Assignment 7, due Friday, 19th November

Theoretical:

1. Find the stability function R for the following Runge-Kutta method:

$$\begin{array}{c|cccc}
0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
1 & 1 & 1 \\
\hline
& \frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{array}$$

Is it A-stable?

2. The following questions pertain to the extension of the linear stability analysis to inhomogeneous system.

a. Let Λ be a nonsingular matrix. Prove that the solution of $\vec{y}' = \Lambda \vec{y} + \vec{a}$, $\vec{y}(t_0) = \vec{y_0}$ is

$$\vec{y}(t) = e^{\Lambda(t-t_0)} \vec{y_0} + \Lambda^{-1} [e^{\Lambda(t-t_0)} - I] \vec{a}, \quad t \ge t_0.$$

b. Prove that if Λ has a full set of eigenvectors and all of its eigenvalues reside in \mathbb{C}^- , then $\lim_{t\to\infty}-\Lambda^{-1}\vec{a}$.

c. Show that after one step of the Runge-Kutta method applied to the simplest test problem,

$$y' = \lambda y + a$$
$$y(t_0) = y_0$$

results in

$$w_{n+1} = R(h\lambda)w_n + Q(h\lambda), \quad n = 0, 1, \dots$$

where

$$R(z) = 1 + zb^{T}(I - zA)^{-1}\mathbf{1}$$

and

$$Q(z) = hab^T (I - zA)^{-1} \mathbf{1}$$

for $z \in \mathbb{C}$. Hence,

$$w_n = [R(h\lambda)]^n w_0 + \left(\frac{R(h\lambda)^n - 1}{R(h\lambda) - 1}\right) Q(h\lambda), \quad n = 0, 1, \dots$$

3. Show that for all semi-implicit Runge-Kutta methods the denominator of the stability function R(z) is a product of real linear factors.

Computational:

Consider the Curtiss-Hirschfelder equation

$$\frac{dy}{dt} = -50(y - \cos(t)), \quad y(0) = 1.$$

- Use the forward Euler and 4th order Runge-Kutta to solve the Curtiss-Hirschfelder equation for $t \in [0, 10]$.
- Determine a stepsize h for each method where w_n captures the correct qualitative behavior of the true solution. Plot w_n .
- Compare the two methods for solving the Curtiss-Hirschfeld equation.

The exact solution is

$$y(t) = \frac{2500}{2501}\cos(t) + \frac{50}{2501}\sin(t) + \frac{1}{2501}e^{-50t}, \quad y(0) = 1.$$

1