UV Lamp Flux Calculations and Photolysis of Planetary Ice Analogs Containing H₂O+CO (1:1) 4 = 3

P. J. Mares, P. A. Gerakines, C. R. Richey

INTRODUCTION

Ultraviolet photolysis can cause major changes in the compositions of ices in the interstellar medium and on icy planetary surfaces. Our study focused on two goals: (i) the determination of the flux of the UV-emitting microwave discharge H₂ flow lamp in the UAB astrophysics lab, and (ii) the production of near-IR spectra of products formed in the photolysis of H₂O+CO (1:1) mixture at 10 K. Near-IR spectra of the photolyzed ices may be compared to observational data from ground- and space-based telescopes. We focused on near-IR spectra due to their wide use by planetary astronomers.

While UV radiation can only penetrate the top 0.1-1 μ m of an ice, the very low strengths of near-IR absorption features require 10-100 μ m of ice in order to detect them. Thus, ices had to be built up in stages (Richey 2006). We did this in the following manners:

•Simultaneous Method: A series of 30-minute deposits simultaneously exposed to the UV radiation from the lamp.

•Combination Method: 10-minute deposits with simultaneous photolysis followed by an additional 20 minutes of photolysis.

The flux of the lamp was calculated by making an ~1 µm deposit of O₂ and photolyzing the ice for a total time of 1920 seconds. The flux of the UV lamp (ϕ) is then determined from the growth of the 1040 cm⁻¹O₃ absorption feature using the equation:

$$=\frac{\Delta t \cdot \ln(10) \int \alpha dv}{2 \cdot B(O_3)}$$

where $\varDelta t$ is the photolysis time, $\alpha(v)$ is integrated over the O₃ absorption feature at 1040 cm⁻¹, and B(O₃) is the band strength of the 1040 cm⁻¹ feature (equal to 1.3 x 10⁻¹⁷ cm/molecule).

0.10

RESULTS

interior at the beginning of our experiment (0/2007), alter the inst cut-back of the deposition tube blocking the UV-Lamp (7/3/07), and after the final cut-back of the deposition tube (7/8/07).

10K mid-IR absorption spectrum of ice mixture H₂O+CO (1:1) after 62 minutes of deposition while being photolyzed, and 140 minutes of only UV-photolysis (combination method).

Column Densities of 1040 cm⁻¹ O₃ Features

 $\phi_{6/28/07}$ =4.83×10¹² photons cm² s⁻¹ $\phi_{7/0307}$ =9.43×10¹² photons cm² s⁻¹ $\phi_{7/08/07}$ =9.43×10¹² photons cm² s⁻¹

Features in the Near IR After Photolysis of H_2O+CO (1:1)

10K near-IR absorption spectrum of ice mixture H₂O+CO (1:1) after 1210 minutes of deposition while being photolysic graund 460 minutes of only photolysic simultaneous and combination methods). Also a possible leak in the system added to the amount of H₂O+CO₂ in the system overnight.

Gerakines, P. A., Bray, J. J., Davis, A., Richey, C. R., "<u>The strengths of near-infrared absorption</u> <u>features relevant to interstellar and planetary ices</u>," Astrophysical Journal 620, 1140-1150 (2005). Gerakines, P.A., W.A. Schutte, and P. Ehrenfreud, Ultraviolet processing of interstellar ice analogs, I.

Pure lees, Astron. Astrophys., 312, 289-305, 1996. Richey, C.R., Gerakines, P.A., <u>"UV Photolysis of Icy Planetary Analogs."</u> 38th AAS Division for Planetary

REFERENCES

Sciences Meeting, Abstract #13.06, Pasadena, (2006). Schinke, Reinhard, Photodissociation Dynamics, 1st. NY: Press Syndicate of the University of

Schinke, Reinhard. <u>Photodissociation Dynamics</u>. 1st. NY: Press Syndicate of the University of Cambridge, 1993.

CONCLUSIONS

In our mid-IR spectra of the photolyzed H₂O+CO ice mixture, we found features of CO₂ (at 2345 cm⁻¹) and H₂CO (1700 cm⁻¹). We can see faint features of H₂O, CO, and possibly CH4 in the near-IR. Insufficient amounts of CO₂ and H₂CO were created in order to detect them in the near-IR.

By increasing the flux of the lamp, we may yield greater amounts of ice that have strong features in the near-IR, which is the overall goal of the project. While we were able to increase the flux by a factor of 10, we are still well below the flux of 2003 $(1.1 \times 10^{14} \text{ photons cm}^{-2} \text{ s}^{-1})$.

FUTURE GOALS

Our future work involves the use of a new closed gas cell system to make the ice deposits. The cell is a three-sided capsule with a window on each side. Two of the windows are made of KBr and will allow the transfer of the spectrometer's IR beam, while the third window is made of MgF₂ in order to allow the input of UV radiation for photolysis. The UV window will be heated in order to prevent ice from forming there and blocking the UV photons.

ACKNOWLEDGMENTS

We would like to acknowledge support from the National Science Foundation (NSF)- Research Experiences for Undergraduates (REU)-site award under Grant No. DMR-0646842.