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THE CHERNOV-SINAI ANSATZ HOLDS FOR N FALLING

BALLS

MICHAEL HOFBAUER-TSIFLAKOS

Abstract. Wojtkowski’s system of N , N ≥ 2, falling balls is a nonuniformly
hyperbolic smooth dynamical system with singularities. It is still an open
question whether this system is ergodic. We contribute toward an affirmative
answer, by providing proofs for the strict unboundedness property and the
Chernov-Sinai ansatz. This is supplemented by conditional proofs of Chernov’s
transversality condition and the abundance of sufficiently expanding points.
The condition put in place for the latter to hold, is that double singular points
form a set of codimension two.
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1. Introduction

In [W90a, W90b], Maciej P. Wojtkowski introduced the system of N , N ≥ 2, falling
balls. It describes the motion of N point masses moving up and down a vertical
line, colliding with each other elastically and the lowest point mass collides with
a rigid floor placed at height zero. The system has N degrees of freedom, the
positions q1, . . . , qN and the momenta p1, . . . , pN . The point masses are placed
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2 MICHAEL HOFBAUER-TSIFLAKOS

on top of each satisfying 0 ≤ q1 ≤ . . . ≤ qN . The overall standing assumption
on the masses is m1 > . . . > mN . Movement occurs due to kinetic energy and
a linear potential field on a compact energy surface Ec given by the Hamiltonian

H(q, p) =
∑N

i=1 p
2
i /2mi +miqi. The dynamics are further reduced to the Poincaré

section M containing the states right after a collision of two point masses or a
collision of the lowest point mass with the floor. Accordingly, the Poincaré map
T describes the dynamics from one collision to the next. It preserves the smooth
measure µ, obtained from the symplectic volume form on R

N ×R
N via symplectic

reduction. Out of historic convenience we will refer to the falling point masses as
falling balls.
An intrinsic obstacle, which makes the treatment of this system challenging, is the
presence of singular collisions. In physical terms, they occur in a triple collision
or when the two lower balls hit the floor simultaneously. The singular collisions or
singularities form codimension one submanifolds S± in phase space. The Poincaré
map T resp. T−1 is not well defined on the singularities S+ resp. S− because it
has two images.
The main question in Wojtkowski’s original paper [W90a] revolved around the exis-
tence of non-zero Lyapunov exponents. Simányi settled the general case by proving
that an arbitrary number of falling balls have non-zero Lyapunov exponents almost
everywhere [S96]. For a family of potential fields V (q), satisfying ∂V (q)/∂q > 0,
∂2V (q)/∂q2 < 0, Wojtkowski proved the same result in [W90b]. The latter family
of potentials does not include the linear potential field.
The main line of this work concerns the long time open conjecture whether three
(or more) falling balls are ergodic. There are two results, confirming the ergodicity
of two falling balls with mass configurations m1 > m2: One for the linear potential
mentioned above [LW92] and one [Ch91] for the family of potentials considered
above with the relaxed assumption ∂2V (q)/∂q2 ≤ 0 and the additional restrictions
0 < C1 ≤ ∂V (q)/∂q ≤ C2 < ∞, 0 ≤

∣

∣∂2V (q)/∂q2
∣

∣ ≤ C3 < ∞, for some constants
C1, C2, C3 > 0.
Since our system satisfies the mild conditions of Katok-Strelcyn [KS86], the theory
of the latter implies that the phase space decomposes into at most countably many
ergodic components.1 From here, it is common to verify the Local Ergodic Theorem
(LET) together with a transitivity argument to prove the existence of only one
ergodic component of full measure and, thus, the ergodicity of the system. The
LET dates back to Sinai’s seminal proof of ergodicity for two discs moving uniformly
in the two dimensional torus [S70] and was later generalized in the framework of
semi-dispersing billiards [ChS87, KSSz90, BChSzT02]. In order to prove ergodicity
we will use the LET, formulated for symplectic maps by Liverani and Wojtkowski
[LW92].
The LET claims, that one can find an open neighbourhood of a hyperbolic point
p with sufficient expansion, which lies (mod 0) in one ergodic component, if the
following five conditions are satisfied:

(C1) Regularity of singularity manifolds.
(C2) Non-contraction property.
(C3) Continuity of transversal Lagrangian subspaces.
(C4) Chernov-Sinai ansatz.

1An ergodic component is a set of positive measure in phase space on which the conditional
smooth measure is ergodic.
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(C5) Proper alignment.

In [Ch93], Chernov introduced condition

(C5’) Transversality.

This condition is weaker than (C5) and the LET still holds with (C5’) substituted
in place of (C5). The big advantage of (C5’) over (C5) is that the transversality
condition (C5’) has to hold only for µS± -almost every point, while the proper
alignment condition (C5) is formulated for every point of the singularity manifolds
S±. Once the LET is established, it remains to prove, that the obtained ergodic
neighbourhoods reach into every part of the phase space. The transitivity condition
which ensures this is called

(A) Abundance of sufficiently expanding points.2

The validity of (A) guarantees that the neighbourhoods of the LET can be con-
nected to one ergodic component of full measure.
It is already known, that the continuity of Lagrangian subspaces (C3) is true for
an arbitrary number of balls [W90a, W91]. In this paper we provide proofs for the
strict unboundedness property (cf. Theorem 2.1), condition (C4) and conditional
proofs for conditions (A) and (C5’).
The derivation of non-zero Lyapunov exponents and the formulation of the LET
heavily relies on a quadratic form Q, which is defined using the canonical symplectic
form ω and a pair of transversal, point-independent Lagrangian subspaces L1,L2

contained in the energy surface tangent space TxEc for every x ∈ M (cf. Section
4).
Strict unboundedness asserts the divergence of the quadratic form Q along every
non-double singular orbit and every vector of the closed expanding cone field (cf.
Definition 4.4). The Chernov-Sinai ansatz (C4) follows immediately from this fact
as a simple corollary (cf. Corollary 2.1).
The validity of conditions (C5’), (A) is conditioned by the transversality of singu-
larity manifolds TmS−, S+ for every m ∈ N. The latter immediately implies (a)
the regularity of singularity manifolds (cf. Section 6) and that (b) the set of double
singular points has (at least) codimension two. Both points (a), (b) are needed to
derive condition (C5’) by using strict unboundedness within a compactness argu-
ment (cf. Section 9). Condition (A) only utilizes point (b), such that the strict
unboundedness property can be applied to every non-double singular orbit in order
to derive sufficiency (cf. Subsection 5.2).
The verification of strict unboundedness itself uses two main ingredients: The first
one requires that along every non-double singular orbit and for every ball to ball
collision there exists a subsequence of collision times, such that the pre-collisional
velocity differences of the ball to ball collisions are uniformly bounded from below
(cf. Theorem 7.1). The second one considers the previously derived result from
[S96, Sublemma 3.8], which claims that each vector from the neutral space has
constant length along its entire orbit. A priori, the neutral space contains vectors
v ∈ L1, for which Q(dxT

nv) = 0, for every n ∈ N. Part of the strict unboundedness
proof, will establish that the neutral space is in fact empty for every non-double
singular point. The proof of strict unboundedness is carried out in Section 8.

2The abundance of sufficiently expanding points is equivalent to saying that the set of suffi-
ciently expanding points has measure one and is arcwise connected (cf. Subsection 5.2).
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2. Main results

The phase space M is partitioned (mod 0) into subsets Mi, i = 1, . . . , N . M1

contains the states right after a collision with the floor and Mi, i = 2, . . . , N ,
contains the states right after a collision of balls i−1, i. The Poincaré map T : M 	

describes the movement from one collision to the next. After applying Wojtkowski’s
convenient coordinate transformation (q, p) → (h, v) → (ξ, η) (4.2), (4.3), we obtain
an expanding cone field {C(x) : x ∈ M}, explicitly given by

C(x) = {(δξ, δη) ∈ R
N × R

N : Q(δξ, δη) > 0, δξ0 = 0, δη0 = 0} ∪ {~0},

C′(x) = {(δξ, δη) ∈ R
N × R

N : Q(δξ, δη) < 0, δξ0 = 0, δη0 = 0} ∪ {~0}.

where (δξ, δη) = (δξ0, . . . , δξN−1, δη0, . . . , δηN−1) denote the coordinates in tangent
space. The quadratic form Q is defined (cf. Definition 4.2) by a pair of constant,
transversal Lagrangian subspaces (4.4) and the symplectic form ω. For this choice
of Lagrangian subspaces Q becomes the Euclidean inner product

Q(δξ, δη) = 〈δξ, δη〉 =
N−1
∑

i=1

δξiδηi.

The singularity manifold on which T resp. T−1 is not well-defined is given by S+

resp. S−. Let µS+ resp. µS− be the measures induced on the codimension one
hypersurfaces S+ resp. S−, from the smooth T -invariant measure µ. We further
abbreviate

S±
n = S± ∪ T∓1S± ∪ . . . ∪ T∓(n−1)S±.

Points which hit a singularity in the past and the future are called double singular.
We define the set of all double singular points as D ⊂ M.
Denote by C(x) the closure of the cone C(x), let dxT

n = dTnxT . . . dTxTdxT and
(dTnxT )n∈N = (dxT, dTxT, dT 2xT, . . .). The sequence (dTnxT )n∈N is called un-
bounded, if

lim
n→+∞

Q(dxT
nv) = +∞, ∀ v ∈ C(x) \ {~0},

and strictly unbounded, if

lim
n→+∞

Q(dxT
nv) = +∞, ∀ v ∈ C(x) \ {~0}.

With this in mind, we formulate our first result.

Theorem 2.1 (Strict unboundedness). For every x ∈ M \D, we have

lim
n→+∞

Q(dxT
n(δξ, δη)) = +∞,

for all (δξ, δη) ∈ C(x) \ {~0}.

Due to Proposition 6.2 and Theorem 6.8 of [LW92], Theorem A also implies the
strict unboundedness for the orbit in negative time (dTnxT )n∈Z− , i.e.

lim
n→−∞

Q(dxT
nv) = −∞, ∀ v ∈ C′(x) \ {~0}.

Theorem 2.1 immediately yields the Chernov-Sinai ansatz (C4), which is one of
three conditions of the LET we are going to prove (cf. Section 5).
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Corollary 2.1 (Chernov-Sinai ansatz). For µS∓-a.e. x ∈ S∓,

lim
n→±∞

Q(dxT
nv) = ±∞,

for every v ∈ C(x) \ {~0}, if x ∈ S− and for every v ∈ C′(x) \ {~0}, if x ∈ S+.

We further give two conditional proofs of conditions (C5’) and (A). Both utilize the
transversality of singularity manifolds TmS−, S+ for every m ∈ N, which implies

(a) the regularity of singularity manifolds (cf. Section 6).
(b) the codimension of double singular points D is (at least) two.

Denote by Wu(x) resp. W s(x) the unstable resp. stable manifold at point x. Their
existence are guaranteed from the existence of non-zero Lyapunov exponents [S96]
and Katok-Strelcyn theory [KS86].

Theorem 2.2 (Transversality). Assume points (a), (b) hold. Then, for µS±-a.e.
x, the stable manifold W s(x) resp. unstable manifold Wu(x) is transversal to S−

resp. S+.

Our last result is used to connect ergodic neighbourhoods derived from the LET
into one ergodic component of full measure (cf. Subsection 5.2). As with Theorem
2.2, it necessitates that the set of double singular points D has codimension two.

Theorem 2.3 (Abundance of sufficient points). Assume point (b) holds. Then,
the set of sufficiently expanding points has full measure and is arcwise connected.3

The strict unboundedness property, as stated in Theorem 2.1, is used in both proofs
of Theorem 2.2 and Theorem 2.3.
Given the results in this work, the only obstacles left to prove the ergodicity of N
falling balls are

(I) the non-contraction property (C2),
(II) the transversality of singularity manifolds TmS−, S+ for every m ∈ N.

Both points (I), (II) are subject of future work [HT21, S21].

3. The system of N falling balls

Let qi = qi(t) be the position, pi = pi(t) the momentum and vi = vi(t) the velocity
of the i-th ball. The balls are aligned on top of each other and are therefore confined
to

Nq = {(q, p) ∈ R
N × R

N : 0 ≤ q1 ≤ . . . ≤ qN}(3.1)

where the subindex q in Nq refers to the coordinates (q, p). The momenta and the
velocities are related by pi = mivi. We assume that the masses mi decrease strictly
as we go upwards m1 > . . . > mN . The movement of the balls are the result of a
linear potential field and their kinetic energies. The total energy of the system is
given by the Hamiltonian function

H(q, p) =
N
∑

i=1

p2i
2mi

+miqi.

3The definition of a sufficiently expanding point can be found in Definition 5.1.
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The Hamiltonian equations are

q̇i =
pi
mi

,

ṗi = −mi.
(3.2)

The dots indicate differentiation with respect to time t and the Hamiltonian vector
field on the right hand side will be denoted as XH = XH(q, p). For some energy
value c > 0, the energy manifold Ec and its tangent space T Ec are given by

Ec = {(q, p) ∈ R
N
+ × R

N : H(q, p) =

N
∑

i=1

p2i
2mi

+miqi = c},

T(q,p)Ec = {(δq, δp) ∈ R
N × R

N : ∇(q,p)H(δq, δp) =

N
∑

i=1

piδpi
mi

+miδqi = 0}.

(3.3)

Including the restriction of the positions amounts to Ec ∩ Nq. The Hamiltonian
vector field (3.2) gives rise to the Hamiltonian flow

φ : R× (Ec ∩Nq) → Ec ∩Nq,

(t, (q, p)) 7→ φ(t, (q, p)).

For convenience, the image will also be written with the time variable as superscript,
i.e. φ(t, (q, p)) = φt(q, p).

The standard symplectic form ω =
∑N

i=1 dqi ∧ dpi induces the symplectic volume

element Ω =
∧N

i=1 ω. The volume element on the energy surface is obtained by
contracting Ω, by a vector u, where u is a vector satisfying dH(u) = 1. Denoting
the contraction operator by ι, the volume element on the energy surface is given
by ι(u)Ω. Since the flow preserves the standard symplectic form, it preserves the
volume element and, hence, the Liouville measure ν on Ec ∩Nq obtained from it.
We define the Poincaré section, which describes the states right after a collision as
M = M1 ∪ . . . ∪MN , with

M1 := {(q, p) ∈ Ec ∩Nq : q1 = 0, p1/m1 > 0},

Ml := {(q, p) ∈ Ec ∩Nq : ql−1 = ql, pl−1/ml−1 < pl/ml}, l = 2, . . . , N.

The set of states right before collision Mb = Mb
1 ∪ . . . ∪Mb

N , are defined by

Mb
1 := {(q, p) ∈ Ec ∩Nq : q1 = 0, p1/m1 < 0},

Mb
l := {(q, p) ∈ Ec ∩Nq : ql−1 = ql, pl−1/ml−1 > pl/ml}, l = 2, . . . , N.

The collision between balls i and i+1 is fully elastic, i.e. the total momentum and
the kinetic energy are preserved. Therefore, the momenta resp. velocities change
according to

p+i = γip
−
i + (1 + γi)p

−
i+1,

p+i+1 = (1− γi)p
−
i − γip

−
i+1,

v+i = γiv
−
i + (1− γi)v

−
i+1,

v+i+1 = (1 + γi)v
−
i − γiv

−
i+1,

(3.4)
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where γi = (mi −mi+1)/(mi +mi+1), i = 1, . . . , N − 1. When the bottom particle
collides with the floor the sign of its momentum resp. velocity is reversed

p+1 = −p−1 ,

v+1 = −v−1 .
(3.5)

This is derived from (3.4), by setting the floor velocity v0 zero and letting the floor
mass m0 go to infinity. As a result, the floor collision does not preserve the total
momentum.
These collision laws are described by the linear, symplectic, involutory collision
map

Φi−1,i : Mb → M,

(q, p−) 7→ (q, p+).

We will write Φ if we do not want to refer to any specific collision. Let

τ : Ec ∩Nq → R+,(3.6)

be the first return time to Mb. We define the Poincaré map as

T : M → M,

(q, p) 7→ Φ ◦ φτ(q,p)(q, p).

T is the collision map, that maps the state from right after one collision to the next.
On M, we obtain the volume element ι(XH)ι(u)Ω, by contracting the volume
element ι(u)Ω on the energy surface with respect to the direction of the flow XH .
This exterior form defines a smooth measure µ on M, which is T -invariant.
Matching the present state with the next collision in the future resp. the past, we
obtain two (mod 0) partitions of M

M = M+
1,1 ∪

N
⋃

i=1

N
⋃

j=1
j 6=i

M+
i,j = M−

1,1 ∪
N
⋃

i=1

N
⋃

j=1
j 6=i

M−
i,j ,

where

M+
1,1 = {x ∈ M1 : Tx ∈ M1},

M+
i,j = {x ∈ Mi : Tx ∈ Mj}, 1 ≤ i, j ≤ N, j 6= i,

M−
1,1 = {x ∈ M1 : T−1x ∈ M1},

M−
i,j = {x ∈ Mi : T−1x ∈ Mj}, 1 ≤ i, j ≤ N, j 6= i.

For some instances, it is useful to define the subset

Mm,+
1,1 := M+

1,1 ∩ T−1M+
1,1 ∩ . . . ∩ T−mM+

1,1 ⊂ M+
1,1, m ≥ 1,

which contains the states returning (m+ 1)-times to the floor.
Each partition element M±

i,j has a boundary ∂M±
i,j and the intersection of two

elements of the same partition is strictly contained in the intersection of their
boundaries, i.e.

M±
i,j ∩M±

k,l ⊂ ∂M±
i,j ∩ ∂M±

k,l, (i, j) 6= (k, l).
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The boundary of each partition consists of a regular part R± and a singular part
S±, where we set ∂M± = R± ∪ S±. The singular part comprises the following
codimension one submanifolds

S+
j,i = M+

j,i ∩M+
j,i+1, S−

i,j = M−
i,j ∩M−

i+1,j ,

i = 2, . . . , N − 1, j = 1, . . . , N, j 6= i, i+ 1,

S+
k,1 = M+

k,1 ∩M+
k,2, S−

1,k = M−
1,k ∩M−

2,k,

k = 1, . . . , N, k 6= 2.

These sets are called singularity manifolds. The states in S±
j,i face a triple collision

next, while the states in S+
k,1, S

−
1,k experience a collision of the lower two balls with

the floor next. The maps T resp. T−1 have two different images and are therefore
not well-defined on the sets S+

j,i, S
+
k,1 resp. S−

i,j , S
−
1,k, because the compositions

Φi−1,i◦Φi,i+1 and Φ0,1◦Φ1,2 do not commute. In this case, we follow the convention,
that the orbit branches into two suborbits and we continue the system on each
branch separately. We abbreviate, for n ≥ 1,

S± =

N−1
⋃

i=2

N
⋃

j=1
j 6=i,i+1

S±
i,j ∪

N
⋃

k=1
k 6=2

S+
k,1 ∪

N
⋃

k=1
k 6=2

S−
1,k, S±

n = S± ∪ T∓1S± ∪ . . . ∪ T∓(n−1)S±.

Finally, we define the set of double singular points D. These are points x for which
there exist m,n ∈ N, such that x ∈ T−mS+ ∩ T nS−.
Similarly to S±, the T±1-image of all points in R± consists of two simultaneous
collisions. The key difference to singular points is that the derivatives of the involved
collision maps commute. This follows from the fact, that the two pairs of collisions
do not share a common ball. Hence, for regular points our orbit does not split into
two suborbits and can therefore be continued uniquely. Since the collision maps
of the simultaneous collisions for points in R± commute and T is well-defined on
S− \ S+, the regularity properties of the flow and the collision map imply that, for
n ≥ 1,

T n : M\ S+
n → M\ S−

n(3.7)

is a symplectomorphism, i.e. T extends diffeomorphically to R+.

4. Quadratic forms and invariant cone fields

The study of Lyapunov exponents was carried out using a method developed by
Wojtkowski in the string of papers [W85, W88, W91, LW92, W00]. This method
has been successfully implemented to derive that an arbitrary number of falling
balls has non-zero Lyapunov exponents almost everywhere [S96]. The basic tools
of the Lyapunov exponent machinery were further advanced and are inevitable in
the study of ergodicity of Hamiltonian systems [LW92]. We are therefore going
to formulate the fundamentals of this method and how it applies to the system of
falling balls.

The standard symplectic form ω =
∑N

i=1 dqi ∧ dpi is given by

ω(v1, v2) = 〈v1,1, v2,2〉 − 〈v2,1, v1,2〉 ,

where vi = (vi,1, vi,2) ∈ R
N ×R

N , i = 1, 2. A Lagrangian subspace V is a subspace
of dimension N which is the ω-orthogonal complement to itself, i.e. the symplectic
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form is zero for every input from V [LM87, Definition 6.4]. It is equivalently the
subspace of maximal dimension on which ω vanishes. Note, that for two transversal
Lagrangian subspaces V1, V2, every vector v ∈ R

N×R
N has a unique decomposition

v = v1 + v2, v1 ∈ V1, v2 ∈ V2.

Definition 4.1. For two transversal Lagrangian subspaces V1, V2 we define the
cone between V1 and V2 by

CV1,V2
= {v ∈ R

N × R
N : ω(v1, v2) > 0, v = v1 + v2, vi ∈ Vi, i = 1, 2} ∪ {~0}.

Definition 4.2. The quadratic form QV1,V2
, or QV1,V2

-form, associated to a pair
of transversal Lagrangian subspaces V1, V2 is given by

QV1,V2
: RN × R

N → R,

v 7→ ω(v1, v2),

where v = v1 + v2, vi ∈ Vi, i = 1, 2.

Observe, that the quadratic QV1,V2
-form is indefinite with signature (N,N) on

R
N ×R

N . With the definitions above, the quadratic form can be used to define the
cone

CV1,V2
= {v ∈ R

N × R
N : QV1,V2

(v) > 0} ∪ {~0}.

The complementary cone of CV1,V2
is given by

C′
V1,V2

= {v ∈ R
N × R

N : QV1,V2
(v) < 0} ∪ {~0}.

The arguably simplest expression of QV1,V2
can be obtained by associating it to the

standard Lagrangian subspaces given by

L1 = R
N × {~0}, L2 = {~0} × R

N .(4.1)

For this choice of transversal Lagrangian subspaces we will abbreviate Q = QL1,L2

and C = CL1,L2
. Further, for v = v1 + v2, the Q-form reads

Q(v) = 〈v1, v2〉 .

In [W90a], Wojtkowski introduced two coordinate transformations, i = 1, . . . , N ,

hi =
p2i
2mi

+miqi, vi =
pi
mi

,(4.2)

and

(ξ0, ξ1, . . . , ξN−1)
T = A−1(h1, h2, . . . , hN)T

(η0, η1, . . . , ηN−1)
T = AT (v1, v2, . . . , vN )T ,

(4.3)

where A is an invertible matrix depending only on the masses [W90a, p. 520].
In order to keep calculations concise and lucid, we will work exclusively in (ξ, η)-
coordinates.
The energy manifold, its tangent space and the Hamiltonian vector field take the
form

Ec = {(ξ, η) ∈ R
N−1 × R

N−1 : H(ξ, η) = ξ0 = c},

T Ec = {(δξ, δη) ∈ R
N−1 × R

N−1 : ∇(ξ,η)H(δξ, δη) = δξ0 = 0},

XH(ξ, η) = (0, . . . , 0,−1, 0, . . . , 0).
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Intersecting the standard Lagrangian subspaces (4.1) in (δξ, δη)-coordinates with
the tangent space of the energy manifold and quotienting out the flow direction
gives

L1 = {(δξ, δη) ∈ R
N × R

N : δξ0 = 0, δηi = 0, i = 0, . . . , N − 1} ≃ R
N−1,

L2 = {(δξ, δη) ∈ R
N × R

N : δη0 = 0, δξi = 0, i = 0, . . . , N − 1} ≃ R
N−1.

(4.4)

Thus, the Q-form given by L1, L2 reduces to R
N−1 × R

N−1 and now amounts to

Q(δξ, δη) = 〈δξ, δη〉 =
N−1
∑

i=1

δξiδηi,(4.5)

with no further restrictions, when inserting a vector from L1 ⊕ L2.
In these coordinates, the derivative of the flow dφt equals the identity map. Thus,
only the derivatives of the collision maps dΦi,i+1 are relevant to the dynamics in
tangent space. Since δξ0 = 0, δη0 = 0 we can reduce the derivatives of the collision
maps to (2N − 2× 2N − 2)-matrices. In these coordinates they are given by

dΦ0,1 =

(

idN−1 0
B idN−1

)

, dΦi,i+1 =

(

Di Fi

0 DT
i

)

, i = 1, . . . , N − 1,(4.6)

where B = (bm,n)
N−1
m,n=1, Fi = (fm,n)

N−1
m,n=1 have the structure of the zero matrix,

except for the entries b1,1 = β, fi,i = −αi and Di = (dm,n)
N
m,n=1 has the structure

of the identity matrix, except for the following entries in the i-th row

di,i−1 = 1− γi, di,i = −1, di,i+1 = 1 + γi.

The terms α1, . . . , αN and β in the matrices are non-negative and given by

β = −
2

m1v
−
1

, αi =
2mimi+1(mi −mi+1)(v

−
i − v−i+1)

(mi +mi+1)2
.(4.7)

Observe, that the strict inequality m1 > . . . > mN of the mass configurations
implies, that αi > 0, since v−i − v−i+1 > 0.
Using the quadratic form Q, we define the open cone C and the complementary
cone C′ associated to the Lagrangian subspaces L1, L2 by

C = {(δξ, δη) ∈ L1 ⊕ L2 : Q(δξ, δη) = 〈δξ, δη〉 > 0} ∪ {~0},

C′ = {(δξ, δη) ∈ L1 ⊕ L2 : Q(δξ, δη) = 〈δξ, δη〉 < 0} ∪ {~0}.

The cone field {C(x) : x ∈ M} is constant and therefore continuous in M. Denote
by C the closure of the cone C.

Definition 4.3. 1. The cone C is called invariant at x ∈ M, if

dxTC ⊆ C,

2. The cone C is called strictly invariant at x ∈ M, if

dxTC ⊆ C,

3. The cone C is called eventually strictly invariant at x ∈ M, if there exists a
positive integer k = k(x) ≥ 1, such that

dxT
kC ⊆ C,
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4. The map dxT is called Q-monotone, if

Q(dxTv) ≥ Q(v),

for all v ∈ L1 ⊕ L2.
5. The map dxT is called strictly Q-monotone, if

Q(dxTv) > Q(v),

for all v ∈ L1 ⊕ L2 \ {~0}.
6. The map dxT is called eventually strictly Q-monotone, if there exists a positive
integer k = k(x) ≥ 1, such that

Q(dxT
kv) > Q(v),

for all v ∈ L1 ⊕ L2 \ {~0}.

In the definition above, statements 1, 2, 3 are equivalent to statements 4, 5, 6 [LW92,
Section 4]. In order to obtain non-zero Lyapunov exponents we repeat Wojtkowski’s
criterion [W85], which links eventual strict Q-monotonicity to non-zero Lyapunov
exponents

Q-Criterion (Theorem 5.1, [W85]). If dxT is eventually strictly Q-monotone for
µ-a.e. x, then all Lyapunov exponents are non-zero almost everywhere.

The derivative dxT is Q-monotone for every x ∈ M and any number of falling balls
[W90a]. Simányi established that N , N ≥ 2, falling balls have non-zero Lyapunov
exponents for µ-a.e. x ∈ M, by verifying the Q-criterion [S96].
Observe, that the coordinate transformation (4.3) is Q-isometric, i.e.

Q(δξ, δη) = Q(A−1δh,AT δv) = Q(δh, δv),

which represents a change of basis inside of both Lagrangian subspaces. Therefore,
it does not make a difference in terms of the Q-form’s value whether we operate in
(δh, δv) or (δξ, δη)-coordinates.
We close this subsection by formulating the (strict) unboundedness property and
the least expansion coefficients, which will be used to establish criteria for ergodicity.
The least expansion coefficients σ, σC′ , for n ≥ 1, are defined as

σ(dxT
n) = inf

06=v∈C(x)

√

Q(dxT nv)

Q(v)
, σC′(dxT

−n) = inf
06=v∈C′(x)

√

Q(dxT−nv)

Q(v)
.

Definition 4.4. 1. The sequence (dTnxT )n∈N is called unbounded, if

lim
n→+∞

Q(dxT
nv) = +∞, ∀ v ∈ C(x) \ {~0}.

2. The sequence (dTnxT )n∈N is called strictly unbounded, if

lim
n→+∞

Q(dxT
nv) = +∞, ∀ v ∈ C(x) \ {~0}.

The least expansion coefficient and the property of strict unboundedness relate to
each other in the following way

Theorem 4.1 (Theorem 6.8, [LW92]). The following assertions are equivalent:

(1) The sequence (dTnxT )n∈N is strictly unbounded.

(2) limn→∞ σ(dxT
n) = ∞.
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Remark 4.1. The strict unboundedness property can also be stated in negative
time, i.e.

lim
n→−∞

Q(dxT
nv) = −∞, ∀ v ∈ C′(x) \ {~0}.

Following the proof of [LW92, Theorem 6.8], Theorem 4.1 also extends to this case,
i.e.

(1) The sequence (dTnxT )n∈Z− is strictly unbounded.

(2) limn→∞ σC′(dxT
−n) = ∞.

5. Ergodicity

Due to the theory of Katok-Strelcyn [KS86] we know that our phase space decom-
poses into at most countably many components on which the conditional smooth
measure is ergodic. The strategy to prove ergodicity involves two steps:

(1) Proving local ergodicity (or the Local Ergodic Theorem), which implies
that every ergodic component is a (mod 0) open set.

(2) Proving that the set of sufficiently expanding points (Definition 5.1) is
arcwise connected and of full measure, which implies that any two (mod
0) open ergodic components can be connected with each other, such that
their intersection is of positive µ-measure.

The validity of both points above proves the existence of only one ergodic compo-
nent of full measure.

5.1. Local Ergodicity. We use the Local Ergodic Theorem (LET) of [LW92] and
begin with the definition of a sufficiently expanding point.

Definition 5.1. A point p ∈ M is called sufficient (or sufficiently expanding) if
there exists a neighbourhood U = U(p) and an integer N = N(p) > 0 such that
either

(3) U ∩ S−
N = ∅ and σ(dyT

N) > 3, for all y ∈ T−NU , or
(4) U ∩ S+

N = ∅ and σC′(dyT
−N) > 3, for all y ∈ T NU .

Note, that in the sufficiency definition the requirements U ∩ S−
N = ∅ in (3) and

U ∩ S+
N = ∅ in (4) additionally demand, that the orbit meets no singular manifold

in the first N(p)− 1 iterates.
The LET amounts to showing that around a sufficient point, it is possible to find
an open neighbourhood, which lies (mod 0) in one ergodic component.

Local Ergodic Theorem. Let p ∈ M be a sufficient point and let U = U(p) be
the neighbourhood from Definition 5.1. Suppose conditions (C1) - (C5) below are
satisfied.

(C1) (Regularity of singularity manifolds) : The sets S+
n and S−

n , n ≥ 1, are
regular subsets.4

(C2) (Non− contraction property) : There exists ζ > 0, such that

(a) for every n ≥ 1, x ∈ M \ S+
n , and (δξ, δη) ∈ C(x), we have

‖dxT
n(δξ, δη)‖ ≥ ζ‖(δξ, δη)‖,

4The definition of a regular subset can be found in Definition 6.1.
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(b) for every n ≥ 1, x ∈ M \ S−
n , and (δξ, δη) ∈ C′(x), we have

‖dxT
−n(δξ, δη)‖ ≥ ζ‖(δξ, δη)‖.

(C3) (Continuity of Lagrangian subspaces) : The ordered pair of transversal
Lagrangian subspaces (L1(x), L2(x)) varies continuously in intM.

(C4) (Chernov − Sinai ansatz) : For µS∓-a.e. x ∈ S∓,

lim
n→±∞

Q(dxT
nv) = ±∞,

for every v ∈ C(x) \ {0}, if x ∈ S− and for every v ∈ C′(x) \ {0}, if x ∈ S+.
(C5) (Proper alignment) : There exists M ≥ 0, such that for every x ∈ S+ resp.

S−, we have dxT
−Mv+x resp. dxT

Mv−x belong to C′(T−Mx) resp. C(T Mx),
where v+x resp. v−x are the characteristic lines5 of TxS+ resp. TxS−.

Then, the open neighbourhood U(p) is contained (mod 0) in one ergodic component.

Chernov postulated in [Ch93] a weaker condition to verify the proper alignment
condition (C5). Indeed, the proper alignment condition implies the transversality
condition pointwise [HT20, Lemma 5.2].
Denote by Wu(x) resp. W s(x) the unstable resp. stable manifold at point x.

(C5’) (Transversality): For µS± -a.e. x, the stable manifold W s(x) resp. unstable
manifold Wu(x) is transversal to S− resp. S+.

Note that the transversality condition only has to hold on a set of full measure with
respect to the measure µS± .

5.2. Abundance of sufficiently expanding points. The notion of a sufficiently
expanding point was given in Definition 5.1. Once local ergodicity is established we
deduce that every ergodic component is (mod 0) open. One possibility to obtain a
single ergodic component is

Theorem 5.1 (Abundance of sufficiently expanding points). The set of sufficiently
expanding points has full measure and is arcwise connected.

The abundance of sufficiently expanding points can be proven at once by requiring
the strict unboundedness property (cf. Theorem 2.1), the transversality of S−

m, S+,
for every m ∈ N and the explicit construction of the neighbourhood lying in one
ergodic component from the LET in the beginning of Section 8 in [LW92].

Proof of Theorem 5.1. Recall that a point x ∈ M is sufficient if there exists a
positive integer N = N(x) > 0, such that either (3) or (4) from Definition 5.1
are satisfied. Due to Theorem 2.1, Theorem 4.1 and Remark 4.1, σ(dxT

n) and
σC′(dxT

−n) diverge to infinity for every x ∈ M \ D. Therefore, every orbit which
experiences at most one singular collision satisfies either

(5) σ(dxT
N(x)) > 3, T kU ∩ S+ = ∅, 0 ≤ k ≤ N(x), or

(6) σC′(dxT
−N(x)) > 3, T−kU ∩ S− = ∅, 0 ≤ k ≤ N(x).

5The characteristic line v
±
x is a vector of TxS

± that has the property of annihilating every
other vector w ∈ TxS

± with respect to the symplectic form ω, i.e. ω(v±x , w) = 0, ∀ w ∈ TxS
±. Al-

ternatively stated, it is the ω-orthogonal complement of TxS±. Note, that in symplectic geometry
the ω-orthogonal complement of a codimension one subspace is one dimensional.
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It follows that the only non-sufficient orbits lie in a subset of double singular colli-
sions. The singularities S−

m and S+ are transversal for everym ∈ N, thus, the points
of double singular collisions form a set of (at least) codimension two. Hence, there
is an arcwise connected set of measure one such that the least expansion coefficient
is larger than three. For the last part, the proof follows the beginning of Section 8
in [LW92]:
Without loss of generality assume that σC′(dxT

N) > 3. We can choose a small
enough neighbourhood U around the point x such that T N : T−NU → U is a dif-
feomorphism. This implies that U ∩ S−

N = ∅ and T−NU ∩ S+
N = ∅. Further, the

functional y 7→ σ(dyT
N) is continuous on U and by making U smaller, if necessary,

we obtain σ(dyT
N) > 3, for every y ∈ T−NU . �

6. Regularity of singularity sets

We give the definition of a regular set with the dimensionality adjusted to the
system of falling balls. The LET requires that S±

n are regular sets for every n ∈ N.

Definition 6.1. A compact subset X ⊂ M is called regular, if

(1) X =
⋃n

i=1 Ii, where Ii are compact subsets, with Ii = int(Ii),
(2) dim Ii = 2N − 3,
(3) Ii ∩ Ij ⊂ ∂Ii ∪ ∂Ij , i, j = 1, . . . , n,
(4) ∂Ii =

⋃m

j=1 Hi,j , where dimHi,j = 2N − 4 and Hi,j is compact.

For the proof of the regularity of singular manifolds we will use the following slightly
weaker version of [LW92, Lemma 7.7].

Lemma 6.1. Assume the validity of

(R1) T : M\ S+ → M\ S− is a diffeomorphism,
(R2) the transversality of singularity manifolds S−

m, S+ for every m ∈ N.
(R3) the invariance of the cone field {C(x) : x ∈ M},

then S+
n , S−

n , n ≥ 1, are regular subsets.

Conditions (R1), (R3) have already been verified in Sections 3, 4. In the original
version of [LW92, Lemma 7.7], the transversality condition (R2) is replaced by the
proper alignment condition (C5). In the proof of [LW92, Lemma 7.7], condition
(C5) is used to establish the (R2). Therefore, the proof of Lemma 6.1 can be carried
out in exactly the same way as the proof of [LW92, Lemma 7.7].

7. Uniform lower bound of velocity differences

The investigation regarding a uniform lower bound of velocity differences v−i −v−i+1,
for any i ∈ {1, . . . , N−1}, is of main interest for the strict unboundedness property.
Denote by (i, i+ 1) the collision between ball i and ball i+ 1, i.e. when qi = qi+1.
Let x = x(t) ∈ Mi+1, i ∈ {1, . . .N − 1}. The velocity difference v−i (t) − v−i+1(t) is
non-negative and due to the collision laws (3.4), changes sign after the collision, i.e.

0 < v−i (t)− v−i+1(t) = −(v+i (t)− v+i+1(t)).(7.1)

The Hamiltonian equations imply, that during free flight this quantity remains
preserved (3.2). Using (3.2), (3.4), we see that the term v−i (t) − v−i+1(t) is only
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affected by a (i− 1, i) resp. (i+1, i+2) collision when being expanded backwards,
i.e.

0 < v−i (t)− v−i+1(t) = (1 + γi−1)(v
−
i−1(tc)− v−i (tc))

+ (v−i (tc)− v−i+1(tc)), resp.

0 < v−i (t)− v−i+1(t) = (1− γi+1)(v
−
i+1(tc)− v−i+2(tc))

+ (v−i (tc)− v−i+1(tc)),

(7.2)

where tc < t is the collision time of the (i− 1, i) resp. (i+ 1, i+ 2) collision. Since
we stopped our expansion right before a (i − 1, i) resp. (i + 1, i + 2) collision, we
have

v−i−1(tc)− v−i (tc) > 0, v−i+1(tc)− v−i+2(tc) > 0.(7.3)

Formula (7.2) can be generalized in the following way. Let t1 < t2 be collision times
of two successful (i, i + 1) collisions and m,n ∈ N. Assume that in between those
two (i, i+ 1) collisions we have m (i− 1, i) collisions and n (i+ 1, i+ 2) collisions,
with collision times r1, . . . , rm and u1, . . . un. Expanding only the (i, i+1) velocity
difference backwards without changing the appearing (i − 1, i) and (i + 1, i + 2)
velocity differences, we obtain for i ≥ 2

0 < v−i (t2)− v−i+1(t2)

= (1 + γi−1)
∑m

j=1

(

v−i−1(rj)− v−i (rj)
)

+ (1− γi+1)
∑n

l=1

(

v−i+1(ul)− v−i+2(ul)
)

+ v+i (t1)− v+i+1(t1).

(7.4)

In between two (1, 2) collisions, we assume to have one floor collision, m full returns
to the floor of the lowest ball and n (2, 3) collisions, again with collision times
r1, . . . , rm and u1, . . . un. Expanding (1, 2) at t2 backwards yields

0 < v−1 (t2)− v−2 (t2)

= 2
∑m

j=1 2jv
+
1 (rj)

+ (1− γ2)
∑n

l=1

(

v−2 (ul)− v−3 (ul)
)

+ 2
√

(v+1 (t1))
2 + 2q1(t1) + v+1 (t1)− v+2 (t1).

(7.5)

If there is at least one floor collision between two (1, 2) collisions, then the square

root term 2
√

(v+1 (t1))
2 + 2q1(t1) appears in (7.5). The latter is part of the time

the lowest ball needs to fall to the floor after a (1, 2) collision.6 7

Remember, that

v+1 (rj) > 0, ∀ j ∈ {1, . . . ,m},(7.6)

since this is the velocity of the first ball right after taking off from the floor.
At the heart of this work lies the following

6The exact time the lowest ball needs to fall to the floor is v
+

1
(t1) +

√

(v+
1
(t1))2 + 2q1(t1).

7Note, that we can have a floor collision between two (1, 2) collision without a full return of
the lowest ball to the floor, i.e. the square root term is present in (7.5) but m = 0 in the first sum.
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Theorem 7.1. For every energy value c > 0, there exists a constant C = C(c) > 0,
such that for every x ∈ M\D, and every i ∈ {1, . . . , N−1}, there exists a divergent
sequence of collision times (tn)n∈N = (tn(x, i))n∈N : v−i (tn)− v−i+1(tn) ≥ C.

Outline of the proof : We start describing a certain collision pattern. Since every
collision happens infinitely often, this collision pattern can be found (non-uniquely)
infinitely often in every orbit. The time interval of this pattern in the proof below
is given by [t−(1,2), t(1,2)]. At t−(1,2), t(1,2) we have a (1, 2) collision and somewhere
in between is at least one (0, 1) collision.
We start investigating the implications of letting every pre-collisional velocity dif-
ference of (1, 2) collisions in [t−(1,2), t(1,2)] decrease. Using the above formulas (7.2)
- (7.5) this will amount to having every ball position and every absolute value of
each velocity decreasing at time t−(1,2).
Therefore, by choosing every (1, 2) velocity difference in [t−(1,2), t(1,2)] sufficiently
small, this results in a contradiction since the energy of this orbit would be smaller
than the energy of the system c = H(q, p). Hence, the velocity difference v−1 − v−2
of at least one (1, 2) collision in [t−(1,2), t(1,2)] is bounded from below.
Repeatedly using the above formulas, we obtain lower bounds for at least one
velocity difference v−i − v−i+1, for every i ∈ {1, . . . , N − 1}. Since this collision
pattern appears infinitely often along every orbit we can extend these considerations
obtaining the result from Theorem 7.1.

Proof. Pick an arbitrary (1, 2) collision and mark the time as t−(1,2). Then, pick
the next (2, 3) collision in the future and mark the time as t−(2,3). Continuing
this procedure for the next (3, 4), . . . (N − 1, N) collisions, gives us collision times
t−(3,4), . . . , t−(N−1,N). After that we pick the first (0, 1) collision and mark its
collision time with t0. We now reverse the order of collisions after t0 and mark
the future collision times of the first consecutively appearing (N − 1, N), . . . , (1, 2)
collisions as t(N−1,N), . . . , t(1,2). Note, that in the intervals [t−(i,i+1), t−(i+1,i+2)],
i ∈ {1, . . . , N − 2}, exactly one (i + 1, i + 2) collision occurs, while in the interval
[t0, t(N−1,N)] resp. [t(i,i+1), t(i−1,i)], i ∈ {2, . . . , N−1}, exactly one (N −1, N) resp.
(i− 1, i) collision occurs, but there is no restriction on other collisions happening.
The collision times of each (i, i + 1) collision, including floor collisions, induce a
partition Pi of the time interval [t−(1,2), t(1,2)]: For every i ∈ {2, . . .N − 1}, there
exists a positive integer n = n(i) ≥ 2, such that the collision times of all the
(i, i+ 1) collisions in the interval [t−(i,i+1), t(i,i+1)] are given by si,1, . . . , si,n, with
si,1 := t−(i,i+1) and si,n := t(i,i+1). For i = 1, n = n(1) ≥ 0, and by default
s1,0 = t−(1,2), s1,n+1 = t(1,2). For i = 0, s0,1, . . . , s0,n, n = n(0) ≥ 1, are simply the
collision times of the lowest ball with the floor in the open interval (t−(1,2), t(1,2)).
We augment the collision time sequences by a first element si,0 := t−(1,2) and a

last element si,n+1 := t(1,2), which yields the partitions Pi =
⋃n

k=0[si,k, si,k+1], for
every i ∈ {0, . . . , N − 1}.
We will first observe how decreasing the (1, 2) velocity differences

0 < v−1 (s1,k)− v−2 (s1,k), ∀ k ∈ {0, . . . , n(1) + 1},(7.7)

decreases the positions and absolute values of velocities in the interval [t−(1,2), t(1,2)].
For the latter to take effect, we will first apply (7.5) to quantify how many (2, 3)
collisions and floor returns of the lowest ball are in between two successful (1, 2)
collisions. We introduce, for i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , N − 1}, k ∈ {0, . . . , n},
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where n = n(j), the functional

ci : Pj → N

[sj,k, sj,k+1] 7→ ci([sj,k, sj,k+1]) =: ci,j,k.

The term ci,j,k counts how many (i, i+1) collisions appear in the interval [sj,k, sj,k+1]
of the partition Pj , i.e. in between two successful (j, j + 1) collisions happening at
time sj,k and sj,k+1. Applying this notation, we expand the velocity differences in
(7.7) backwards and according to (7.5) obtain for every k ∈ {1, . . . , n(1) + 1}

0 ≤ v−1 (s1,k)− v−2 (s1,k)

= 2
∑c0,1,k

j=1 2jv+1 (s0,g0(j))

+ (1− γ2)
∑c2,1,k

l=1

(

v−2 (s2,g2(l))− v−3 (s2,g2(l))
)

+ 2
√

(v+1 (s1,k−1))2 + 2q1(s1,k−1) + v+1 (s1,k−1)− v+2 (s1,k−1),

(7.8)

where the functions g0(j) ∈ {1, . . . , n(0)} and g2(l) ∈ {1, . . . , n(2)} enumerate the
collision times subindices. Using (7.8) together with (7.3), (7.6) and our assump-
tion, that each (1, 2) velocity difference in (7.7) decreases, implies that the quantities

v−2 (s2,k)− v−3 (s2,k), ∀ k ∈ {1, . . . , n(2)},(7.9a)

v+1 (s0,k), ∀ k ∈ {1, . . . , n(0)},(7.9b)

v+1 (s1,k−1), q1(s1,k−1), ∀ k ∈ {1, . . . , n(1) + 1},(7.9c)

decrease as well. We repeat step (7.8), by expanding the remaining velocity differ-
ences v−i (si,k) − v−i+1(si,k), for all i ∈ {2, . . . , N − 1}, k ∈ {2, . . . , n(i)} backwards.
Using again the assumption that every (1, 2) velocity difference in (7.7) decreases,
its implication on (7.9a) and (7.3), (7.4), leads to the decrease of

v−i (si,k)− v−i+1(si,k), ∀ i ∈ {2, . . . , N − 1}, k ∈ {2, . . . , n(i)}.(7.10)

Every pre-collisional velocity difference v−i − v−i+1 occurring in [t−(1,2), si,1) resp.
(si,n, t(1,2)] can be expanded forward resp. backward and by using (7.10) will de-
crease in the same way as the velocity differences before.
If the next ball to ball collision is (i, i+ 1), i ∈ {1, . . . , N − 1}, the collision time is
given by

qi+1 − qi
vi − vi+1

.

If the denominator vi−vi+1 decreases, qi+1, qi, has to decrease as well, otherwise the
collision time would be unbounded, which would result in arbitrarily large velocities
and contradict the finite energy assumption. We conclude, that if every (1, 2)
velocity difference in (7.7) decreases, then every ball to ball pre-collisional velocity
difference, floor collision velocity and position, at time t−(1,2), decrease to a positive
value, which can be made as small as needed. Due to the continuity of H(q, p),
we deduce that if every (1, 2) velocity difference in (7.7) becomes sufficiently small,
our orbit would break through the constant energy surface. Hence, there exists a
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constant C1 > 0 and at least one k ∈ {0, . . . , n(1) + 1}, such that

v−1 (s1,k)− v−2 (s1,k) ≥ C1.(7.11)

In order to obtain the existence of a constant C > 0 and at least one (i, i + 1)
collision, such that v−i − v−i+1 ≥ C, for all i ∈ {1, . . .N − 1}, we first pick the
previous resp. next (2, 3) collision before resp. after the (1, 2) collision in (7.11).
Let the past resp. future (2, 3) collision happen at tp resp. tf . Using (7.4) we
expand v−2 (tf )− v−3 (tf ) backwards and obtain

0 < v−2 (tf )− v−3 (tf )

= (1 + γ1)
∑m

j=1

(

v−1 (rj)− v−2 (rj)
)

+ (1− γ3)
∑n

l=1

(

v−3 (ul)− v−4 (ul)
)

+ v+2 (tp)− v+3 (tp),

where r1, . . . , rm resp. u1, . . . , un are the collision times of the (1, 2) resp. (3, 4)
collisions in between the two (2, 3) collisions occurring at times tp, tf . Note, that
the reason we denoted these collision times as rj resp. ul (and not s1,j resp. s3,l) is
because one of the (2, 3) collisions may lie outside of [t−(1,2), t(1,2)]. This depends
on the position of the (1, 2) collision at time s1,k from (7.11).
Assuming that both (2, 3) velocity differences in the past and future are arbitrarily
small yields a contradiction since v−1 (s1,k) − v−2 (s1,k) ≥ C1. Hence, there exists a
constant C2 > 0, such that either v−2 (tf ) − v−3 (tf ) ≥ C2 or v−2 (tp) − v−3 (tp) ≥ C2.
Successfully continuing this procedure we find positive constants C1, . . . , CN−1 > 0
and at least one (i, i+ 1) collision, for all i ∈ {1, . . . , N − 1}, such that

v−i − v−i+1 ≥ min{C1, . . . , CN−1}.(7.12)

It follows from the way we obtained (7.12), that the collision times of all (i, i + 1)
collisions satisfying (7.12) do not necessarily belong to [t−(1,2), t(1,2)].
The above steps can be repeated, thus, creating infinitely many compact intervals
with a sequence of constant positive lower bounds for at least one v−1 − v−2 per
compact interval. This holds along every orbit. Those lower bounds have a global
minimum, i.e.

min
x∈M

min
n∈N

v−1 (tn(x, 1)) − v−2 (tn(x, 1))

exists. Otherwise the velocities in (7.10) would decrease to a value small enough
causing energy loss, hence, a contradiction. For this global lower bound we can
repeat the steps from the last paragraph to obtain a global lower bound, say C > 0,
for every pre-collisional velocity difference. �

8. Strict unboundedness

Liverani and Wojtkowski formulated in [LW92, Theorem 6.8] equivalent conditions
to the strict unboundedness property, that we state again here.



19

Theorem 8.1. For every x ∈ M, the sequence (dTnxT )n∈N is strictly unbounded
if and only if

The sequence (dTnxT )n∈N is unbounded.(8.1a)

There exist k1, k2 ∈ N, such that Q(dxT
k1(δξ, 0)) > 0(8.1b)

and Q(dxT
k2(0, δη)) > 0, for all (δξ, 0) ∈ L1, (0, δη) ∈ L2.

Point (8.1b) is equivalent to dxT being eventually strictly Q-monotone, for every
x ∈ M [LW92]. We will prove strict unboundedness for every x ∈ M\D and split
its proof into two parts: First, we prove that (8.1a) is equivalent to point (8.1b)
and, second, we establish the validity of point (8.1a).

8.1. Prerequisites. It is immanent for our goal to investigate how the Q-form
behaves when undergoing a floor or ball to ball collision. Using the collision maps
(4.6) and the definition of the Q-form (4.5), we obtain for any i ∈ {1, . . . , N − 1}

Q(dxΦ0,1(δξ, δη)) = Q(δξ, δη) + βδξ21 ,(8.2a)

Q(dxΦi,i+1(δξ, δη)) = Q(δξ, δη) + αiδη
2
i ,(8.2b)

where the coefficients αi, β were defined in (4.7).
Let (tn)n∈N = (tn(x))n∈N be the sequence of future collision times starting at x.
For n ∈ N, let bx,n count the ball to ball collisions, starting from x up to the n-th
iterate T nx and let, similarly, fx,n count the (0, 1) collisions starting from x up to
the n-th iterate T nx.
Using estimates (8.2a), (8.2b), we can expand the Q-form of the n-th iterate back-
wards, i.e.

Q(dxT
n(δξ, δη)) = Q(δξ, δη) +

∑bx,n

k=1 αp1(k)(tp2(k))δη
2
p1(k)

(tp2(k))

+
∑fx,n

m=1 β(tp2(m))δξ
2
1(tp2(m)),

(8.3)

where p1 : N → {1, . . . , N} gives the subindex component of the vector element
and p2 : N → N gives the collision time index.
On R

N−1, we define the norm

‖δη‖2CW =

N−2
∑

i=1

(δηi+1 − δηi)
2

mi

.

It was introduced by Cheng and Wojtkowski in [ChW91, (11)]. It is invariant with
respect to the submatrices Di, D

T
i of the ball to ball collision map derivatives given

in (4.6), which implies that in a ball to ball collision ‖ · ‖CW is preserved.

8.2. Equivalence. This subsection contains the proof of the equivalence of points
(8.1a), (8.1b). Recursively define (δξn, δηn) = dT (δξn−1, δηn−1), with (δξ0, δη0) =
(δξ, δη) and xn = T nx. We recall some results from [S96], which we translate from
(δh, δv) to (δξ, δη)-coordinates. Consider the neutral space

Nx = {(δξ, 0) ∈ R
N−1 × R

N−1 : Q(dxT
n(δξ, 0)) = 0, ∀ n ≥ 0}.

This space contains all the vectors of RN−1×{~0}, for whichQ remains zero along the
whole orbit starting at x. Let t(0,1)+k = t(0,1)+k(x), k ∈ N, denote the collision time
of the (k + 1)-st floor collision time in the future. It was explained in [W90a, S96],
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that (δξ, δη) ∈ Nx if and only if δξ1(t(0,1)+k) = 0, for every k ∈ N. In [S96,
Sublemma 3.8], Simányi introduced the norm

‖δξ‖2S = 〈ATDAδξ, δξ〉,

where D = diag(m1, . . . ,mN ) is the diagonal matrix with masses as diagonal ele-
ments and A is the matrix introduced in (4.3). This norm is point independent and
time invariant for every vector of the neutral space. Thus, for every (δξn, 0) ∈ Nxn

,
there exists a constant positive value d = d

(

(δξn, 0)
)

∈ R+, such that

‖δξn‖
2
S = d, ∀ n ≥ 0.(8.4)

With this information we can prove the equivalence of the unboundedness condition
(8.1a) and the eventual strict Q-monotonicity (8.1b).

Theorem 8.2. The sequence (dTnxT )n∈N is unbounded for x ∈ M if and only if
the map dxT is eventually strictly Q-monotone for x ∈ M.

Proof. If dxT is eventually strictly Q-monotone then Nx = {∅} and therefore there
exists a subsequence (kn)n∈N, such that

δξ1(t(0,1)+kn
) 6= 0, ∀ n ∈ N.(8.5)

Assume that (dTnxT )n∈N is not unbounded, i.e. there exists x ∈ M, (δξ, δη) ∈ C(x)
and E > 0, such that

lim
n→∞

Q(dxT
n(δξ, δη)) = E.(8.6)

Note, that the limit E must be positive, since (δξ, δη) lies in the interior of the cone
and the Q-form is increasing on every orbit.
When the orbit experiences a (0, 1) collision the value of the Q-form changes ac-
cording to (8.2a). If vmax > 0 is the maximal possible velocity of a ball, then β has
a uniform lower bound, i.e.,

β = −2/m1v
−
1 > 2/m1vmax =: βmin.(8.7)

UsingQ-monotonicity, in combination with estimate (8.2a) and (8.7), we can modify
formula (8.3) in order to obtain the estimate

Q(dxT
n(δξ, δη)) > Q(δξ, δη) + βmin

fx,n
∑

k=1

δξ21(t(0,1)+k).(8.8)

We follow from (8.6) and (8.8), that the limit

lim
n→∞

fx,n
∑

k=1

δξ21(t(0,1)+k)

exists, which necessarily implies that

lim
k→∞

δξ1(t(0,1)+k) = 0.

But this contradicts (8.5) and therefore (dTnxT )n∈N is unbounded.
Assume now that (dTnxT )n∈N is unbounded along an orbit where dxT is not eventu-
ally strictly Q-monotone, i.e. Nx 6= {∅}. Every vector in v ∈ C(x) can be uniquely
decomposed into v = v1 + v2, where vi ∈ Li, i = 1, 2. Consider the projection

π1 : C(x) → L1,

v 7→ π1(v) = v1.
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Due to our assumption and since Nx ⊆ L1, we have π1(v) ∈ Nx. Using the Cauchy-
Schwarz inequality and (8.4), we estimate

Q(dxT
n(δξ, δη)) = 〈δξn, δηn〉 ≤ ‖δξn‖2‖δηn‖2

≤ C1C2‖δξn‖S‖δηn‖CW = C1C2d‖δηn‖CW ,

where C1, C2 are constants arising from the equivalence of norms. Letting n → ∞
in the previous inequality and using the validity of unboundedness yields

lim
n→∞

‖δηn‖CW = ∞.

In a ball to ball collision the value of the norm ‖ · ‖CW does not change. Thus,
‖δηn‖CW can only grow in a floor collision. From (4.6), we obtain

δξ+i = δξ−i , δη+j = δη−j , δη+1 = βδξ−1 + δη−1 ,(8.9)

where i ∈ {1, . . . , N}, j ∈ {2, . . . , N}. Therefore, ‖δηn‖CW increases if and only
if δξ−1 6= 0. This contradicts our assumption Nx 6= {∅}, which implies that dxT is
eventually strictly Q-monotone. �

8.3. Unboundedness. For later estimates we want to combine the subsequences
obtained from Theorem 7.1 into one.

Definition 8.1. For every x ∈ M \ D, we define the subsequence (sn)n∈N =
(sn(x))n∈N as the union of subsequences (tn(x, i))n∈N over i ∈ {1, . . . , N}, where
the elements are numbered consecutively with respect to the order of occurrence in
time.

To establish unboundedness, we need to prove property (8.1a) of Theorem 8.1,
namely,

lim
n→∞

Q(dxT
n(δξ, δη)) = ∞, ∀ x ∈ M, ∀ x ∈ C(x).(8.10)

We remind the reader, that the subtle difference to strict unboundedness is that
the divergence in (8.10) needs to hold only for every vector from the interior of the
cone.
At collision times (tn(x, i))n∈N, obtained from Theorem 7.1, the coefficient αi in
(8.2b), has the uniform lower bound

Λ := min
{1,...,N−1}

2mimi+1(mi −mi+1)

(mi +mi+1)2
C.(8.11)

We use the lower bound (8.11) of αi along the subsequence (tn(x, i))n∈N together
with Q-monotonicity and subsequence (sn(x))n∈N defined in Definition 8.1, to mod-
ify (8.8) into the estimate

Q(dxT
n(δξ, δη)) > Q(δξ, δη) + Λ

bx,n
∑

k=1

δη2p1(k)
(sk)(8.12)

where p1 : N → {1, . . . , N} gives the subindex component of the vector element.

Theorem 8.3. The sequence (dTnxT )n∈N is unbounded for every x ∈ M \D.

Proof. Assume on the contrary that (8.10) is violated, i.e. there exists E > 0,
x ∈ M, (δξ, δη) ∈ C(x), such that

lim
n→∞

Q(dxT
n(δξ, δη)) = E.(8.13)
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We deduce from (8.12) and (8.13), that the limit

lim
n→∞

bx,n
∑

k=1

δη2p1(k)
(sk)

exists, which necessarily implies that

lim
n→∞

δηp1(n)(sn) = 0.(8.14)

Since every collision happens infinitely often, every component of the δη-part of the
vector (δξ, δη) converges to zero along the subsequence (tn(x, i))n∈N, i.e.

lim
n→∞

δηi(tn(x, i)) = 0, ∀ i ∈ {1, . . . , N}.(8.15)

It follows from our assumption and Theorem 8.2 that along the orbit used in (8.13),
dxT is not eventually strictly Q-monotone, i.e. δξ1(t(0,1)+k) = 0, for every k ∈ N.
Point (8.9) and the invariance of ‖ · ‖CW in ball to ball collisions imply that the
sequence ‖δηn‖CW remains constant, i.e. ‖δηn‖CW = ‖δη‖CW , for every n ∈ N.
Since (δξ, δη) lies in the interior of the cone, it follows that ‖δη‖CW > 0. But this
contradicts (8.15), thus, (dTnxT )n∈N is unbounded for every x ∈ M \D. �

8.4. Chernov-Sinai ansatz. For the Chernov-Sinai ansatz to be valid, we need
that the orbit for µS± -a.e. x ∈ S± emerging from the sinuglarity manifold is
strictly unbounded. Due to the strict unboundedness property (cf. Theorem 2.1)
being valid for every x ∈ M \D this certainly holds.

9. Transversality

We know [BBNV12, HT19], that arbitrarily many (0, 1) collisions can occur in
finite time. This is why we prefer to formulate the subsequent results regarding
the transversality condition (C5’) in terms of the flow, because we rather deal with
finite times than arbitrarily many derivative map compositions.
In [LW92], it was verified that every point of the floor collision singularity manifolds
is properly aligned and, therefore, the transversality condition holds for these sin-
gularity manifolds. It remains to prove the latter for the triple collision singularity
manifolds only.
We will restrict the discussion and proof of the transversality condition to triple
singularity manifolds S− only since the former is completely equivalent for S+.
The proof of the transversality condition relies on a compactness argument which
utilizes

(K1) the strict unboundedness property (cf. Theorem 2.1), for every m ∈ N.
(K2) the transversality of singularity manifolds S−, S+

m

(K3) the continuity of x 7→ Q(dxφ
tv−x ) for every t ≥ 0, x ∈ S− \ D.

The characteristic line v−x in (q, p)-coordinates for the triple collision singularity is
given by

v−x =
{

(δq, δp) ∈ TxS
− : δq1 = . . . = δqN = 0,

δpi = δpi+2

(

(
pi+2

mi+2
−

pi
mi

)(
pi+1

mi+1
−

pi
mi

)−1 − 1
)

,

δpi+1 = δpi+2(
pi+2

mi+2
−

pi
mi

)(
pi+1

mi+1
−

pi
mi

)−1,

δpj = 0, j /∈ {i, i+ 1, i+ 2}
}

.



23

Due to the velocity restriction in M, (q, p) 7→ v−(q,p) is a continuous function and

this remains true when switching to (h, v) or (ξ, η)-coordinates via the symplecto-
morphisms given in (4.2), (4.3).
Our strategy for the proof of (C5’), is to prove the proper alignment condition on a
compact set K of full µS− -measure, which then implies the transversality condition.

Lemma 9.1. The transversality condition (C5’) holds.

Proof. As a result of (K2), the regularity of singularity manifolds (C1) holds (cf.
Lemma 6.1), and therefore, non-double singular points S− \ D form an open set of
full µS−-measure. On this set, the derivative dφt is defined for every t ≥ 0. Since
µS− is a regular measure, for every ε > 0, there exists a compact set K = K(ε) ⊂
S− \ D, such that

µS−(K) ≥ 1− ε.(9.1)

Consider the set

A = {x ∈ K : Q(v−x ) ≥ 0}

of all properly aligned points in K. This set is closed and due to A ⊂ K compact.
Let ∂B‖·‖(0, 1) be the compact ball of unit radius, with respect to the norm ‖ · ‖,
in tangent space. Since Q is homogeneous (of degree two), we can restrict, without
loss of generality, the characteristic line v−x to the compact unit circle, i.e.

v−x ∈ ∂B‖·‖(~0, 1), ∀ x ∈ K.

Due to the strict unboundedness property (K1) and the compactness of A, C(x) ∩
∂B‖·‖(~0, 1), we can find for every constant E0 > 0, a time T0 = T0(E0) > 0, such

that for all x ∈ A, v−x ∈ C(x) ∩ ∂B‖·‖(~0, 1), we have Q(dxφ
T0v−x ) ≥ E0. Otherwise

this would contradict the strict unboundedness property (K1). From the continuity
of x 7→ Q(dxφ

T0v−x ) (K3), we obtain the existence of a constant E1 ∈ (0, E0] and
a set N1 = {x ∈ K : Q(dxφ

T0v−x ) ≥ E1}, such that µS−(N1 \ A) > 0. Due to
strict unboundedness (K1), we can find a uniform time T1 ≥ T0 on the compact
set N1, such that N1 = {x ∈ K : Q(dxφ

T1v−x ) ≥ E0}. Now we repeat the above
argument beginning with N1 in place of A. Since K is compact, we obtain finitely
many constants T0 ≤ . . . ≤ TL and sets N1 ⊂ . . . ⊂ NL, such that NL = K, where
NL = {x ∈ K : Q(dxφ

TLv−x ) ≥ E0}, i.e. every point in K becomes properly aligned
after TL time.
For the sake of convenience of the reader we formulate the proof details of the last
statement explicitly: Assume on the contrary, that there exists a point y ∈ K, such
that Q(dyφ

tv−y ) < 0, for every t ≥ 0. Due to the continuity of y 7→ Q(dyφ
tv−y )

(K3), there exists an open neighbourhood V around y satisfying V = K \NL and
Q(dzφ

tv−z ) < 0, for every t ≥ 0, z ∈ V . Using the definition of NL and continuity
(K3) again, we arrive at the contradiction NL ∩ V 6= ∅.
Since the proper alignment condition implies Chernov’s transversality condition
pointwise and due to (9.1), we derive Chernov’s transversality condition for a set
K of full µS−-measure. �
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[BBNV12] Bálint, P., Borbély, G., Némedy Varga, A.; Statistical properties of the system of two

falling balls, Chaos 22, 026104 (2012)



24 MICHAEL HOFBAUER-TSIFLAKOS

[BChSzT02] Bálint, P., Chernov, N., Szász, D., Tóth, I.P.; Multi-dimensional semi-dispersing
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