TOPOLOGY NOTES SUMMER, 2006

JOHN C. MAYER

3. Components

We will define three relations on a space, show that they are each equivalence relations, and how they are related. This will allow us to define several useful subsets of a space that exploit its degree of "connectedness." Recall that an equivalence relation on a set X satisfies the three properties of *reflevivity*, symmetry, and transitivity. (See Munkries Sections 3 and 25.)

Definition 3.1. Let X be a space. Define the following relations on X.

- (1) $x \sim y$ iff there is no separation $X = A \cup B$ with $x \in A$ and $y \in B$.
- (2) $x \simeq y$ iff there is a connected subset $C \subset X$ with $x, y \in C$.
- (3) $x \approx y$ iff there is a path $f: [a, b] \to X$ with f(a) = x and f(b) = y.

Proposition 3.2. Each of \sim, \simeq , and \approx is an equivalence relation on X. \Box

Proposition 3.3. $x \approx y \implies x \simeq y \implies x \sim y$. \Box

Example 3.4. No implication in Proposition 3.3 is reversible.

Assignment 2, Part 2. Hard: 8: unboxed Example 3.4 above.

Assignment 2, Parts 1 and 2, is due Friday, June 16.

Definition 3.5. For an equivalence relation \sim on X, we use $[x]_{\sim}$ to denote the \sim -equivalence class of $x \in X$, defined by

$$[x]_{\sim} = \{ y \in X \mid x \sim y \}$$

(Similarly, define $[x]_{\simeq}$ and $[x]_{\approx}$ for the relations \simeq and \approx , respectively.)

You should recall from previous work that equivalence classes are pairwise disjoint and their union is the whole set X; that is, they form a *partition* of X. In particular, if two equivalence classes meet, then they must be equal.

Definition 3.6. Let $x \in X$. We define the following special terminology for equivalence classes of the relations defined above in Definition 3.1.

- (1) \sim -equivalence classes are called *quasicomponents*.
- (2) \simeq -equivalence classes are called *components*.

(3) \approx -equivalence classes are called *path components*.

Proposition 3.7. Let X be a space. The following hold.

Key words and phrases. topology.

Date: June 13, 2006.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 54F20.

J. C. MAYER

- (1) Each subset $Q \subset X$ which cannot be separated by a separation of X is contained in a quasicomponent of X.
- (2) Each connected subset $C \subset X$ is contained in a component of X.
- (3) Each path connected subset $P \subset X$ is contained in a path component of X.

Proposition 3.8. Let X be a space. The following hold.

- (1) Each component of X is connected, and is maximal with respect to that property.
- (2) Each path component of X is path connected, and is maximal with respect to that property.

Proposition 3.9. Let X be a space. The following hold.

- (1) Each quasicomponent of X is a union of components of X.
- (2) Each component of X is a union of path components of X.

Proposition 3.10. Let X be a space. Quasicomponents and components are closed in X. Path components need not be closed in X. \Box

Definition 3.11. A space X is *locally connected at* $x \in X$ iff for every neighborhood U of x, there is a connected neighborhood V of x with $V \subset U$. If X is locally connected at every point, we say X is *locally connected*. A space X is *locally path connected at* $x \in X$ iff for every neighborhood U of x, there is a path connected neighborhood V of x with $V \subset U$. If X is locally path connected at every point, we say X is *locally path connected* at every neighborhood U of x, there is a path connected neighborhood V of x with $V \subset U$. If X is locally path connected at every point, we say X is *locally path connected*.

Theorem 3.12. A space is locally connected iff for every open set U in X, each component of U is open in X. \Box

Theorem 3.13. A space is locally path connected iff for every open set U in X, each path component of U is open in X.

Theorem 3.14. If a space X is locally path connected, then the components and the path components of X are the same. \Box

Theorem 3.15. If a space X is locally connected, then the components and the quasicomponents of X are the same.

Assignment 3, Part 1. Easy: 1–4: unboxed items above.

Hard: 5–7: page 162: 4, 8, 10c.

Assignment 3 may be added to on Thursday, June 15, and is due Friday, June 23.

E-mail address, John C. Mayer: mayer@math.uab.edu

(John C. Mayer) Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170 $\,$