

This is equivalent to

(4.15) min
ar,br,cr

1

2
‖X−

R∑
r=1

ar ◦ br ◦ cr‖2F

By the earlier discussion in the introduction of this section, the equation above has

three equivalent matricization forms. So the objective function to be minimized can

be expressed in three following expressions:

min
A,B,C

1

2
‖X(1) − A(C �B)T‖2F ,

min
A,B,C

1

2
‖X(2) −B(C � A)T‖2F ,

and

min
A,B,C

1

2
‖X(3) − C(B � A)T‖2F .

The ALS (Alternating Least Squares) solves the optimization problem (4.15) by fix-

ing all factor matrices but one each time. Thus the problem reduces to a linear

least squares problem at each iteration, starting with the initial guess A0, B0, C0, the

sequences Ak, Bk, Ck generated by ALS algorithm are,

Ak+1 = argmin
A∈RI×R

1

2
‖X(1) − A(Ck �Bk)T‖2F ,

(4.16) Bk+1 = argmin
B∈RJ×R

1

2
‖X(2) −B(Ck � Ak+1)T‖2F ,

and

Ck+1 = argmin
C∈RK×R

1

2
‖X(3) − C(Bk+1 � Ak+1)T‖2F .

Each of the equations in (4.16) is a linear least squares problem, thus the ALS algo-

rithm (3) first fixes B and C and solves for A, next it fixes A and C and solves for

B, finally it fixes A and B and solves for C. The notation / in MATLAB calculates

the solution of the equation AX = B, i.e. B/A means BA−1 or BA†. The process

of generating the sequence Ak, Bk, Ck continues until the provided stopping criteria

is met.

44

Algorithm 3 The ALS Algorithm

Initialize with factor matrices A0, B0, C0 where A0 ∈ RI×R, B0 ∈ RJ×R and C0 ∈

RK×R

General Step For k = 1, 2, . . . update A,B and C:

Ak+1 = argmin
A∈RI×R

1

2
‖X(1) − A(Ck �Bk)T‖2F ,

Bk+1 = argmin
B∈RJ×R

1

2
‖X(2) −B(Ck � Ak+1)T‖2F ,

Ck+1 = argmin
C∈RK×R

1

2
‖X(3) − C(Bk+1 � Ak+1)T‖2F .

End for.

Now consider the general case X ∈ RI1×...×IN with a given rank R. In each iteration

the ALS algorithm fixes all the factor matrices but one and solve the sub-problem

over it. Hence the optimization problem to solve is the following

(4.17) min
Y

1

2
‖X− Y‖2F , s.t. Y =

R∑
r=1

a(1)r ◦ . . . ◦ a(N).

Similar to the case of third order tensor, the problem above has N equivalent

forms which can be obtained by N different modal unfoldings of tensor X, we have

Y(n) = A(n)(A(N) � . . .� A(n+1) � A(n−1) � . . .� A(1))T .

Therefore in order to update the n-th factor matrix A(n), we can use the following

(
A(n)

)k+1
= X(n)/((A

(N))k � . . .� (A(n+1))k � (A(n−1))k+1 � . . .� (A(1))k+1)T ,

and generate the factor matrices sequence (A(n))k. The algorithm is shown in (4).

4.4. ALS as an Optimization Problem

In this section, we study the CP decomposition problem (4.17) and the ALS

algorithm in the framework of nonlinear optimization problem. Let f be the objective

45

Algorithm 4 The ALS Algorithm in General Case

Initialize with factor matrices A0, B0, C0 where A0 ∈ RI×R, B0 ∈ RJ×R and C0 ∈

RK×R

General Step For k = 1, 2, . . . :

For n = 1, . . . , N update the N factor matrices

(
A(n)

)k+1
= argmin

A(n)∈RIn×R

1

2
‖X(n)−A((A(N))k�. . .�(A(n+1))k◦(A(n−1))k+1�. . .�(A(1))k+1)T‖2F ,

End for

End for.

function in (4.17), i.e.

f : RI1×R ⊗ . . .⊗ RIN×R → R+,

(4.18) f(A(1), . . . , A(N)) =
1

2
‖X− [A(1), . . . , A(N)]‖2F .

Note that the function f in (4.18) is continuous and differentiable, but is not convex.

It can be written in N different equivalent forms using N different modal unfoldings.

We can think of ALS as a block non-linear Gauss-Seidel method for solving (4.18).

Hence at each iteration, the goal is to solve

(4.19) min
A(n)

f(A(1), . . . , A(N)),

for a fixed n, whie holding all other factor matrices constant. By matricization of X,

we can rewrite the equation above in matrix form

(4.20) min
A(n)

1

2
‖X − A(n)(A(−n))T‖2F .

Since only one factor matrix is the variable, the sub problems are linear least squares

and they have the exact solutions:

(4.21) A(n) = X(n)

(
(A(−n))T

)†
.

46

However, this requires calculating the pseudo-inverse of a matrix which has the size∏N
m 6=n Im×R which could be computationally expensive. The relations stated in (2.3)

will come useful here. Define

γ(n) = (A(n))TA(n), for n = 1, . . . , N.

then we have

A(n) = X(n)A
(−n)(Γ(n))†,

where

Γ(n) = γ(1) ∗ . . . ∗ γ(n−1) ∗ γ(n+1) ∗ . . . γ(N).

As we can see the new formulation only requires calculation the pseudo-inverse of a

matrix of size R×R at each inner iteration in the ALS procedure. Next, we calculate

the gradient of the function f defined in (4.18) with respect to the column vectors

a
(n)
r . Note that a

(n)
r is a vector of size In, so the partial derivative ∂f

∂a
(n)
r

is also a vector

of size In.

Lemma 4.2. [1] The partial derivatives of the objective function f defined in (4.18)

are

(4.22)
∂f

∂a
(n)
r

= −
(
X×Nm 6=n a(m)

r

)
+

R∑
l=1

γ
(n)
rl a

(n)
l ,

for r = 1, . . . , R and n = 1, . . . , N , with γ
(n)
rl defined as

γ
(n)
lr =

N∏
m6=n

(a(m)
r)Ta

(m)
l .

A direct consequence of the lemma (4.2) provides the partial derivatives of f with

respect to the factor matrices A(n). Note that the factor matrix A(n) is of size In×R,

therefore the partial derivative ∂f
∂A(n) is also of size In ×R.

Corollary 4.1. The partial derivatives of the objective function f in (4.18) are

given by

(4.23)
∂f

∂A(n)
= −X(n)A

(−n) + A(n)Γ(n),

47

for n = 1, . . . , N .

Proof. We can rewrite the equation (4.22) as

∂f

∂a
(n)
r

= −X(n)a
(−n) + A(n)γ(n)r ,

for r = 1, . . . , R. But this represents the r-th column of ∂f
∂A(n) , therefore we must

have

∂f

∂A(n)
= −X(n)A

(−n) + A(n)Γ(n).

�

Corollary 4.2. The partial derivatives of the objective function f in (4.18) are

given by

(4.24)
∂f

∂A(n)
= −X(n)A

(−n) + A(n)(A(−n))TA(−n),

for n = 1, . . . , N .

Proof. The result follows from (4.1) and the following relation between the

Khatri-Rao product and Hadamard product of matrices:

(A�B)T (A�B) = ATA ∗BTB.

�

The ALS algorithm can be described in the view of alternating block minimization

technique which minimizes a function over a certain block at each inner iteration. In

each inner iteration we solve the following minimization problem

(4.25) min
A(n)

f(A(1), . . . , A(N)),

and the minimum point is attained at a stationary point. Hence we solve the sub

problem (4.25) by setting the gradient ∇An)f equal to zero. This implies the following

normal equation

∇A(n)f = 0 ⇒ X(n)A
(−n) = A(n)Γ(n),

48

or equivalently

X(n)A
(−n) = A(n)(A(−n))TA(−n).

The Hessian matrix of f can be calculated also [1] but we will not use the second

order methods in any of our computations and we will not state it here.

4.5. CP Decomposition as a Nonlinear Least Squares Problem

The formulation of CP as a nonlinear least squares was first introduced by Paatero

[55]. Consider the CP objective function f in (4.18). It can be rewritten as

f : RP → R,

where

P = R
N∑
n=1

In,

and the argument of f is obtained by rearranging the factor matrices as follow

x =


a
(1)
1

...

a
(N)
R

 .

For simplicity, consider the case of third order tensors where X ∈ RI×J×K . We can

define the residual function F : RP → RQ, where

Q = I × J ×K,

and

Fα(i1,i2,i3) = xi1i2i3 −
R∑
r=1

ar(i1)br(i2)cr(i3),

for α(i1, i2, i3) = i1 + (i2 − 1)I + (i3 − 1)IJ . By a straightforward calculation the

Jacobian matrix of F can be expressed in a highly structured block form:

J =
(
Ja Jb Jc

)
,

Ja =
(
J1
a J2

a . . . JRa

)
,

Jb =
(
J1
b J2

b . . . JRb

)
,

49

Jc =
(
J1
c J2

c . . . JRc

)
,

where

Jra = −cr ⊗ br ⊗ I, Jrb = −cr ⊗ I ⊗ ar, Jrc = −I ⊗ br ⊗ ar.

As an example let X ∈ R2×2×2 and R = 1, i.e. X ≈ a ◦ b ◦ ◦c, then the Jacobian

matrix J ∈ R8×6 looks like

J = −



b1c1 0 a1c1 0 a1b1 0

0 b1c1 a2c1 0 a2b1 0

b2c1 0 0 a1c1 a1b2 0

0 b2c1 0 a2c1 a2b2 0

b1c2 0 a1c2 0 0 a1b1

0 b1c2 a2c2 0 0 a2b1

b2c2 0 0 a1c2 0 a1b2

0 b2c2 0 a2c2 0 a2b2


8×6

.

As we can see for the third order tensor X, the Jacobian matrix is sparse with only

three nonzero elements on each row. This is true in general, i.e. the matrix J will

have only NR nonzero entries on each row. It is very tall and sparse. For instance,

if X is a tensor of size 3 × 4 × 4 with R = 2 components, then the Jacobian matrix

has Q =
∏3

n=1 In = 48 rows, P = R
∑3

n=1 In = 22 columns, and NRQ = 360 nonzero

entries. Figure (4.3) shows the sparsity structure of the Jacobian matrix.

Using the Jacobian, we can apply different methods to solve the CP problem in

the nonlinear least squares sense. Since the Jacobian matrix is rank deficient, the

Gauss-Newton method can cause problems while solving the related linear system.

On the other hand, the Jacobian can be very large in size (Q × P) and solving

the related linear system can be computationally expensive. Thus it is preferable

to work with JTJ instead [72] and apply the Levenberg-Marquardt algorithm which

50

Figure 4.3. The sparsity of the Jacobian matrix. The blue points

show the nonzero elements of J .

Figure 4.4. The residual error of the objective function in CP prob-

lem versus the number of iterations in Levenberg-Marquardt algorithm

was introduced in chapter 3. Figure (4.4) shows the performance of the Levenberg-

Marquardt method to find the CP decomposition of a tensor of size 6 × 7 × 8 with

R = 6 rank one components.

The nonlinear least squares methods are faster than ALS in a sense of number of

iterations, but they require to solve a very large linear system when the size of tensor

becomes large. They also provide more accurate fit for a given tensor, furthermore

51

Figure 4.5. The comparison between the ALS algorithm and

Levenberg-Marquardt on a randomly generated tensor of size 6× 7× 8

with rank 6. The x axis represents the number of iteration and the y

axis represents the error of the residual function in CP formulation.

in comparison to ALS they often do not encounter swamp. Figure (4.5) compares

the performance of Levenberg-Marquardt method versus the ALS algorithm in the

presence of swamp.

As we can see from (4.5) the alternating least squares algorithm takes a long

time to converge. It requires more that 500 iterations to finally starts decreasing the

residual error. The flat red line in the log error plot indicates the swamp phenomenon

[49] . However the Levenberg-Marquardt (the green curve) requires only 20 iterations

to converge.

CHAPTER 5

Rank Approximation of Tensors

5.1. Introduction

In 1927, Hitchcock [30, 31] proposed the idea of the polyadic form of a tensor,

i.e., expressing a tensor, multilinear array, as the sum of a finite number of rank-one

tensors. This decomposition is called the canonical polyadic (CP) decompositon; it

is known as CANDECOMP or PARAFAC. It has been extensively applied to many

problems in various engineering [61, 62, 2, 22] and science [64, 39]. Specifically, tensor

methods have been applied in many multidimensional datasets in signal processing

applications [17, 18, 19], color image processing [80, 33] and video processing [65, 11].

Most of these applications rely on decomposing a tensor data into its low rank form to

be able to perform efficient computing and to reduce memory requirements. In com-

puter vision, detection of moving objects in video processing relies on foreground and

background separation, i.e. the separation of the moving objects called foreground

from the static information called background, requires low rank representation of

video tensor. In color image processing, the rgb channels in color image representa-

tion requires extensions of the matrix models of gray-scale images to low rank tensor

methods. There are several numerical techniques [16, 23, 36, 49, 61] for approximating

a low rank tensor into its CP decomposition, but they do not give an approximation

of the minimum rank. In fact, most low rank tensor algorithms require an a priori

tensor rank to find the tensor decomposition. Several theoretical results [43, 45] on

tensor rank can help, but they are limited to low-multidimensional and low order

tensors.

In this work, the focus is on finding an estimation of the tensor rank and its rank-

one tensor decomposition (CP) of a given tensor. There are also algorithms [17, 13]

52

53

which give tensor rank, but they are specific to symmetric tensor decomposition over

the complex field using algebraic geometry tools. Our proposed algorithm addresses

two difficult problems for the CP decomposition: (a) one is that finding the rank of

tensors is a NP-hard problem [32] and (b) the other is that tensors can be ill-posed

[21] and failed to have their best low-rank approximations.

The problem of finding the rank of a tensor can be formulated as a constrained

optimization problem.

min
α
‖α‖0 s.t. X =

R∑
r=1

αr(ar ◦ br ◦ cr)

where ‖α‖0 represents the total number of non-zero elements of α. The rank optimiza-

tion problem is NP hard and so to make it more tractable, the following formulation

[77] is used:

min
A,B,C,α

1

2
‖X−

R∑
r=1

αr(ar ◦ br ◦ cr)‖2F + γ‖α‖1

where γ > 0 is the regularization parameter and the objective function is a composi-

tion of smooth and non-smooth functions. Our formulation includes a Tikhonov type

regularization:

min
1

2
‖X−

R∑
r=1

αr(ar ◦ br ◦ cr)‖2F +
λ

2
(‖A‖2F + ‖B‖2F + ‖C‖2F) + γ‖α‖1.

The added Tikhonov regularization has the effect of forcing the factor matrices to have

the equal norm. Moreover, this formulation and its numerical methods described later

give an overall improvement in the accuracy and thus, memory requirements of the

tensor model found in [77].

5.1.1. Organization. Our paper is organized as follows. In Section 2, we pro-

vide some notations and terminologies used throughout this paper. In Section 3, we

formulate an l1-regularization optimization to the low-rank approximation of tensors.

In Section 4, we describe a numerical method to solve the l1-regularization optimiza-

tion by using a proximal alternating minimization technique for the rank and an

alternating least-squares for the decomposition. In Section 5, we provide an analysis

54

of convergence of the numerical methods. The numerical experiments in Section 6

consist of simulated low rank tensor, color images and videos. Finally, our conclusion

and future work are given in Section 7.

5.2. Preliminaries

We denote the scalars in R with lower-case letters (a, b, . . .) and the vectors with

lower-case letters (a, b, . . .). The matrices are written as upper-case letters (A,B, . . .)

and the symbols for tensors are calligraphic letters (A,B, . . .). The subscripts repre-

sent the following scalars: (A)ijk = aijk, (A)ij = aij, (a)i = ai and the r-th column

of a matrix A is ar. The matrix sequence is denoted {Ak}. An Nth order tensor

X ∈ RI1×I2×···×IN is a multidimensional array with entries (X)i1i2···iN = xi1i2···iN for

ik ∈ {1, . . . , Ik} where k ∈ 1, . . . , N . In particular, a third order tensor X ∈ RI×J×K

is a multidimensional array with entries xijk for i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and

k ∈ {1, . . . , K}.

Here we present some standard definitions and relations in tensor analysis. The

Kronecker product of two vectors a ∈ RI and b ∈ RJ is denoted by a⊗ b ∈ RIJ :

a⊗ b =
(
a1b

T . . . aIb
T
)T
.

The Khatri-Rao (column-wise Kronecker) product (see[64]) of two matrices A ∈ RI×J

and B ∈ RK×J is defined as

A�B = (a1 ⊗ b1 . . . aJ ⊗ bJ).

The outer product of three vectors a ∈ RI , b ∈ RJ , c ∈ RK is a third order tensor

X = a ◦ b ◦ c with the entries defined as follows:

xijk = aibjck.

Definition 5.2.1. Given a matrix W ∈ RI×J , the function vec : RI×J → RI·J

where vec(W) = v is a vector of size I · J obtained from column-stacking the column

55

vectors of W ; i.e.

vec(W)l = v(l) = wij,

where l = j + (k − 1)J .

The vectorization of a third order tensor X ∈ RI×J×K is the process of trans-

forming the tensor into a column vector, the vec : RI×J×K → RIJK map is defined

as

vec(X)β(i,j,k) = xijk,

where β(i, j, k) = i+ (j − 1)I + (k − 1)IJ . Using the definitions above, we get

vec(a ◦ b ◦ c) = c⊗ b⊗ a.

Definition 5.2.2 (Mode-n matricization). Matricization is the process of reorder-

ing the elements of an N th order tensor into a matrix. The mode-n matricization of

a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n columns to be

the columns of the resulting matrix. The mode-n column, xi1···in−1:in+1···iN , is a vector

obtained by fixing every index with the exception of the nth index.

If we use a map to express such matricization process for any Nth order tensor

T ∈ RI1×I2×···×IN , that is, the tensor element (i1, i2, . . . , iN) maps to matrix element

(in, j), then there is a formula to calculate j:

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk with Jk =
k−1∏
m=1
m6=n

Im.

For example, the tensor unfolding or matricization of a third order tensor X is

the process or rearranging the elements of X into a matrix. The mode-n (n = 1, 2, 3)

matricization is denoted by X(n) and the elements of it can be expressed by the

following relations:

X(1)(i, l) = xijk, where l = j + (k − 1)J and X(1) ∈ RI×JK ,

X(2)(j, l) = xijk, where l = i+ (k − 1)I and X(2) ∈ RJ×KI ,

56

and

X(3)(k, l) = xijk, where l = i+ (j − 1)I and X(3) ∈ RK×IJ .

5.2.1. CP decomposition and the Alternating Least-Squares Method.

In 1927, Hitchcock [30][31] proposed the idea of the polyadic form of a tensor, i.e.,

expressing a tensor as the sum of a finite number of rank-one tensors. Today, this

decomposition is called the canonical polyadic (CP); it is known as CANDECOMP or

PARAFAC. It has been extensively applied to many problems in various engineering

[61, 62, 2, 22] and science [64, 39]. The well-known iterative method for implementing

the sum of rank one terms is the Alternating Least-Squares (ALS) technique. Inde-

pendently, the ALS was introduced by Carrol and Chang [15] and Harshman [29] in

1970. Among those numerical algorithms, the ALS method is the most popular one

since it is robust. However, the ALS has some drawbacks. For example, the conver-

gence of ALS can be extremely slow.

The CP decomposition of a given third order tensor X ∈ RI×J×K factorizes it to

a sum of rank one tensors.

(5.1) X ≈
R∑
r=1

αr(ar ◦ br ◦ cr)

For simplicity we use the notation [A,B,C, α]R to represent the sum on the right

hand side of the equation above, where A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R are

called factor matrices.

A = [a1 . . . aR], B = [b1 . . . bR], C = [c1 . . . cR]

The CP decomposition problem can be formulated as an optimization problem. Given

R the goal is to find vectors ar, br, cr, such that the distance between the tensor X and

the sum of the outer products of ar, br, cr is minimized. The Frobenius norm (sum of

squares of the entries) is mainly used to measure the distance.

57

(5.2) min
A,B,C,α

1

2
‖X− [A,B,C, α]R‖2F .

Using the Khatri-Rao product, the objective function in (5.2) can be stated in the

following four equivalent forms:

(5.3)
1

2
‖X(1) − A diag(α)(C �B)T‖2F ,

(5.4)
1

2
‖X(2) −B diag(α)(C � A)T‖2F ,

(5.5)
1

2
‖X(2) − C diag(α)(B � A)T‖2F ,

and

(5.6)
1

2
‖vec(X)− vec([A,B,C, α]R)‖22.

All the functions in (5.3), (5.4), (5.5) and (5.6) are linear least squares problems with

respect to matrices A, B, C and vector α. To find approximations to A,B,C, and

α, these four optimization problems (5.3)-(5.6) are implemented iteratively and the

minimizers are updated between each optimization problems (via Gauss-Seidel sweep)

with a stopping criteria. This technique is called the Alternating Least Squares (ALS)

Method. The ALS method is popular since it is robust and easily implementable.

However, the ALS has some drawbacks. For example, the convergence of ALS can

be extremely slow. Another drawback is the requirement of a tensor rank R be-

fore a CP decomposition is approximated. The next sections deal with tensor rank

approximation.

5.3. Rank Approximation of a Tensor

The problem of finding the rank of a tensor can be formulated as a constrained

optimization problem.

min
α
‖α‖0 s.t. X = [A,B,C, α]R,

58

where ‖α‖0 represents the total number of non-zero elements of α. Since the problem

is NP hard [32], we replace ‖α‖0 by the `1 norm of α. The `1 norm is defined as the

sum of absolute value of the elements of α. So the rank approximation problem can

be written as

min
α
‖α‖1 s.t. X = [A,B,C, α]R

In order to obtain a CP decomposition of the given tensor X as well as the rank

approximation, we formulate the rank approximation problem as follow:

(5.7) min
A,B,C,α

1

2
‖X− [A,B,C, α]‖2F + γ‖α‖1.

where γ > 0 is the regularization parameter. The objective function of the problem

(5.7) is non-convex and non-smooth. However, it is a composition of a smooth and

non-smooth functions.

Moreover, it is known that CP decomposition of a tensor is unique up to scaling

anf permutation of factor matrices. Note that

[A,B,C, α]R = [cA, c−1B,C, α]R,

for a nonzero scalar c ∈ R. In order to overcome the scaling indeterminacy, we add a

Tikhonov type regularization term to our objective function [36]. Let f and g be the

following:

(5.8) f(A,B,C, α) =
1

2
‖X− [A,B,C, α]‖2F ,

and

(5.9) g(α) = γ‖α‖1,

which represent the fitting term and the `1 regularization term in (5.7), then the rank

approximation problem can be formulated as

(5.10) min f(A,B,C, α) +
λ

2
(‖A‖2F) + ‖B‖2F + ‖C‖2F) + g(α).

59

The added Tikhonov regularization has the effect of forcing the factor matrices to

have the equal norm. i.e.

‖A‖F = ‖B‖F = ‖C‖F .

[55], Now let Ψ represent the objective function in (5.10) collectively, then

Ψ : RR(I+J+K+1) → R+,

where

Ψ(A,B,C, α) = f(A,B,C, α) +
λ

2
(‖A‖2F + ‖B‖2F(5.11)

+ ‖C‖2F) + g(α).

Let ω = (A,B,C, α), when B,C, α are fix, we represent f(ω) by f(A) and Ψ(ω) by

Ψ(A).

5.4. Approximation of Tensor Rank in CP Decomposition

In this section we propose a block coordinate descent type algorithm for solving

the problem (5.10). We consider four blocks of variables with respect to A,B,C and

α. In particular, at each inner iteration, we solve the following minimization problems

(5.12) Ak+1 = argmin
A
{f(A,Bk, Ck, αk) +

λ

2
‖A‖2F},

(5.13) Bk+1 = argmin
B
{f(Ak+1, B, Ck, αk) +

λ

2
‖B‖2F},

(5.14) Ck+1 = argmin
A
{f(Ak+1, Bk+1, C, αk) +

λ

2
‖C‖2F},

and

(5.15) αk+1 = argmin
α
{Lβ

k

f (Ak+1, Bk+1, Ck+1, α) + g(α)},

where Lβ
k

f (α) represents the proximal linearization [10] of f with respect to α, namely

Lβ
k

f (α) = 〈α− αk,∇fα(αk)〉+
1

2βk
‖α− αk‖2.

60

Note that each of the minimization problems in (5.12)-(5.15) is strictly convex, there-

fore A,B,C, α are uniquely determined at each iteration. In fact, the subproblems in

(5.12)-(5.14) are standard liner least squares problems with an additional Tikhonov

regularization term. One can see by vectorization of the objective functions, for

instance, the residual term in (5.3) can be written as follows

1

2
‖vec(X(1))− (((C �B)diag(α))⊗ I)vec(A)‖22.

Since the objective functions in (5.12)-(5.14) are strictly convex, the first order opti-

mality condition is sufficient for a point to be minimum. In other words, the exact

solutions of (5.12)-(5.14) can be given be the following normal equations

A(Ek(Ek)T + λI) = X(1)(E
k)T ,

B(F k(F k)T + λI) = X(2)(F
k)T ,

and

C(Gk(Gk)T + λI) = X(3)(G
k)T ,

where Ek = diag(αk)(Ck�Bk)T , F k = diag(αk)(Ck�Ak+1)T andGk = diag(αk)(Bk+1�

Ak+1)T .

To update α in (5.15), we discuss the proximal operator first.

Definition 5.4.1. (proximal operator) Let g : Rn → R be a lower semicontinuous

convex function, then the proximal operator of g with parameter β > 0 is defined as

follow

(5.16) proxβg(y) = argmin
x
{g(x) +

1

2β
‖x− y‖22}.

Using the proximal operator notation, the equation (5.15) is equivalent to

αk+1 = proxβkg(α
k − βk∇αf(αk)).

61

Figure 5.1. The BCD algorithm for approximating the rank of a third

order tensor.

This is easy to verify because

αk+1 = proxβg(α
k − β∇fα(αk))

= argmin
α
{ 1

2β
‖α− αk + β∇αf(αk)‖22 + g(α)}

= argmin
α
{Lβf + g(α)}.

62

Remark 5.4.1. The proximal operator in (5.16) is well-defined because the func-

tion g(α) is continuous and convex. Using the vec operator, we have

vec([A,B,C, α]R) =
R∑
r=1

αrvec(ar ◦ br ◦ cr)(5.17)

=
R∑
r=1

αr(cr ⊗ br ⊗ ar)(5.18)

= Mα(5.19)

where M ∈ RIJK×R is the matrix with columns cr⊗ br⊗ ar. Therefore we can rewrite

the objective function f as

(5.20)
1

2
‖vec(X)−Mα‖22

It is easy to calculate the gradient of (5.20) with respect to α:

(5.21) ∇αf(A,B,C, α) = MT (Mα− vec(X))

This implies the Lipschitz continuity of the gradient of f with respect to α. The

Lipschitz constant is Qα = ‖MTM‖ so we must have

‖∇αf(α1)−∇αf(α2)‖ ≤ Qα‖α1 − α2‖.(5.22)

5.5. Analysis of Convergence

in this section, we study the global convergence of the proposed algorithm under

mild assumptions. The Kurdyka-Lojasiewicz [38], [50] property plays a key role in

our analysis. We begin this section by stating the descent lemma.

Lemma 5.1. (Descent Lemma) Let h : Rn → R be continuously differentiable

function, and ∇h is Lipschitz continuous with constand L, then for any x, y ∈ Rn we

have

h(x) ≤ h(y) + 〈x− y,∇h(y)〉+
L

2
‖x− y‖2.

Next lemma provides the theoretical estimate for the decrease in the objective

function after a single update α.

63

Lemma 5.2. Suppose that αk+1 is obtained by the equation (5.4) and 0 < βk <

1/Qk
α, where Qk

α’s are defined in (5.22), then there is a constant Nk > 0 such that

(5.23) Ψ(αk)−Ψ(αk+1) ≥ Nk‖αk+1 − αk‖2.

Proof. Recall that

Lβ
k

f (α) = 〈α− αk,∇fα(αk)〉+
1

2βk
‖α− αk‖2,

and αk+1 is obtained by the equation

αk+1 = argmin
α
{Lβ

k

f (α) + g(α)},

therefore we must have

(5.24) Lβ
k

f (αk+1) + g(αk+1) ≤ g(αk).

Since ∇αf is Lipschitz continuous with constant Qk
α, by the descent lemma we have

f(αk+1) ≤ f(αk) + 〈αk+1 − αk,∇αf(αk)〉

+
Qk
α

2
‖αk+1 − αk‖2,

with (5.24), the above inequality implies

f(αk+1) + g(αk+1) ≤ f(αk) + g(αk)

−
(

1− βkQk
α

2βk

)
‖αk+1 − αk‖2.

Setting

Nk =
1− βQk

α

2β
> 0,

proves the lemma. �

Remark 5.5.1. Suppose that Qk
α’s are bounded from above by the constant Qα in

the previous lemma, then for fixed step-size β where

0 < β < 1/Qα,

64

we have

(5.25) Ψ(αk)−Ψ(αk+1) ≥
(

1− βQα

2β

)
‖αk+1 − αk‖2,

for each k = 1, 2,

Definition 5.5.1. [27] A differentiable function h : Rn → R is called strongly

convex if there is a constant µ > 0 such that

h(x)− h(y) ≥ 〈∇h(y), x− y〉+
µ

2
‖x− y‖2,

for any x, y ∈ Rn.

Lemma 5.3. Suppose that Ak+1 is obtained by equation (5.12), then we have

Ψ(Ak)−Ψ(Ak+1) ≥ λ

2
‖Ak − Ak+1‖2F .

Proof. Note that the objective functions in (5.12) is strongly convex with pa-

rameter λ and by the first-order optimality condition we must have

∇Af(Ak+1) + λAk+1 = 0

now the strong convexity of f + ‖.‖2F yields

f(Ak) +
λ

2
‖Ak‖2F − f(Ak+1)− λ

2
‖Ak+1)‖2F

≥ λ

2
‖Ak − Ak+1‖2

which implies

Ψ(Ak)−Ψ(Ak+1) ≥ λ

2
‖Ak − Ak+1‖2.

This proves the lemma. �

Remark 5.5.2. Similar results hold for the blocks B and C, if they are updated

by equations (5.13) and (5.14). In particular, we have that

The next theorem guarantees that the value of Ψ decreases monotonically at each

iteration. This shows that the sequence {ωk} generated by scheme (5.12), (5.13),

(5.14) and (5.15) is monotonically decreasing in value,

65

Theorem 5.1. (Sufficient decrease property) Let Ψ represent the objective func-

tion in (5.11) and ωk = (Ak, Bk, Ck, αk), then we have

(5.26) Ψ(ωk)−Ψ(ωk+1) ≥ ρ‖ωk − ωk+1‖2,

for some positive constant ρ. In addition we have

(5.27)
∞∑
k=0

‖ωk − ωk+1‖2 <∞.

Proof. By lemmas 5.2 and 5.3 we have

Ψ(ωk)−Ψ(ωk+1) ≥ λ

2
(‖Ak − Ak+1‖2 + ‖Bk −Bk+1‖2

+ ‖Ck − Ck+1‖2) +Nα‖αk − αk+1‖2,

setting ρ = min{λ/2, Nα} gives the first result. This shows that the sequence {Ψ(ωk)}

generated by our algorithm is decreasing. The monotonicity of {Ψ(ωk)} with the fact

that Ψ is bounded from below, implies Ψ(ωk)→ inf Ψ = Ψ as k →∞, next let n > 2

be a positive integer, then

n−1∑
k=0

‖ωk − ωk+1‖2 ≤ 1

ρ

n−1∑
k=0

(
Ψ(ωk)−Ψ(ωk+1)

)
=

1

ρ
(Ψ(ω0)−Ψ(ωn)).

Letting n→∞ proves the last statement. �

Remark 5.5.3. The sequence {ωk} generated by the scheme (5.13)-(5.15) is bounded.

The reason comes from the fact that unboundedness of {ωk} occurs when at least one

of the blocks A,B,C or α gets unbounded. This never happens due to the regulariza-

tion terms in the objective function Ψ and the fact that Ψ(ωk) is non-increasing.

Theorem 5.2. Let {ωk}k∈N be the sequence generated by our algorithm, then

there exists a positive constant ν > 0 such that for any k ∈ N there is a vector

ηk+1 ∈ ∂Ψ(ωk+1) such that

‖ηk+1‖ ≤ ν‖ωk − ωk+1‖.

66

Proof. Let k be a positive integer. By equations (5.12), (5.13), (5.14) and the

first order optimality condition we have

∇Af(Ak+1, Bk, Ck, αk) + λAk+1 = 0,

∇Bf(Ak+1, Bk+1, Ck, αk) + λBk+1 = 0,

and

∇Cf(Ak+1, Bk+1, Ck+1, αk) + λCk+1 = 0.

If we define

ηk+1
1 = ∇Af(ωk+1)−∇Af(Ak+1, Bk, Ck, αk),

then ηk+1
1 = ∇AΨ(ωk+1). similarly we can define vectors ηk+1

2 , ηk+1
3 . Next, by equation

(5.15), we have that

(5.28) αk+1 = argmin
α
{Lβ

k

f (Ak+1, Bk+1, Ck+1, α) + g(α)}.

Hence by the optimality condition, there exists uk+1 ∈ ∂g(αk+1) such that

∇αf(αk) +
1

βk
(αk+1 − αk) + uk+1 = 0.

Next, define

ηk+1
4 = ∇αf(ωk+1)−∇αf(αk) +

1

βk
(αk − αk+1)

= ∇αf(ωk+1) + uk+1.

Therefore ηk+1
4 ∈ ∂Ψα(ωk+1). From these facts we have that

ηk+1 = (ηk+1
1 , ηk+1

2 , ηk+1
3 , ηk+1

4) ∈ ∂Ψ(ωk+1).

We now estimate the norm of ηk+1. First note that by 5.5.3, {ωk} is bounded and

the objective function (without the `1 regularization term) is twice continuously dif-

ferentiable, therefore as a consequence of mean value theorem, ∇f must be Lipschitz

67

continuous. Hence there must exist a constant P1 such that

‖ηk+1
1 ‖ = ‖∇Af(ωk+1)−∇Af(Ak+1, Bk, Ck, αk)‖

≤ P1‖ωk − ωk+1‖,

similarly, constants P2 and P3 exist such that

‖ηk+1
2 ‖ ≤ P2‖ωk − ωk+1‖,

and

‖ηk+1
3 ‖ ≤ P3‖ωk − ωk+1‖.

Furthermore

‖ηk+1
f ‖2 = ‖∇αf(ωk+1) + uk+1‖

≤ ‖∇αf(Ak+1, Bk+1, Ck+1, αk+1)−∇αf(Ak+1, Bk+1, Ck+1, αk)‖+
1

βk+1
‖αk+1 − αk‖

≤ P4‖ωk+1 − ωk‖.

Setting ν = max{P1, P2, P3, P4}, gives us the result. �

Let f : Rn → R be a continuous function. The function f is said to have Kurdyka-

Lojasiewicz (KL) property at point x̂ ∈ ∂f if there exists θ ∈ [0, 1) such that

|f(x)− f(x̂)|θ

dist(0, ∂f(x))

is bounded around x̂ [79]. A very rich class of functions satisfying the KL property is

the semi-algebraic functions. These are functions where their graphs can be expressed

as an algebraic set, that is

Graph(f) =

p⋃
i=1

q⋂
j=1

{x ∈ Rn : Pij = 0, Qij(x) > 0},

where Pij’s and Qij’s are polynomial functions and the graph of f is defined by

Graph(f) = {(x, y) ∈ Rn × R : f(x) = y}.

68

Note that the univariate function g(x) = |x| is semialgebraic because

Graph(g) = {(x, y) : |x| = y} = {(x, y) : y − x = 0, x > 0}

∪ {(x, y) : y + x = 0,−x > 0}.

The class of semi algebraic functions are closed under addition and composition [3].

Hence The objective function in (5.11) is semialgebraic therefore it satisfies KL prop-

erty.

Theorem 5.3. Suppose that {ωk}k∈N is the sequence generated by our algorithm,

then {ωk}k∈N converges to the critical point of Ψ.

Proof. By theorems (5.1) and (5.2), this is a direct result from theorem 2.9 in

[3]. �

5.6. Numerical Experiment and Results

In this section we test our algorithm on tensors with different rank and dimensions.

We randomly generate tensors with specified ranks and compare the performance of

our algorithm with other available algorithms such as LRAT [77]. Next, we apply

our algorithm on single moving object videos in order to extract the background and

target object.

5.6.1. Tensor Rank Approximation. In this subsection we test the perfor-

mance of our algorithm on randomly generated cubic tensors with various dimensions

and various rank. The upper bound for the rank of tensors are set to be equal to

min{IJ, JK, IK}. The results are shown in TABLE I.

5.6.2. Comparison between LRAT and our algorithm. In this subsection,

we compare the performance of our proposed algorithm to LRAT [77]. We generate

a random cubic tensor A ∈ R5×5×5 where its rank is equal to five. The comparison is

based on the residual function as well as the sparsity of vector α. The upper bound

for the rank of the tested tensor is set to be equal to ten for both algorithms. Figure

69

Figure 5.2. The comparison in the residual error of LRAT [77] against

the proposed algorithm.

Size of Tensor

I, J,K = 5 I, J,K = 7 I, J,K = 10

Actual Rank 5 8 10

Upper bound 10 15 20

Estimated Rank 5 8 12

Residual error 2.85e-1 1.34e-1 1.20e-1

Relative error 5.17e-2 1.05e-2 5.00e-3

Time 2.23 3.86 6.39

Table 5.1. Rank Approximation

(5.2) demonstrates the error of the fitting term ‖X − Xest‖F during the first 1500

iterations for both algorithms. The x-axis represents the number of iterations and

the y-axis represents the residual error. In terms of sparsity of vector α, the LRAT

produces 4 zero components for α versus our algorithm which approximate the rank

to be 5.

70

Figure 5.3. The original video [11, 65] is of the size 48 × 48 × 51.

Column 1 shows the original (11th,16th,49th) frames, column 2 shows

the reconstruction (background) and column 3 shows the foreground

(moving objects).

5.6.3. Application in background extraction of single moving object

videos. In this subsection we apply our algorithm to extract the background of

videos. See Figure 5.3. The video example [11, 65] is a 48 × 48 × 51 with rank 23

tensor. The relative residual error of ‖X−
∑R

r αrar ◦ br ◦ cr‖2F is 10−8.

5.7. Conclusion

We presented the iterative algorithm for approximating tensor rank and CP

decomposition based on a sparse optimization problem. Specifically, we apply a

71

(a) original frame (b) background

(a) original frame (b) background

(a) original frame (b) background

Figure 5.4. The original video of this example is of size 240× 320×

500. The left column represent the original sample frame taken from

the original video and the right column represents the background ex-

traction of the corresponding frame.

Tikhonov regularization method for finding the decomposition and a proximal algo-

rithm for the tensor rank. We have also provided convergence analysis and numerical

experiments on color images and videos. Overall, this new tensor sparse model and its

computational method dramatically improve the accuracy and memory requirements.

72

Figure 5.5. Residual Plot. The x-axis is the number of iterations and

y-axis is the relative error term of ‖X−
∑R

r αrar ◦ br ◦ cr‖2F
for the video example in Figure 5.3.

(a) original image (b) reconstructed image

Figure 5.6. The performance of our algorithm on RGB image. The

right image illustrates the compressed reconstructed version of the orig-

inal image.

CHAPTER 6

Sampling Blocks in ALS

6.1. Introduction

Recall that the CP model can be formulated as an optimization problem. Let f

be

(6.1) f : RI×R ⊗ RJ×R ⊗ RK×R → R+,

where

(6.2) f(A,B,C) =
1

2
‖X− [A,B,C]‖2F ,

then the CP model minimizes f over the blocks A,B and C. In particular, the

optimization problem becomes

(6.3) min
A,B,C

f(A,B,C).

In general the problem in (6.3) is ill-posed [54], but there many ways to resolve this

by adding additional constraints to the problem. For instance see [59] or [40]. The

objective function in (6.3) is expressed in matrix form, However it can be written in

vector form

(6.4) f : RP → R+

where P = R(I + J +K). The argument of f is the vector x defined as follow

(6.5) x = (a1 . . . aR, b1 . . . bR, c1 . . . cR)T .

where ar, br and cr are the columns of the factor matrices A,B and C.

Lemma 6.1. The partial derivatives of the objetive function in (6.2) are given by

(6.6)
∂f

∂A
= −X(1)(C �B) + A(C �B)T (C �B),

73

74

(6.7)
∂f

∂B
= −X(2)(C � A) +B(C � A)T (C � A)

and

(6.8)
∂f

∂C
= −X(3)(B � A) + C(B � A)T (B � A).

Proof. See Theorem 4.1 in [1]. �

Remark 6.1.1. The partial derivatives in (6.6), (6.7) and (6.8) are Lipschitz

continuous.

Proof. We only show the Lipschitz continuity of (6.6), the other cases are quite

similar. Note that for A1, A2 ∈ RI×R, we have∥∥∥∥ ∂f∂A(A1)−
∂f

∂A
(A2)

∥∥∥∥ ≤ ‖A1 − A2‖‖(C �B)T (C �B)‖.(6.9)

This proves the Lipschitz continuity of the first partial derivative with Lipschitz con-

stant LA = (C �B)T (C �B). �

Recall that the ALS (Alternating Least Squares) algorithm solves the problem in

(6.3) by fixing two blocks and minimizing over the third block alternatively, namely

(6.10) Ak+1 ∈ argmin
A

1

2
‖X(1) − A(Ck �Bk)T‖2F ,

(6.11) Bk+1 ∈ argmin
B

1

2
‖X(2) −B(Ck � Ak+1)T‖2F ,

and

(6.12) Ck+1 ∈ argmin
C

1

2
‖X(3) − C(Bk+1 � Ak+1)T‖2F .

Hence, given the positive integer R and the initial guesses A0, B0, C0, ALS generates

the sequence Ak, Bk, Ck in order to recover the canonical decomposition of the given

tensor.

75

6.2. Sampling the Rank-One Components in ALS

The ALS algorithm updates the factor matrices A,B,C at each inner iteration

which means updating all rank-one components ar ◦ br ◦ cr for r = 1, . . . , R. However,

this requires the computation of the pseudo inverse of an R×R matrix at each inner

iteration. In order to reduce the computaion time we propose a method of sampling

the rank-one components. In each iteration a subset S from {1, . . . , R} is chosen and

the update of factor matrices is in accordance with S. Let S ⊂ {1, . . . R} be the set

of sample indices and As, Bs and Cs represent the sub-matrices obtained by choosing

the columns of A,B and C according to the index set S respectively. The partial

derivatives of f with respect to the blocks AS, BS and CS are

(6.13)
∂f

∂AS
= −X(1)(CS �BS) + A(C �B)T (CS �BS),

(6.14)
∂f

∂BS

= −X(2)(CS � AS) +B(C � A)T (CS � AS),

and

(6.15)
∂f

∂CS
= −X(3)(BS � AS) + C(B � A)T (BS � AS).

Setting ∇ASf equal to zero and solving for AS implies

AS
(
(C �B)T (CS �BS)

)S
= −ASC

(
(C �B)T (CS �BS)

)SC
(6.16)

+X(1)(CS �BS),

where AS represents the sub matrix of A obtained by sampling the rows of A cor-

responding to the sampling set S. Similar results can be derived by solving the the

equations ∇BSf = 0 and ∇CSf = 0. Hence, we have that

BS

(
(C � A)T (CS � AS)

)S
= −BSC

(
(C � A)T (CS � AS)

)SC
(6.17)

+X(2)(CS � AS),

76

and

CS
(
(B � A)T (BS � AS)

)S
= −CSC

(
(B � A)T (BS � AS)

)SC
(6.18)

+X(3)(BS � AS).(6.19)

The stated normal equations are linear least squares and have exact solutions. Next,

we show that how much decrease in the objective function is gained during each

iteration. We start by stating the following lemma:

Lemma 6.2. (Descent Lemma) Suppose that f : Rn → R is a continuously differ-

entiable function whose gradient ∇f is Lipschitz continuous with constant L, then

(6.20) f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2

for all x, y ∈ Rn.

Proof. We have

f(x)− f(y) =

∫ 1

0

〈∇f(y + t(x− y)), x− y〉 dt

= 〈x− y,∇f(y)〉+

∫ 1

0

〈∇f(y + t(x− y))−∇f(y), x− y〉 dt

≤ 〈x− y,∇f(y)〉+

∫ 1

0

L‖t(x− y)‖‖x− y‖ dt

= 〈x− y,∇f(y)〉+ L‖x− y‖2
∫ 1

0

t dt

= 〈x− y,∇f(y)〉+
L

2
‖x− y‖2.

�

In order to apply the descent lemma in our algorithm, we need to establish a block

version of it. Assume that f is partitioned into p blocks, i.e.

x = (x(1), . . . , x(p))T ,

77

Algorithm 5 Block ALS

Initialize ω0 = (A0, B0, C0) where A0 ∈ RI×R, B0 ∈ RJ×R and C0 ∈ RK×R

General Step select S ⊂ {1, . . . , R}

For k = 1, 2, . . . updates the corresponding blocks AS, BS and CS:

Ak+1
S ∈ argmin

AS∈RI×|S|

1

2
‖X(1) − (AS, A

k
SC)(Ck �Bk)T‖2F ,

Bk+1
S ∈ argmin

BS∈RJ×|S|

1

2
‖X(2) − (BS, B

k
SC)(Ck � Ak+1)T‖2F ,

Ck+1
S ∈ argmin

CS∈RK×|S|
C

1

2
‖X(3) − (CS, C

k
SC)(Bk+1 � Ak+1)T‖2F .

Update Ak+1, Bk+1 and Ck+1 by replacing the columns Ak+1
S , Bk+1

S and Ck+1
S .

Set ωk+1 = (Ak+1, Bk+1, Ck+1).

where x(i) ∈ R(ni) for i = 1, . . . , p and n1 + . . . + np = n. Define the matrices

Ui ∈ Rn×ni where

(U1, . . . , Up) = In,

note that x(i) = UT
i x for x ∈ Rn and i = 1, . . . , p. By this setting we can rewrite

vector x ∈ Rn in terms of its p blocks and matrices Ui:

x =

p∑
i=1

Uix(i),

also the vector of partial derivatives corresponding to the block x(i) can be expressed

as

∇if(x) = UT
i ∇f(x), i = 1, . . . , p.

we say that the gradient of f is block i Lipschitz continuous with constant Li if

‖∇if(x+ Uihi)−∇if(x)‖ ≤ Li‖hi‖,

78

for every hi ∈ Rni . The constants Li, i = 1, . . . , p are called the block Lipschitz

constants. The following lemma is a direct consequence of the descent lemma.

Lemma 6.3. (Block Descent Lemma) Suppose that f is continuously differentiable

with the block Lipschitz constants Li. Assume that u, v ∈ Rn such that v − u = Uih,

for some h ∈ Rni. Then

f(v) ≤ f(u) + 〈∇f(u), v − u〉+
Li
2
‖u− v‖2.

Lemma 6.4. Let Ak, Bk and Ck be the sequence of factor matrices which are

obtained by Algorithm 1, then we must have

(6.21) f(AkS, :)− f(Ak+1
S , :) ≥ 1

2LkS
‖∇f(AkS, :)‖2F .

Similar results hold for the block B and C.

Proof. Note that

(6.22) Ak+1
S ∈ argmin

AS∈RI×|S|

1

2
‖X(1) − A(Ck �Bk)T‖2F ,

therefore we must have

(6.23) f(Ak+1
S , AkSC , B

k, Ck) ≤ f(AkS −
1

LkAS
∇ASf(AkS), AkSC , B

k, Ck)

which implies

(6.24) f(AkS, :)− f(Ak+1
S , :) ≥ f(AkS, :)− f(AkS −

1

LkAS
∇ASf(AkS), :).

Hence by the block descent lemma we should have

(6.25) f(AkS, :)− f(Ak+1
S , :) ≥ 1

2LkAS
‖∇ASf(AkS)‖2F

Similarly, we have

(6.26) f(Bk
S, :)− f(Bk+1

S , :) ≥ 1

2LkBS
‖∇BSf(Bk

S)‖2F ,

and

(6.27) f(Ck
S, :)− f(Ck+1

S , :) ≥ 1

2LkCS
‖∇CSf(Ck

S)‖2F .

79

�

The global convergence of algorithms depends on the sampling set S and the

nature of ALS algorithm. The sampling method we adopt here, ensures that each

coordinate block is chosen sufficiently often. The algorithm chooses each index at

least once during R iterations. In other words, f S1, . . . , SR are the first choices of

sampling, then we must have

S1 ∪ . . . ∪ SR = {1, . . . , R}.

Since ALS is a type of alternating minimization, the convergence is not guaranteed.

The alternating minimization usually requires the strong convexity of the objective

function. However, the global convergence of the proximal alternating minimization

has been studied recently [4]. The proximal alternating minimization for ALS was

proposed by Navasca et al. (2008). Later the global convergence of the algorithm

was discussed in [78]. The analysis is based on the Kurdyka-ojasiewicz property of

the objective function in CP model.

6.3. Numerical Experiments

In this section, we compare the performance of ALS against the sample block

ALS. We give two examples of third-order tensor CP decomposition and one example

on the RGB image compression. The codes of all three examples are written in

MATLAB. In all numerical experiments the initial guesses are generated randomly

(randn in MATLAB). All three experiments are run on a Mac with Intel i5 CPU 2.5

GHz and 4 GB memory.

Example 6.3.1. (Swamp in ALS) Let X ∈ R3×3×3 be

X(:, :, 1) =


−0.896 −0.596 2.571

−0.856 −0.041 0.697

−0.501 0.743 −2.139

 , X(:, :, 2) =


0.862 0.676 −2.131

−0.952 1.586 −1.159

−3.136 2.291 0.587

 ,

and

80

Figure 6.1. Plot of example (6.3.1).

X(:, :, 3) =


1.366 0.514 −5.816

−0.405 0.967 −2.806

−2.719 1.258 2.343

 .

be the third order tensor in this example. The rank of X is equal to three. We

run both ALS and sample block ALS for this particular example with the same initial

guesses for the factor matrices:

A0 =


0.059 0.806 0.930

0.231 0.038 0.045

0.935 0.968 0.329

 , B0 =


0.716 0.306 0.115

0.031 0.834 0.139

0.242 0.521 0.404

 ,

and

C0 =


0.159 0.227 0.720

0.944 0.026 0.204

0.129 0.890 0.340


Figure (6.1) demonstrates the comparison between the performance of ALS and

the sample block ALS with only one rank-one component at each iteration. The plot

shows the residual error ‖X − [Ak, Bk, Ck]‖F versus the number of iterations. The

81

Size of Tensor Rank ALS Time SBALS Time ALS Res. SBALS Res.

7× 7× 7 10 3.3e-3 6.3e-4 2.3e-1 4.9e-1

10× 10× 10 20 8.7e-3 1.4e-3 1.8 2.3

15× 15× 15 40 1.2e-2 6.7e-3 16.0 71.4

20× 20× 20 80 1.5e-1 2.3e-2 157.2 181.7

Table 6.1. The comparison between ALS and sample block ALS in

terms of execution time and residual function

maximum number of iterations for both methods are set to be 300. We can see from

the plot that ALS does not improve the value of the residual error during the first 300

iterations. However, the sample block ALS has a constant decrease in the value of

objective function during the iterations.

Example 6.3.2. Recall from chapter 3 that the ALS algorithm requires to compute

the pseudo inverse of a R×R matrix at each inner iteration. In contrast, the sample

block ALS computes the pseudo inverse of an |S|× |S| matrix at each inner iteration.

In this example we compare the performance of ALS and the sample block ALS in

terms of the required execution time in MATLAB for each algorithm. We generate

cubic tensors of different sizes. The initial guesses for both methods are the same for

all tensors. The maximum number iterations are set to be 1500 and the residual error

tolerance is set to be 10−5.

Table (6.1) demonstrates the comparison between the ALS and the sample block

ALS in terms of time and the fitting error. The time is measured in second for each

inner iteration in both algorithms. The residual error is the ‖X − [A,B,C]‖F . The

size of sample |S| is equal to bR/4c. The ransom selections of S cycles through all

the rank-one components of CP decomposition.

Example 6.3.3. In this example we apply the sample block ALS to an RGB image

of size 200×200×3. The approximated rank of the image is obtained by the proposed

82

(a) ALS (b) SBALS

Figure 6.2. The left image is the compressed version of the original

image by ALS. The right image is obtained by the SBALS.

Figure 6.3. The Original image for example 3.

algorithm in chapter 5. It is set to be Rest = 62 for both ALS and sample block ALS.

The size the sample is |S| = bRest/4c.

Figure (6.3) shows the original image for this example. In figure (6.2) we compare

the two reconstructed images obtained by sample block ALS and ALS. The compression

ratio 4.8 is calculated by the following formula

ratio =
IJK

Rest(I + J +K)
.

The execution time for updating the factor matrices in the ALS is 5.86 seconds versus

1.52 seconds for the sample block ALS.

83

6.4. Conclusion

We propose a sampling block algorithm in order to determine the canonical

polyadic decomposition of a third order tensor. The sampling method ensures the

selection of the each rank-one component during the specific amount of iterations.

The numerical experiments show cases of swamp reduction of ALS method. Our ex-

periments also show the significant decrease in the execution time against the ALS

algorithm. The performance of the algorithm was also tested on data compression.

The future work is to find an effective way of sampling and to discuss the convergence

of the algorithm.

LIST OF REFERENCES

[1] E. Acar, D. Dunlavy, T. Kolda, A scalable optimization approach for fitting
canonical tensor decompositions, Journal of chemometrics, 25, pp. 67-86 (2011).

[2] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener, Multiway analysis of
epilepsy tensors, Bioinformatics, 23 (13), pp. i10-i18, (2007).

[3] H. Attouch, J. Bolte, B. F. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting,
and regularized Gauss-Seidel methods. Math. program. Ser. A 137. pp 91-129
(2013).

[4] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Proximal alternating min-
imization and projection methods for nonconvex problems: An approach based
on the Kurdyka-Lojasiewicz inequality, Math. Oper. Res., vol. 35 pp. 438457
(2010).

[5] A. Auslender, Optimisation. Methodes numeriques, Masson, Paris, New York,
Barcelona (1976).

[6] H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, Springer, Second edition, (2017).

[7] A. Beck, M. Teboulle, Gradient-based algorithms with applications to signal re-
covery problems, Convex optimization in signal processing and communications,
Cambridge university press, pp. 42-88 (2010).

[8] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM journal on imaging sciences, Vol. 2, no. 1, pp. 183-202
(2009).

[9] D. P. Bertsekas. Nonlinear Programming. Second edition, Athena scientific press,
(2008).

[10] J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization
for nonconvex and nonsmooth problems, Math. Program, vol. 146, pp.459-494
(2014).

[11] T. Bouwmans, A. Sobral, S. Javed and S. K. Jung, and E.-H. Zahzah, Decom-
position into Low-rank plus Additive Matrices for Background/Foreground Sep-
aration: A Review for a Comparative Evaluation with a Large-Scale Dataset,
Computer Science Review, 23, pp. 1-71 (2017).

84

85

[12] S. Boyd, N. Parikh, E. Chun, B. Peleato, J. Eckstein, Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,
Foundations and trends in machine learning, vol. 3, no. 1, pp.1-122 (2011).

[13] J. Brachat, P. Comon, B. Mourrain and E. Tsigaridas Symmetric Tensor Decom-
position, Linear Algebra and Applications 433, 11-12, pp. 1851-1872 (2010).

[14] E. K. P. Chong, S. H. Zak, An introduction to optimization, Fourth edition, John
Wiley and Sons (2013).

[15] J. Carroll, J. Chang, Analysis of individual differences in multi-dimensional scal-
ing via an n-way generalization of eckart-young decomposition, Psychometrika,
Vol. 35(3), pp.283319 (1970).

[16] P. Comon, Tensor decompositions in Mathematics in Signal Processing V, J.
G. McWhirter and I. K. Proudler, eds., Clarendon Press, Oxford, UK, pp. 1-24
(2002).

[17] P. Comon, G. Golub, L-H. Lim and B. Mourrain. Symmetric tensors and sym-
metric tensor rank. SIAM Journal on Matrix Analysis and Applications, 30 (3),
1254-1279, (2008).

[18] P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent
component analysis and applications. Academic press, (2010).

[19] L. De Lathauwer, J. Castaing and J-F. Cardoso Fourth-order cumulant-based
blind identification of underdetermined mixtures. IEEE Transactions of Signal
Processing, 55 (6), (2007).

[20] L. De Lathauwer, B. De Moor, J. Wandewalle, A multilinear singular value de-
compositions, SIAM J. Matrix Anal. Appl., 21, pp. 1253-1278 (2000).

[21] V. De Silva and L.-H. Lim Tensor rank and the ill-posedness of the best low-rank
approximation problem, SIAM J. Matrix Anal. Appl., 30 , pp. 1084-1127,(2008).

[22] M. De Vos, A. Vergult, L. De Lathauwer, W. De Clercq, S. Van Huffel, P. Dupont,
A. Palmini, and W. Van Paesschen, Canonical decomposition of ictal EEG reli-
ably detects the seizure onset zone, Neuroimage, 37 (3), 844-854, (2007).

[23] I. Domanov and L.D. Lathauwer, Canonical polyadic decomposition of third-
order tensors: reduction to generalized eigenvalue decomposition, SIAM J. Ma-
trix Anal. Appl., 35, pp. 636-660 (2014).

[24] P. E. Frandesn, K. Jonasson, H.B. Nielsen, Unconstrained optimization, third
edition, IMM (2004).

[25] G. Golub, C. Van Loan. Matrix computations. JHU press, Fourth edition, (2013).

[26] W. Greub, Multilinear algebra, second edition, Springer, (1978).

86

[27] J. Hiriart-Urruty, C. Lemarchal, Fundamentals of Convex Analysis, Springer,
(2001).

[28] J. Hastad. Tensor rank is np-complete. Journal of Algorithms, 11(4), pp. 644
-654 (1990).

[29] A. Harshman, Foundations of the PARAFAC procedure: Models and conditions
for an explanatory multi-model factor analysis, UCLA working papers in pho-
netics, Vol. 16, pp. 1-84 (1970).

[30] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products,
J. Math. Phys. Vol. 6, pp 164-189 (1927).

[31] F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or
tensor, J. Math. Phys. Vol. 7 pp 39-79 (1927).

[32] C.J. Hillar and L. H. Lim, Most tensor problems are NP-hard, Journal of the
ACM, 60, no. 6 (2013).

[33] K. Jackowski and B. Cyganek, A learning-based colour image segmentation with
extended and compact structural tensor feature representation, Pattern Analysis
and Applications, 20 (2) pp. 401414 (2017).

[34] S. Kaczmarz, Approximation solution of systems of linear equations, Interna-
tional journal of control, Vol. 57, no. 6, pp. 1269-1271 (1993).

[35] L. A. Kiers, Toward a standardized notation and terminology in multiway anal-
ysis, J. Chemometrics, Vol. 14, pp 105-122 (2000).

[36] T. G. Kolda, B. W. Bader. Tensor decompositions and applications. SIAM re-
view. Vol. 51, No. 3. pp.455-500 (2009).

[37] T. G. Kolda, Multilinear operators for higher-order decompositions, Tech report
SAND2006-2081, Sandia national laboratories, Albuquerque, NM, Livermore,
CA (2006).

[38] K. Kurdyka, On gradients of functions definable on o-minimal structures. Ann.
Inst. Fourier 48, pp. 769-783 (1998).

[39] P.M. Kroonenberg, Applied Multiway Data Analysis. Wiley (2008).

[40] W. Krijnen, T. Dijkstra, A. Stegeman, On the non-existance of optimal solutions
and the occurence of degeneracy in the candecomp/parafac model, Psychome-
trika, 73 (3), pp. 431-439 (2008).

[41] J. B. Kruskal, statement of some current results about three-way arrays, manu-
script, AT& T Bell Laboratories, Murray Hill (1983).

87

[42] J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and N-way arrays,
in Multiway data analysis, R. coppi and S. Bolasco, eds. Amesterdam, pp 7-18
(1989).

[43] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics, Linear algebra and its
applications, Vol. 18(2), pp.95138 (1977).

[44] S. Lang, Algebra, Graduate text in mathematics, Springer, (2002).

[45] J.M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, Rhode
Island, (2010).

[46] K. Levenberg, A Method for the Solution of Certain Non-Linear Problems in
Least Squares, Quarterly of Applied Mathematics Vol. 2 (2), 164168 (1944).

[47] K. Madsen, H. B. Nielson, O. Tingleff, Methods for non-linear least squares
problems, second edition, Technical university of Denmark (2004).

[48] D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Param-
eters, SIAM Journal on Applied Mathematics, Vol. 11 (2): 431441 (1963).

[49] C. Navasca, L.D. Lathauwer and S. Kindermann, Swamp reducing technique for
tensor decomposition, in the 16th Proceedings of the European Signal Processing
Conference, (2008).

[50] S. Lojasiewicz, Sur la geometrie semi- et sous- analytique. Ann. Inst. Forier vol.
43, pp. 1575-1595 (1993).

[51] D. Nion, L. De Lathauwer, An enhanced line search scheme for complex-valued
tensor decompositions, application in ds-cdma. Signal Processing, 88(3), pp. 749-
755, (2008).

[52] J. Nocedal, S. J. Wright, Numerical optimization, Springer series in operation
research, Second edition, (2006).

[53] N. Parikh, S. Boyd. Proximal algorithms. Foundations and trends. Vol. 1, No. 3.
pp 123-231 (2013).

[54] P. Paatero, Construction and analysis of degenerate parafac models, Journal of
chemometrics, Vol. 14, no. 3, pp. 285-299 (2000).

[55] P. Paatero, A weighted non-negative least squares algorithm for three-way
PARAFAC factor analysis. Chemometrics and Intelligent Laboratory Systems,
38(2), pp. 223242 (1997).

[56] P. C. Parks, S. Kaczmarz (1895-1939), International journal of control, Vol. 57,
no. 6, pp. 1263-1267 (1993).

88

[57] R. Penrose, A generalized inverse for matrices. Proceedings of the Cambridge
Philosophical Society. Vol. 51 (3) (1955).

[58] M. J. D. Powell, On search directions for minimization algorithms, Math. Pro-
gramming, vol. 4 pp. 193201 (1973).

[59] Y. Qi, P. Comon, Uniqueness of nonnegative tensor approximations, IEEE Trans-
actions on Information Theory , 26 (4), pp. 2170-2183 (2016).

[60] R. T. Rockafellar, R. Wets, Variational analysis. Springer, Berlin (1998).

[61] N.D. Sidiropoulos, G.B. Giannakis, and R. Bro, Blind PARAFAC receivers for
DS-CDMA systems, IEEE Trans. on Signal Processing, 48 (3), 810-823, (2000).

[62] N. Sidiropoulos, R. Bro, and G. Giannakis, Parallel factor analysis in sensor array
processing, IEEE Trans. Signal Processing, 48, 2377-2388, (2000).

[63] N. D. Sidiropoulos, R. Bro, On the uniqueness of multi-linear decomposition of
N-way arrays, Journal of chemometrics, Vol. 14, no. 3, pp. 229-239, (2000).

[64] A. Smilde, R. Bro, P. Geladi, Multi-way analysis: Applications in chemical sci-
ences, Wiley, West Sussex, England (2004).

[65] A. Sobral, T. Bouwmans and E.-H. Zahzah, Robust Low-Rank and Sparse Matrix
Decomposition: Applications in Image and Video Processing, CRC Press, Taylor
and Francis Group, (2015).

[66] J. T. Sun, H. J. Zeng, H. Liu, Y. Lu, Z. Chen, Cubes SVD: A novel approach to
personalized web search, in WWW 2005: Proceeding of the 14th international
conference on world wide web, ACM press, pp 382-390 (2005).

[67] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth
separable minimization, Math. Program., vol. 117 , pp. 387423 (2009).

[68] J. M. F. Ten Berge, The typical rank of tall three-way arrays, Psychometrika,
Vol. 65, pp. 525-532 (2000).

[69] J. M. F. Ten Berge, Partial uniqueness in CANDECOMP/ PARAFAC, J. Chemo-
metrics. Vol. 18, pp. 12-16 (2004).

[70] J. M. F. Ten Berge, H. A. L. Kiers. Simplicity of core arrays in three-way principal
component analysis and the typical rank of p × q arrays, Linear algebra Appl.,
Vol. 294, pp. 169-179 (1999).

[71] J. M. F. Ten Berge, Kruskal’s polynomial for 2×2×2 arrays and a generalization
to 2× n× n arrays, Psychometrika, Vol. 56, pp. 631-636 (1991).

[72] G. Tomasi, Use of the properties of the Khatri-Rao product for the computation
of Jacobian, Hessian, and gradient of the PARAFAC model under MATLAB,

89

private communication, 2005.

[73] L. R. Tucker, Implications of factor analysis of three-way matrices for measure-
ment of change, Problems in measuring change, pp. 122137, (1963).

[74] L. R. Tucker, Some mathematical notes on three-mode factor analysis, Psychome-
trika, 313, pp.279-311 (1966).

[75] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math.
123. pp. 85-100 (2000).

[76] L. Vandenberghe, Fast proximal gradient methods, (2010).

[77] X. Wang, C. Navasca. Lowrank approximation of tensors via sparse optimization,
Numerical Linear Algebra with Applications, vol. 25 (2018).

[78] X. Wang, C. Navasca, S. Kindermann, On Accelerating the Regularized Alternat-
ing Least Square Algorithm for Tensors, Electronic Transactions on Numerical
Analysis, Vol. 48, pp. 114 (2018).

[79] Y. Xu, W. Yin. A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and comple-
tion. SIAM J. imaging science. Vol. 6, No. 3. pp. 1758-1789 (2013).

[80] Y. Xu, L. Yu, H. Xu, H. Zhang, and T. Nguyen, Vector Sparse Representation
of Color Image Using Quaternion Matrix Analysis, IEEE TRANSACTIONS ON
IMAGE PROCESSING, 24 (4) , pp. 1315-1328 (2015).

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1. Introduction
	CHAPTER 2. Introduction to Tensors and Tensor Decompositions
	2.1. Tensor Definition and Preliminaries
	2.2. Some Tensor Operations and Matrix Multiplications
	2.3. Tensor as an Element of Tensor Product Spaces
	2.4. Tensor Rank

	CHAPTER 3. Optimization and Proximal Algorithms
	3.1. Introduction
	3.2. Gradient Methods
	3.3. Least Squares Problem
	3.4. Proximal Operator

	CHAPTER 4. Basic Tensor Decomposition
	4.1. CANDECOMP/PARAFAC Decomposition
	4.2. HOSVD/Tucker decomposition
	4.3. Alternating Least Squares (ALS)
	4.4. ALS as an Optimization Problem
	4.5. CP Decomposition as a Nonlinear Least Squares Problem

	CHAPTER 5. Rank Approximation of Tensors
	5.1. Introduction
	5.2. Preliminaries
	5.3. Rank Approximation of a Tensor
	5.4. Approximation of Tensor Rank in CP Decomposition
	5.5. Analysis of Convergence
	5.6. Numerical Experiment and Results
	5.7. Conclusion

	CHAPTER 6. Sampling Blocks in ALS
	6.1. Introduction
	6.2. Sampling the Rank-One Components in ALS
	6.3. Numerical Experiments
	6.4. Conclusion

	LIST OF REFERENCES

