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ABSTRACT 
An overview of the history and current practices of laser beam shaping is presented.  When diffraction effects are not 
important, geometrical methods for laser beam shaping (ray tracing, conservation of energy within a bundle of rays, and 
the constant optical path length condition) can be used to determine system configurations, including aspheric elements 
and spherical-surface GRIN lenses, which are required to change the intensity profile into a more useful form.  
Geometrical optics-based design methods are presented for shaping both rotationally and rectangular symmetric laser 
beam profiles. Applications of these techniques include design of a two-plano-aspheric lens system for shaping a 
rotationally symmetric Gaussian beam, a two-mirror system with no central obscuration for shaping an elliptical 
Gaussian input beam, and a three-element GRIN system for shaping a rotationally symmetric Gaussian beam.   
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1.  INTRODUCTION 
Optical design of laser beam shaping systems has evolved considerably from the early work of Frieden1 and Kreuzer2 
during the 1960’s to the contemporary work of many summarized in Refs. 3, 4, and 5.  This early work articulated well 
the goals of some contemporary laser beam shaping applications.  Namely, Frieden and Kreuzer sought to define an 
optical system that would transform an input plane wave with a Gaussian irradiance profile into an output plane wave 
with uniform irradiance.  Conservation of energy along a bundle of rays was used to establish a non-linear mapping of 
the ray coordinates between the input and output planes.  Frieden shows that the phase of the beam over the output plane 
may vary by 20λ after redistribution of the beam irradiance.  Therefore, for laser beam shaping applications when the 
output beam phase is important, a second optical element must correct phase distortions introduced by the irradiance 
redistribution.  Frieden computed the shaping of an aspherical refracting surface that would re-collimate the output beam 
parallel to the optical axis and also to the input beam.  Keuzer imposed the constant optical path length condition for all 
rays passing through the beam shaping optics to control phase variation of the output beam.  Unfortunately, optical 
design and fabrication technologies were generally not adequate until the 1980’s to permit realistic design, analysis, 
fabrication, and testing of laser beam shaping systems.  

 Today, beam shaping is the process of redistributing the irradiance and phase of a beam of optical radiation.  
The irradiance distribution defines the beam profile, such as, Gaussian, multimode, annular, rectangular, or circular.  The 
phase of the output beam determines its propagation properties.  Contemporary laser beam shaping systems can be 
grouped into two functional categories:  field mappers and beam integrators.  A field mapper transforms a known input 
beam into a desired output beam in a prescribed manner, can be effectively lossless, and works well for single-mode 
beams.  A beam integrator breaks the input beam into a large number of facets by a lens-array, and then, tries to spread 
the energy within each facet over the output region.  The output beam profile is a sum of the diffraction patterns of each 
lens-array aperture.  Beam integrators work well for multimode beams where the input profile may be unknown.    

Optical design of beam shaping systems can be achieved using either physical or geometrical optics.  There is no 
single beam shaping method that can be used for all applications.  Guidance in choosing a beam shaping technique is 
discussed in Chapter 1 of Ref. 4.  For single-mode Gaussian beams calculating the parameter β  will help determine the 
quality of solution available and whether geometrical or physical optics methods should be used 
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where λ is the wavelength, r0 is the beam radius or waist, Y0 is half-width of the desired output dimension, and f is the 
focal length of the focusing optic, or the working distance from the optical system to the target plane for systems without 
a defined focusing optics.  For simple output geometries, such as, circles and rectangles, the following rules of thumb 
have been developed:6   

• If β <4, a beam shaping system will not produce acceptable results. 

• When 4 < β < 32, diffraction effects are significant and should be part of design of beam shaping systems.   

• When β > 32, geometrical methods should be adequate for design of beam shaping systems. 
This paper will summarize the geometrical methods7, 8  for designing reflective and refractive field mapping systems.  
Field mapping is basic to all beam shaping, since one seeks to design a set of optical elements that map an input field 
into a desired output optical field.    

For illumination applications, such as in holography, materials processing, and lithography, it is very important for 
the laser beam to uniformly illuminate the target surface.  Both reflective9, 10, 11, 12 and refractive2, 13, 14, 15 optical systems 
have been used to shape laser beam profiles. McDermit and Horton9 use conservation of energy within a bundle of rays 
to design rotationally symmetric reflective optical systems for illuminating a receiver surface in a prescribed manner 
using a non-uniform input beam profile.  Malyak,11 Shealy and Chao12 have designed a two-mirror laser profile shaping 
system with rectangular symmetry and no central obscuration which transforms an input Gaussian beam into a uniform 
irradiance output beam.  Kreuzer2 has patented a coherent-light optical system using two aspherical surfaces to yield an 
output beam of desired intensity distribution and wavefront shape.  Rhodes and Shealy13 derived a set of differential 
equations using intensity mapping and the constant optical path length condition to calculate the shape of two-aspherical 
surfaces of a lens system that expands and converts a Gaussian laser beam profile into a collimated, uniform irradiance 
output beam.  Using their method, two-plano-aspherical lenses have been designed, fabricated and used for laser beam 
shaping in a holographic projection system.16, 17, 18  Hoffnagle and Jefferson15 introduced convex aspherical surfaces for 
ease of fabrication and a continuous roll-off of the output beam profile for more control of the far-field diffraction 
pattern into their design of a refractive laser beam shaping system. 

The theory of geometrical methods for design of a laser beam shaping system is summarized in section 2.  A brief 
overview is presented of the optical design process of incorporating the geometrical optics intensity law for propagation 
of a bundle of rays and the constant optical path length condition into the ray trace equations, and then, of determining 
the geometrical contour of several surfaces (or GRIN glasses) so that the beam shaping design conditions are satisfied.  
Optimization-based techniques, such as, genetic algorithms (GA) have also been shown to be effective methods for 
design of laser beam shaping systems.19  Section 3 summarizes three applications of this theory to the design of laser 
beam shaping systems - a two plano-aspheric lens system, a two-mirror configuration with no obscuration, and a three-
element GRIN lens system. 

 

2.  THEORY  
In order to optimize the irradiance within an optical system, the optical field must be determined throughout the system.  
The optical field is a local plane wave solution of Maxwell's equations or the scalar wave equation.20, 21  For an isotropic, 
non-conducting, charge-free medium, the optical field may be written as: 

 u u ik S( ) ( ) exp ( )r r= 0 0 r , (2) 

where k0=ω/c=2π/λ0 is the wave number in free space; u0(r) and S(r) are unknown functions of r.  Requiring u(r) from 
Eq. (2) satisfy the scalar wave equation leads to the following conditions which must be satisfied: 
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where n is the index of refraction, and I is the energy density of the field times the speed of propagation within medium.  
Equation (3) is known as the eikonal equation and is a basic equation of geometrical optics.  The surfaces S(x,y,z)=const. 
are constant phase fronts of the optical field, have a constant optical path length (OPL) from the source or reference 



surface, and are known as the geometrical wavefront.  Equation (4) expresses conservation of radiant energy within a 
bundle of rays and is known as the geometrical optics intensity law for propagation of energy.  According to geometrical 
optics, the phase and amplitude of the optical field are evaluated independently.  First, the ray paths are evaluated 
throughout the optical system with ray tracing.  Then, the phase of the optical field is computed from the optical path 
length of the rays passing through the system.  The amplitude (or intensity) of the optical field is computed from the 
density of rays at any point within the system by monitoring the intensity variations along each ray.22, 23, 24 

For beam shaping systems with collimated input and output beams as illustrated in Figure 1, a useful expression for 
the energy within a bundle of rays25 as it passes through the system follows by integrating Eq. (4) over reference planes 
(or wavefront) normal to the input and output beam and then applying Gauss’ theorem 

 in outI dw I dW= . (5) 

Equation (5) expresses conservation of energy along a bundle of rays between input element of area and the 
corresponding output element of area on the wavefront or the reference planes normal to the beam.  Equation (5) says 
that the intensity times the cross-sectional area of the beam is constant along the beam as it propagates through the 
optical system and is a basic equation used for the optical design of laser beam shaping systems.  For some beam 
shaping configurations, it is necessary to introduce the conservation of energy condition into the optical design by using 
reference surfaces, such as for detectors, which are curved and/or have an arbitrary orientation with respect to the 
direction of the beam propagation.  In these cases it is necessary to take into account projecting the element of area of a 
reference surface perpendicular to direction of beam propagation when applying Eq. (5).  The total energy of the beam 
must also be conserved as the beam propagates through the system. 

 
Figure 1.  Schematic layout of a laser beam profile shaping system. 

When the incident beam is a laser in the fundamental, Gaussian TEM00 mode with central intensity normalized to 
unity, the input intensity profile is given by 

 2
0( ) exp[ 2( ) ]inI r r= − r  (6) 

where r0 is the beam radius or waist.  This beam leaves the optical system at a radial distance R from the optical axis 
with a power density of Iout(R).   Integrating Eq.  (5) over the input and output planes gives 
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When Iout( R ) is constant, the radius of beam in the exit aperture R can be evaluated by carrying out the integration using 
Eq. (6) for Iin(r) to obtain 
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The constant Iout (output intensity) is evaluated by integrating Eq. (7) over the working input aperture of radius rmax, and 
the corresponding output aperture, Rmax, and then, solving for Iout to obtain: 
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Equation (8) relates the output beam radius to the input beam and is used during the optical design process to reduce the 
number of independent variables when solving for the shape of the reflecting or refracting surfaces of the beam shaping 
system.  It is interesting to note that if the output beam profile is a Fermi-Dirac15 distribution with a continuous roll-off 
for more control of the far-field diffraction pattern, it has been shown that application of conservation of energy leads to 
a nonlinear, analytical relationship between the input and output ray coordinates.26 

 In order to accomplish the overall beam expansion and profile shaping as illustrated in Figure 1, two optical 
elements are required.  These optical elements may be either lenses or mirrors.  The first optical element typically 
expands and shapes the beam profile to satisfy conservation of energy according to Eq. (8), and the second optical 
element re-collimates the rays so that the constant optical path length condition is satisfied by the system, as illustrated 
by the two-lens beam shaping system shown in Figure 2.  Optical design of a laser beam shaping system seeks to define 
the optical components adequately so that the system can be analyzed, fabricated, and tested.  This generally requires 
specification of the shape and spacing between the optical surfaces as well as the index of refraction of all the media.  
For the refracting beam expander system illustrated in Figure 2, the shape of surfaces s and S must be determined.  The 
conservation of energy condition and the constant optical path length condition can be solved simultaneously with the 
ray trace equations for R(r), z(r), Z(R) when n, d, t1, t2 are given.   

It is interesting to note that several authors7, 11, 27 have shown that the sag of two optical elements of a laser beam 
shaping system can be expressed as a function of r  

 z r f r dr C( ) ( )= +z  (10) 

 Z r z r g r( ) ( ) ( )= +  (11) 

where C is a constant, and f(r) and g(r) are functions defining the optical configurations.  Section 3 describes how to 
design a two-lens, two-mirror, and three-element GRIN laser beam shaping systems. 

 
 

Figure 2. Geometrical configuration of a two-lens laser expander.  

3.  Applications 
Using geometrical methods for the optical design of laser beam shaping systems involves incorporating the geometrical 
optics intensity law for propagation a bundle of rays (conservation of energy) and the constant optical path length 
condition into the ray trace equations for the optical system, and then, determining the geometrical shapes of several 
optical surfaces (or GRIN materials) so that the beam shaping design conditions are satisfied.  This method of optical 
design involves solving differential equations for optic shapes or using genetic algorithms to determine configuration 
parameters of the systems.  Three applications - a two-plano-aspheric lens system for shaping a rotationally symmetric 
Gaussian beam, a two-mirror system with no central obscuration for shaping an elliptical Gaussian input beam, and a 



three-element GRIN system with spherical surfaces for shaping a rotationally symmetric Gaussian beam – are discussed 
in this section.  These applications have been selected to illustrate how the geometrical methods for optical design of 
laser beam shaping systems are applied to a range of configurations. 

3.1. Two-Lens Beam Shaping System  
The optical design of a two-lens laser beam shaping system with rotational symmetry is summarized in this section.  For 
more details and application of these results, see Refs. 7, 13, 14, 16, 17, 18, and 28.  Consider the geometrical 
configuration of a refracting laser beam profile shaping system shown in Figure 2.  The two curved surfaces are used to 
satisfy the laser beam shaping design conditions.  Rays are refracted at surface s according to Snell's law.  The ray trace 
equation of refracted ray  traveling from the point (r, z) on surface s to the point (R, Z) on surface S is given by  A

 ( ) ( ) ( ) ( )R-r z Z z r= −A A  (12) 

where ray vector  is given by A
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Equation (12) can be expressed as a quadratic equation in z ′  and solved to yield 
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The positive solution for z  is used for the lens configuration shown in Figure 2 where the first lens is divergent. For 
this system, the height of ray R at the second lens with entrance pupil height r is computed from Eq. (8).  The term (Z - 
z) in Eq. (14) is determined by the constant optical path length condition realized by setting the axial optical path length 
equal to that of a general ray 

′
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which is a quadratic equation for the term (Z – z) as a function of the entrance pupil aperture radius r.  After squaring Eq. 
(15) and collecting terms, the solution of the resulting quadratic equation is 
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where the positive sign of the radical has been used so that the solution reduces to the appropriate value of (Z – z) = d  
when r = R = 0.  It is interesting to note that Eq. (14) permits z ′  to be expressed as a function of r, thus, enabling z(r) to 
be evaluated by integration, as illustrated in Eq. (10).  Reference 28 presents results for design, fabrication, and testing of 
a two-lens laser beam shaping system similar to configuration shown in Figure 2. 

3.2. Two-Mirror Beam Shaping System 

The optical design of a two-mirror laser beam shaping system with rectangular symmetry will be summarized in this 
section.  For more details and applications of these results, see Refs. 7, 11, and 12.  Consider the two-mirror laser beam 
shaping system illustrated in Figure 3. The input and output beams are collimated and parallel to the optical axis.  
Assume the input beam has an elliptical cross-section, and its irradiance is given by  
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where (x0, y0) are the beam waist in the x, y directions, respectively, and the central intensity is normalized to unity.  The 
output beam irradiance is uniform and is given by 
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Figure 3.  Geometrical configuration of a two-mirror laser beam shaping system with rectangular symmetry. (From Ref. 12) 
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Figure 4.  Elliptical Gaussian input beam profile. 
lustrated in Figure 4 with waist and output beam size given by 
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ear (transverse) dimensions has been introduced for convenience.  The relationship 
put and output planes can be written in the following form 
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Solving Eq. (22) for I  gives out
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From Eq. (21) expressions for the output irradiance along the x, y directions are given by 
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Since there is a non-uniform shaping of the laser beam profile in orthogonal directions, assume there is an independent 
and non-uniform magnification of the x and y ray coordinates between the input and output planes: 
 X m x xx= ( ) , (26)   

 Y m y yy= b g . (27) 

The rectangular magnifications mx(x) and my(y) can be determined by imposing the incremental expression of 
conservation of energy, Eq. (20), for the intensity functions, Eqs. (17) and (18), and then separating variables to obtain 
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Setting the right- and left-hand side Eq. (28) equal to the constant, and integrating leads to expressions for the 
magnifications of the ray coordinates on the output plane.  Then, using Eqs. (26) and (27), the following expressions for 
the ray coordinates on the output plane follow 
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where C2 and C3 are constants determined by the boundary conditions.  Equations (29) and (30) can be used to evaluate 
numerical tables relating (x, y) to (X, Y), which can then be used to invert numerically the magnification equations (26) 
and (27) so that one can express (x, y) in terms of (X, Y) when evaluating Z(X, Y) in Eq. (50) below. 

Now, the ray trace equations connecting two mirror surfaces s[x, y, z(x, y)] and S[X, Y, Z(X, Y)] can be written in 
the following form: 
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where A1→2 is a unit vector along the ray path connecting the points on the two mirror surfaces s[x, y, z(x, y)] and S[X, 
Y, Z(X, Y)].   The point (X0, Y0, Z0) locates the origin of the local coordinate system expressed in terms of the variables 
(X, Y, Z), of the second mirror relative to the local coordinate system of the first mirror, (x, y, z).  The displacement 
vector, 

 0 0 0 0X Y Z= + +R i j k , (33) 

specifies the location of the vertex of the second mirror with respect to the vertex of the first mirror.  The equation of 
each mirror surface is normally expressed in terms of a local coordinate system whose origin is at the intersection of 
each mirror with respect to the optical axis and can be written in the following form: 
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It will be convenient to express subsequent equations in a more compact form in terms of the position vectors r, R of the 
point of reflection of a ray from the first and second mirror surfaces: 
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Applying the law of reflection at the first mirror surface for a collimated input beam parallel to the optical axis leads to 
the following expression for the unit vector A1→2: 
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Eliminating between the ray trace equations (31) and (32) leads to a quadratic equation in given below yz xz
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Equation (39) is a partial differential equation for the unknown mirror sag functions z(x, y) and Z(X, Y).  An expression 
for follows from the ray trace equations (31)  yz
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Up to this point, conservation of energy within a bundle of rays has been used to express the output ray coordinates (X, 
Y) as a function of the input ray coordinates (x, y) and beam intensity profiles, according to Eqs. (29) and (30).  The ray 
trace equations (31) and (32) have lead to partial differential equations for the sag function z(x, y) of the first mirror 
surface and the unknown equation of the second mirror surface Z(X, Y).  To insure that the input and output wavefronts 
have the same shapes, e.g., plane wavefronts, the phase of all rays passing through the beam shaping system must be 
constant.  Thus, the constant optical path length condition must also be used as part of the optical design of this two-
mirror laser beam shaping system. 

The constant optical path length (OPL) condition provides another independent condition, which can be used to 
solve for the sag functions z(x, y) and Z(X, Y) of the two mirror surfaces.  The OPL of an axial ray and general ray are 
given by 
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 ( ) ( )0| | ( , )
General Ray

OLP Z X Y z x y= + − + −R R r ,  (43) 

where the axial ray is incident upon the first mirror at its vertex on the optical axis and origin of the local coordinate 
system (x, y, z) and is reflected to the vertex and the origin of the local coordinate system (X, Y, Z) on the second 
mirror.  The OPL of the non-axial ray is equal to the distance between the points of reflection on each mirror, | |0+ −R R r , 
plus the difference between the sag function of the point of reflection on each mirror, Z(X, Y) – z(x, y).  Equating the 
right-hand-side of Eqs. (42) and (43) leads to the following: 

 ( )( )0 ( , ) , | |R Z X Y z x y− − = +R R r0 − . (44) 

The constant optical path length equation (44) can be used to express  from Eq. (39) as a function of xz ( ),x X  by 
squaring Eq. (44) to display 
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Using the negative sign in Eq. (39) as the physically meaningful solution, and combining Eqs. (31), (32), (39), (44), and 
(45) gives the following expressions 
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Since X = X(x) and Y = Y(y) from Eqs. (31) and (32), then it follows that the sag of the first mirror can be written as 
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where C4 is a constant of integration.  After explicit integration of Eq. (47), the sag of the first mirror is given by 
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The sag of the second mirror surface can now be evaluated from Eq. (45) to give 
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where the x and y terms are eliminated from Eq. (50) by inverting numerically the ray output coordinates equations (29)
and (30).  The process of evaluating the sag of each mirror surface is discussed in detail in Ref. 12. 

 
 

Figure 5.  Relative Illumination of the output beam along the x-y axes.  (From Ref. 12) 

Using these results, the performance of a two-mirror laser beam shaping system, which transforms an input beam 
with elliptical cross section of 3:1 ratio of beam waist in perpendicular directions, has been analyzed.12 The relative 
output illumination is shown in Figure 5.  The aspherical deviation of the mirror surfaces from best-fit sphere has been 
shown to be 120 µm for a 6mm diameter mirror.  The optical analysis software ZEMAX29 has been used for performance 
modeling and tolerance analysis of this system. These results show that the first mirror surface has a strong aspherical 
component along the direction of smaller input beam waist and that the output beam profile remains fairly uniform when 
the mirror decentation is less than 2.5% of the maximum mirror surface dimension and tiltation is less than 2.5 degrees 
about the coordinate axis. 

3.3.   Three GRIN Element Laser Beam Shaping System 
This application was motivated by the desire to design a spherical-surface GRIN lens system, where catalog GRIN glass 
types are used and the number of lens element required is an optimization variable.  Solution to this problem will 



represent a way to construct a laser beam shaping system without use of aspherical optics or esoteric GRIN profiles.30  
The optical design for this system involves using genetic algorithms (GA) to maximize a laser beam shaping merit 
function, Eq. (51), within a 26-dimensional parameter space.31  To solve this optical design problem, the GA not only 
must optimize surface shapes of the GRIN elements and their spacing, but also must determine the actual number of 
GRIN elements in the solution, up to a certain limit (four, in this case), and the type of GRIN material for each element 
must be selected from a vendor GRIN glass catalog.  This type of problem distinguishes the GA method from 
deterministic methods (i.e., those that rely on derivatives and a smooth, continuous merit function) since the merit 
function required for this problem depends on a complicated mix of discrete and continuous parameters.  For more 
details and applications of these results, see Refs. 19, 31, and 32.  

The optical design of this system solves for the attributes (radii, thickness, and spacing) of the lens elements, the 
GRIN glass type from a catalog, and the number of elements needed for a system of this configuration to satisfy the 
beam shaping design conditions – conservation of energy within beam and constant optical path length condition.  
Twenty-six parameters of the lens system are determined by the GA optimization.  The merit function M includes terms 
that favor a specific beam diameter, a uniform irradiance output beam profile, and a collimated output beam.  The 
following merit function satisfies these design objectives and is maximized during design:  
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where RTarget is the desired radius of the output beam, RN is the radial height of the marginal ray on the output surface,  γi 
is the angle the ith ray makes with the optical axis, s and Q are convergence constants used to adjust importance of 
different components of merit function during optimization, and Iout(Rk) is the irradiance of ray in output beam.  (See 
Ref. 32 for a detailed discussion of this GA optimization process and construction of a suitable merit function to use 
when designing laser beam shaping systems.)  The exponential function is used in the merit function, since it peaks 
strongly as parameters approach their design targets.  Also, as the output beam profile becomes more uniform, the 
denominator of Eq. (51) approaches zero, and M increases substantially.  In summary, the merit function rewards those 
systems, which tend to increase the value of M and penalize systems with smaller values of M as the GA optimization 
searches throughout both the discrete and continuous parameter space.  After 12,367 generations (iterations), the GA 
converges to a three-element GRIN lens system with all spherical surfaces which is illustrated in Figure 6.  
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Figure 6.  Raytrace for the free-form GA-designed GRIN shaper system. (From Ref.31) 



The code was executed on a Sun Ultra 1 170 with 64 M of RAM.  Using this setup, it took an average of 7.80 
seconds for the GA to completely evaluate the merit function for the 10 test systems (individuals) in a generation.  The 
code was allowed to run until it reached generation number 12,367, resulting in an effective total run-time of 26.8 hours.  
The merit function, which is measured in arbitrary units, peaked at a value of M=101.21.  The fact that this value 
represents a convergent solution to the problem can be seen in Figure 7, where it is clear that Mbest is asymptotically 
approaching a value of about 102. The system with a merit function value of M=101.21 is represented in Figure 6.  The 
system has three elements, all with spherical surfaces.  This solution shapes the Gaussian input beam profile into a 
uniform irradiance profile on the output surface and conserves energy.  To check conservation of energy for this GA 
optimization process, integrate the output irradiance profile over the output surface and compare this result to the 
integral of the input irradiance over the input surface.  For the configuration shown in Figure 6, the mean value for the 
output irradiance is 4.55 x 10-2 rays per mm2 with a standard deviation of 1.7 x 10 –3 rays per mm2 or 3.7%. The integral 
of the output irradiance over the output surface yields 21.9 units, while integrating the input irradiance profile over the 
input surface yields 21.7 units or within computational errors of the output irradiance.  The input and output profiles are 
shown in Figure 8.  The parameters for this system are given in Table 1 and Table 2. 

To review, the GA-based laser beam shaping method produced a three-element laser beam shaping system with 
spherical surfaces for optics, and uses GRIN elements from the catalog of an established GRIN materials manufacturer.  
The GA solved a problem that would be difficult to solve using analytical methods or conventional optimization 
techniques, since the merit function contains discrete parameters (for example, picking the GRIN glass type from a 
predefined set of GRIN elements).  Furthermore, the GA was presented with a unique problem that has not been solved 
before and was allowed a certain degree of creativity in producing a solution.   

4.SUMMARY AND CONCLUSIONS 
The geometrical methods for design of laser beam shaping systems have been reviewed.  This geometrical optics-based 
theory for designing laser beam shaping is based on conservation of radiant energy within a bundle of rays, the ray trace 
equations, and the constant optical path length condition for cases when contour of the incident wavefront is maintained 
as the beam passes through the system.  This theory has been used to compute the sag of the optical surfaces for two-
plano-aspheric lens system and a two-mirror configuration and to setup a laser beam shaping merit function for a genetic 
algorithm optimization of a three-element GRIN system with spherical surfaces.   

In the first example, numerical techniques were used to solve the differential equations for the sag of the shaping 
elements in a two-lens laser beam shaping system, which has been fabricated and tested. In the second example, 
analytical and numerical techniques were used to determine and analyze the performance of a two-mirror laser beam 
shaping system with no central obscuration, which can transform an elliptical Gaussian input beam into a rectangular-
symmetric output beam with uniform irradiance. The optical analysis software ZEMAX has been used for performance 
modeling and tolerance analysis for this system. These results show that the first mirror surface has a strong aspherical 
component along the direction of smaller input beam waist and that the output beam profile remains fairly uniform when 
the mirror decentation is less than 2.5% of the maximum mirror surface dimension and tiltation is less than 2.5 degrees 
about the coordinate axis.   

In the last example, genetic algorithms (GA) were used to design a spherical-surface GRIN lens laser beam shaping 
system, where catalog GRIN glass types are used and the number of lens element required is an optimization variable.  
The optical design for this system involves maximizing a merit function based on output beam irradiance, size, and 
direction of propagation within a 26-dimensional parameter space.  To solve this optical design problem, the GA 
optimized surface shapes of the GRIN elements and their spacing, determined the actual number of GRIN elements in 
the solution, up to a certain limit (four, in this case), and the type of GRIN material for each element was selected from a 
GRIN glass catalog. These applications show that the geometrical methods for design of range of laser beam shaping 
systems are effective for these types of configurations. 
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Figure 7.  A plot showing the best individual in a generation as a function of generation. (From Ref. 31) 
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Figure 8.  Input and output irradiance profiles for the three-element GA-designed GRIN laser beam shaping system. (From Ref. 31)  



Table 1. Free-form GA-Designed GRIN Shaper Parameters (From Ref. 31) 

Parameter Value 
Wavelength 589.00 nm 
Radius of the input beam (entrance pupil diameter) 4.00 mm 
Radius of the output aperture 12.4  mm 
Index of ambient medium (air) 1.0 

Gaussian constant 2
0r2  0.035  2mm−

Number of elements 3 
Distance from Surface 10 to output plane (parameter 26 in Table 8, Ref. 31) 100 mm 
Object distance Infinity 

 

 

Table 2. Free-form GA-Designed GRIN Shaper Lens Parameters (From Ref. 31) 

 
 First element Second element Third element 
Parameter Left 

surface 
Right 
surface 

Left surface Right 
surface 

Left surface Right 
surface 

Thickness, mm 9.99 10.0 6.77 9.48 4.25 9.71 

Vertex radius, mm -61.6 80.4 -12.5 100 87.5 -30.3 

Surface type spherical spherical spherical spherical spherical spherical 

Glass Type (UDG C1)33 3  2  1  

GRIN Direction negative  positive  negative  
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