## Assignment 6, due Friday, 12th November

## Theoretical:

1. Determine the region of absolute stability for the method

(1) 
$$w_{n+1} = w_n + h f(t_n + \theta h, (1 - \theta) w_n + \theta w_{n+1})$$

for several  $\theta \in [0, 1]$  to make the general picture. Notice that the method above includes explicit Euler, implicit Euler, and implicit midpoint rule as special cases. 2. Determine all the values of  $\theta \in [0, 1]$  such that the method (1) is A-stable.

## Computational:

Consider the following initial value problem

(2) 
$$\frac{d\vec{y}}{dt} = \Lambda \vec{y}, \quad 0 \le t \le 1$$
$$\vec{y}(0) = (1,1)'.$$

where

$$\Lambda = \left[ \begin{array}{cc} -50 & 1\\ 0 & -\frac{1}{10} \end{array} \right]$$

Apply both the forward and backward Euler methods to the ivp (2).

- Find a stepsize h > 0 for which the explicit Euler's method is unstable. Plot  $ln||w_n||$  vs n.
- Use the same stepsize h for the implicit Euler method to solve the problem (2). Plot  $\ln ||w_n|| \text{ vs } n$ .
- Explain your results.