Computational Homework 2, due Nov. 24th

Write a program **simpson**($f(\mathbf{x}), \mathbf{a}, \mathbf{b}, \mathbf{n}$) to calculate $\int_a^b f(x) dx$ using Simpson's rule (composite) with $n = 2, 2^2, 2^3, 2^4, 2^5$ equal intervals.

Test the code on the following functions: 1. ℓ^{π}

$$\int_0^1 \sin x dx$$
$$\int_0^1 \exp x dx$$

2.

3.

$$\int_0^1 \arctan x dx$$

Calculate the actual errors for each n for all three functions. Compare the errors at each n and give a brief discussion.

Note: When n = 2 (2 equal intervals), this is equivalent to one Simpson's rule on [a, b] involving points $a = x_0, x_1, x_2 = b$. When n = 4 (4 equal intervals), this is equivalent to two Simpson's rule: one on $[a = x_0, x_2]$ and the other on $[x_2, x_4 = b]$ involving points $a = x_0, x_1, x_2, x_3, x_4 = b$.