Curve Fitting

Breeding Chows and Vizslas

Source of Example

The chow/vizsla example is from "Lessons for A First Course in System Dynamics Modeling v1.0" by Diana M. Fisher.

Summer Creek Press, 1998.

Procedure

Given paired data points (x_i,y_i).
Produce a *scatterplot* of the paired data points.
Fit a *linear equation* Y = aX+b and its graph (curve) to the data.
Evaluate the fit.
Analyze the result.

Research Question

Can the appearance of a chowvizsla hybrid be used to predict its disposition?

Dogs are rated based upon their chow-like and vizsla-like characteristics.

Scale 0 (most like vizsla) to 10 (most like chow).

Table of Data

Breeding Chows and Vizslas		
Dog	Appearance	Disposition
Sam	4	2
Jake	6	6
Gus	7	7
Max	3	3
Suzie	7	10
Rover	8	10
Zeek	2	5
Rex	4	6
Tiesha	3	3
BJ	4	5
Missy	7	7
Mean	5	5.82

Scatterplot of Data

Breeding Chows and Vizslas

Plotting the Means $(\underline{x},\underline{y})=(5,5.82)$

Breeding Chows and Vizslas

Adding a Trendline

Breeding Chows and Vizslas

John C. Mayer

8

Least Squares Fit

Minimize the error sum of squares $Q = \Sigma (e_i)^2$ The smaller Q, the closer the correlation coefficient R^2 is to 1. A perfect fit (all points on the line) has $R^2=1$.

Trendline and Equation

No Correlation

 This graph shows
 essentially
 no
 correlation
 between
 the
 variables
 X and Y.

High Correlation

 This graph shows a high degree of correlation between X and Y.

Outliers

Outliers

affect the
degree of
correlation.

Outliers

affect the
fitted
curve.

