Counting 2

Ordered and Unordered Arrangements

Sometimes when we count, we are interested in counting the objects in a particular order, and at other times, order does not matter.

• In a Global City election, there are five candidates. If there are no ties, in how many ways can the first three places be filled?

 \circ In answering this question, it is important who is 1st, 2nd, 3rd.

• A *Kaleidoscope* reporter comes to visit a 25 student class to interview 4 students. In how many ways can the 4 students be chosen?

o In this case, it doesn't matter who is interviewed first.

Ordered arrangements are called *permutations*. Unordered arrangements are called *combinations*.

How many ordered arrangements (permutations) are there of the letters **UAB**?

By the multiplication principle, we have

_____ X _____ = _____

permutations.

Counting Ordered Arrangements

The number of ordered arrangements, or *permutations*, of n objects taking all n at a time, is

 $n(n-1)(n-2)...(2)(1) = {}_{n}P_{n} = n!$

Note: n! is read "n factorial."

In a Global City election, there are five candidates. If there are no ties, in how many ways can the first three places be filled?

By the multiplication principle, we have

_____ X _____ = _____

permutations.

The number of ordered arrangements, or *permutations*, of n objects taking r at a time, is

 $n(n-1)(n-2)...(n-r+1) = {}_{n}P_{r} = n!/(n-r)!$

We want to use 8 symbols to make ID codes for 300 people, with each code to consist of 3 different symbols. Is this possible?

Counting Unordered Arrangements

An arrangement of a set of objects selected without regard to their order is called a *combination* of the objects.

The combination of n objects, taken r at a time, is denoted $_{n}C_{r}$.

Example

How many double scoops of ice cream of different flavors are possible at a 31-flavors ice cream store?

If order were important, we would have $_ x _ = _$ possibilities. But we would have counted both "vanilla-chocolate" and "chocolate-vanilla." Each combination has a "sister" or duplicate in the opposite order.

The number of combinations without order is

$$x / duplicates =$$

Counting Unordered Arrangements

The number of unordered arrangements, or *combinations*, of n objects taking r a time, is

 ${}_{n}C_{r} = {}_{n}P_{n}/r! = n(n-1)(n-2)...(n-r+1)/r! = (n!/(n-r)!)/r!$

Hence,

 $_{n}C_{r} = n!/((n-r)!r!)$

Note: the division by r! removes the duplicates.

Example

A Kaleidoscope reporter comes to visit a 25 person class to interview 4 students. In how many ways can the 4 students be selected from the class of 25?

6

Slot diagram approach:

A Kaleidoscope reporter comes to visit a 25 person class to interview 4 students. In how many ways can the 4 students be selected from the class of 25?

Combination approach:

n = 25 and r = 4

 $_{25}C_4 = 25!/(4!(21!)) =$ _____

A 3-topping pizza at the Olde Tyme Pizza Shoppe has 3 different toppings selected from 12 possibilities. How many 3-topping pizzas are there?

Example

Double-toppings are permitted at the Olde Tyme Pizza Shoppe, but not triple. How many 3-topping pizzas are possible if repeating one topping is permitted?

A jar contains 5 yellow jellybeans and 4 red jellybeans. In how many ways can 3 jellybeans be selected

- (a) If all are yellow?
- (b) If all are red?
- (c) If at least two are yellow?
- (d) If at most two are red?