Positive Feedback Explained

Isolate Feedback Loop

- Assume all other flows remain unchanged.
 Check how change in Population affects flow in question.
 Is Population change <u>reinforced</u> or <u>counteracted</u> by change in flow?
- Reinforced = positive feedback.
- Counteracted = negative feedback.

Positive Feedback – Pop Increase

Population Table

Population increases.
 All flows except Birth remain unchanged.
 Birth inflow increases.
 Population increases even more.
 Reinforces increase.

Thus, <u>positive</u> feedback. Time Population 1,000.00 0 1,010.00 1 2 1,021.10 3 1,033.42 1,047.10 4 5 1,062.28 1,079.13 6 7 1,097.83 8 1,118.59 9 1,141.64 10 1,167.22 11 1,195.61 Final 1,227.13

Graph of Population

Description of Graph

- Increasing Increasing at an increasing rate Concave up NOT leveling off Would have to change concavity What will happen to the population if this
- continues?

When Population Increases

- \bullet Population increases by ΔP .
 - To P + Δ P.
- Hold other flows unchanged.
 - $\Delta P = Births + (all other flows in/out: constant)$
 - So without any changes in Birth inflow, Population will again increase by ΔP .
- Births = Birth_Fraction* (P + Δ P).
 - Births increase by Birth_Fraction * ΔP .
- Population increases by more than ΔP .
 - By ΔP + Birth_Fraction * ΔP
- Reinforces increase in Population.

Positive Feedback – Pop Decrease

Population Table

Population decreases.
 All flows except Birth remain unchanged.
 Birth inflow decreases.
 Population decreases even more.
 Reinforces decrease.

Thus, positive feedback.

Time	Population	
0	1,000.00	
1	990.00	
2	978.90	
	966.58	
4	952.90	
5	937.72	
6	920.87	
7	902.17	
8	881.41	
9	858.36	
10	832.78	
	804.39	
Final	772.87	

Description of Graph

Decreasing
Decreasing at an increasing rate
Concave down
NOT leveling off
Would have to change concavity

What will happen to the population if this continues?

When Population Decreases

Negative Feedback Explained

Isolate Feedback Loop

- Assume all other flows remain unchanged.
- Check how change in Population affects flow in question.
- Is population change <u>reinforced</u> or <u>counteracted</u> by change in flow?
- Reinforced = positive feedback.
- Counteracted = negative feedback.

Birth Fraction Graph

Population Table Time Birth Fraction Population

0

0.110000

1,000.00

	1	0.107000	1,010.00
Population increases.	2	0.104579	1,018.07
All flows except Birth	3	0.102638	1,024.54
remain unchanged.	4	0.101091	1,029.70
Birth Fraction decreases.	5	0.099863	1,033.79
Birth inflow decreases.	6	0.098892	1,037.03
Population increases, but	7	0.098126	1,039.58
not as much.	8	0.097523	1,041.59
Counteracts increase.	9	0.097049	1,043.17
 <u>Countoracto</u> intereacto Thus, pogotivo foodbook 	10	0.096678	1,044.41
Thus, <u>negative</u> reedback.	11	0.096386	1,045.38
	Final	0.096158	1,046.14

Graph of Population

Description of Graph

- Increasing
 Increasing at a decreasing rate
 Concave down
 Leveling off
 approaching a horizontal asymptote
 - approaching a stable value

What will happen to the population if this continues?

Population Table Time Birth Fraction Population

- Population decreases.
 All flows except Birth remain unchanged.
 Birth Fraction increases.
- Birth inflow increases.
- Population decreases, but <u>not as much</u>.
- Counteracts decrease.
- Thus, <u>negative</u> feedback.

ne	Birth Fraction	Population
)	0.110000	1,000.00
1	0.113000	990.00
2	0.115439	981.87
3	0.117435	975.22
4	0.119078	969.74
5	0.120435	965.22
6	0.121562	961.46
7	0.122499	958.34
3	0.123280	955.73
9	0.123933	953.56
10	0.124480	951.73
11	0.124938	950.21
-inal	0.125323	948.92

Graph of Population

Description of Graph

- Decreasing
- Decreasing at a decreasing rate
 - Concave up
- Leveling off
 - Approaching a horizontal asymptote
 - Approaching a stable value

What will happen to the population if this continues?

To think about

