TOPOLOGY NOTES SUMMER, 2006

JOHN C. MAYER

1. Connected Spaces

One of the big ideas in topology, motivated by its usefulness in analysis (think "intermediate value theorem"), is the idea of *connectedness*. We are trying to capture the idea that X is/is not broken into "pieces." See Munkries, Section 23.

Definition 1.1. Let X be a space. We say that X is *separated* iff there exist nonempty open sets U and V in X such that $X = U \cup V$ and $U \cap V = \emptyset$. If there are such open sets, then we call $X = U \cup V$ a *separation* of X. We say X is *connected* if there does not exist a separation of X.

Exercise 1.2. On $X = \{0, 1, 2\}$, (1) give an example of a nontrivial topology such that X is connected, and (2) give an example such that X is not connected.

Proposition 1.3. Let X be a space. Then X is connected iff the only subsets of X that are both open and closed are \emptyset and X.

Problem 1.4. Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on the set X. Suppose $\mathcal{T}_1 \subset \mathcal{T}_2$. What does connectedness of X in one topology imply about connectedness of X in the other topology?

We also want to be able to talk about *connected subsets* of a space.

Definition 1.5. Let X be a space and $Y \subset X$. We say that Y is a *connected subset* of X iff Y is connected in the subspace topology.

Proposition 1.6. Let X be a space and $Y \subset X$. Then Y is separated iff there exist nonempty sets A and B in Y such that $Y = A \cup B$, $A \cap B = \emptyset$, and neither A nor B contains a limit point of the other. \Box

Example 1.7. Give \mathbb{N} the natural order and the order topology. Show that \mathbb{N} is not connected. What are the connected subsets of \mathbb{N} ?

Problem 1.8. *Give* \mathbb{N} *the cofinite topology. Is* \mathbb{N} *connected in the cofinite topology?*

Proposition 1.9. Let $X = U \cup V$ be a separation of X. Suppose Y is a connected subset of X. Then either $Y \subset U$ or $Y \subset V$. \Box

Proposition 1.10. Let X be a space and C a collection of connected subsets of X with the property that $\exists x \in X$ such that $\forall C \in C, x \in C$. Then $\cup C$ is connected. \Box

Proposition 1.11. Let X be a space and C a connected subset of X. Suppose $C \subset D \subset \overline{C}$. Then D is connected. \Box

Date: June 5, 2006.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 54F20.

Key words and phrases. topology.

J. C. MAYER

Theorem 1.12. The continuous image of a connected set is connected. \Box

Theorem 1.13. The finite Cartesian product of connected spaces is connected. \Box

Example 1.14. \mathbb{R}^{ω} is connected in the product toplogy, but not connected in the box topology. \Box

Assignment 1. This assignment is due Friday, June 9.

Easy - 1–5: The "unboxed" items above.

Harder - 6-9: Page 152: 2, 6, 7, 11

E-mail address, John C. Mayer: mayer@math.uab.edu

(John C. Mayer) Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170