Assignment 9, due Friday, 10th December

Theoretical:

1. Prove the Corollary ($given\ in\ lecture$): Consider the linear boundary-value problem

(1)
$$Ly(x) \equiv -y'' + p(x)y' + q(x)y = r(x), \quad a < x < b$$

with boundary conditions $y(a) = \alpha$ and $y(b) = \beta$. Let p(x) and q(x) satisfy the following conditions,

$$\begin{aligned} |p(x)| &\leq P, \\ 0 &< \tilde{Q} \leq q(x) \leq \hat{Q}, \\ \text{and} \\ h &\leq \frac{2}{P}. \end{aligned}$$

Then, the tridiagonal linear system resulting from the finite difference method, Aw=r, with coefficients

$$a_j = -\frac{1}{2} \left(1 + \frac{h}{2} p(x_j) \right),$$

$$b_j = \left(1 + \frac{h^2}{2} q(x_j) \right),$$
and
$$c_j = -\frac{1}{2} \left(1 - \frac{h}{2} p(x_j) \right).$$

for $1 \leq j \leq J$, has a unique solution w through LU decomposition. Hint: Use the Theorem given in the lecture.

- 2. Assume $p(x) \equiv 0$ in (1). Devise a fourth-order-accurate difference approximations to L.
- 4. Find explicitly the coefficients $\{a_{k,l}\}$ for $k, l = 1, 2, \ldots, m$, for the equation

$$-y'' + y = f,$$

assuming that the space \mathcal{A} is spanned by chapeau functions on an equidistant grid. Computational:

No computation!