Mathematical Modeling

Graduate Assistants: Robert Cusimano Jeanine Sedjro

UAB/EdGrid John C. Mayer UAB/Mathematics

Mathematical Modeling

- Creates a mathematical representation of some phenomenon to better understand it.
- Matches observation with symbolic representation.
- Informs theory and explanation.

The success of a mathematical model depends on how easily it can be used, and how accurately it predicts and how well it explains the phenomenon being studied.

Mathematical Modeling

- A mathematical model is central to most computational scientific research.
- Other terms often used in connection with mathematical modeling are
 - Computer modeling
 - Computer simulation
 - Computational mathematics
 - Scientific Computation

Mathematical Modeling and the Scientific Method

• How do we incorporate mathematical modeling/computational science in the scientific method?

Mathematical Modeling Problem-Solving Steps

- Identify problem area
- Conduct background
 research
- State project goal
- Define relationships
- Develop mathematical model

- Develop computational algorithm
- Perform test calculations
- Interpret results
- Communicate results

Syllabus: MA 261/419/519

Spring, 2006

Syllabus: MA 261/419/519

Introduction to Mathematical Modeling

- Prerequisite: Calculus 1
- Goals
 - Learn to build models
 - Understand mathematics behind models
 - Improve understanding of mathematical concepts
 - Communicate mathematics
- Models may be mathematical equations, spreadsheets, or computer simulations.

Contact Information

- Instructor: Dr. John Mayer CH 490A
 - <u>mayer@math.uab.edu</u> 934-2154

– TBA

- Assistant: Mr. Robert Cusimano CH 478B
 - <u>rob5236@uab.edu</u> 934-2154
 - MW 5:15 8:00 PM (computer lab CB 112)
- Assistant: Ms. Jeanine Sedjro TBA
 - TBA

AB

- MW 4:00 - 6:45 PM (computer lab CB 112)

Class Meetings

- Lectures.
 - Monday and
 Wednesday
 - -5:30-6:45 PM
 - -CB15 112.

- Computer lab.
 - Monday and Wednesday
 - -4:00 5:30 PM
 - -6:45 8:00 PM
 - -CB15 112.

Software Tools

- Spreadsheet:
 - Microsoft EXCEL
- Compartmental Analysis and System Dynamics programming:
 - Isee Systems STELLA

Computer Lab

- The only computer labs that have STELLA installed are CB15 112 and EDUC 149A.
- Always bring a formatted 3.5" diskette to the lab.
- Label disk: "Math Modeling, Spring, 2006, Your Name, Math Phone Number: 934-2154"

Assignments

- One or two assignments every week.
- First few assignments have two due dates.
 - Returned next class.
 - Re-Graded for improved grade.
- Written work at most two authors.
 - You may work together with a partner on the computer.

Midterm Tests

- Two tests, one about every 5 weeks.
- Given in the computer lab.
- Basic building blocks relevant to the kinds of models we are constructing.
- Mathematics and logic behind the computer models.

System Dynamics Stories and Projects

- System Dynamics Stories.
 - Scenarios describing realistic situations to be modeled.
 - Entirely independent work no partners.
 - Construct model and write 5-10 page technical paper (template provided).
- Project due date to be announced.
 - Begin work about middle of term.
 - Preliminary evaluation three weeks prior to due date.

Grading

	MA 261	MA 419	MA 519
Assignments	40%	30%	30%
Tests (2)	30%	30%	25%
Model 1	10%	10%	10%
Model 2	na	na	10%
Paper	20%	20%	15%
Lesson Plan	na	10%	10%

UAB

A Course Sampler

Topics for Tools

Spreadsheet Models

- Data analysis: curve fitting.
- Recurrence Relations and difference equations.
- Cellular Automata: nearest-neighbor averaging.

AR

- Compartmental Models
 - Introduction to
 System Dynamics.
 - Applications of
 System Dynamics.
 - System Dynamics
 Stories (guided projects).

Spreadsheet Models: Excel

- Curve fitting introduction to (linear) regression
- Difference Equations: modeling growth
- Nearest-neighbor averaging

Morteville by Doug Childers

- Anthrax detected in Morteville
- Is terrorism the source?
- Infer geographic distribution from measures at several sample sites
- Build nearest neighbor averaging automaton in Excel
- Form hypothesis
- Get more data and compare
- Revise hypothesis

Morteville View 1

UAB

11

10

10

10

12

7.2

3.5

2.2

4

3

0

1.2

12

12

11

11

10

7.8

5.3

4.1

4.1

4.3

3

2.8

13

13

12

12

11

8.2

5.5

3.6

4.8

8

5

4.1

14

15

13

13

13

8.6

4.9

0

3.4

5.2

4.8

4.5

14

14

13

12

11

8.5

5.5

3.6

4.5

4.6

4.5

3

Anthrax Distribution 1

Compartmental Modeling

- How to Build a Stella Model
- Simple Population Models
- Generic Processes

- Advanced Population Models
- Drug Assimilation
- Epidemiology
- System Stories

Population Model

Reproducing Females

•Stella Model •Equations •Graphical Output

Population(t) = Population(t - dt) + (Births -Deaths) * dt INIT Population = 100000 {people}

INFLOWS:

Births = Population*Fraction_That_Are_Female*Reprodu cing_Females*Births_per_Rep_Female {people/year} **OUTFLOWS:** Deaths = Population*Death_Fraction {people/year} Births per Rep Female = 66/1000 {people/1000 rep females/year} Fraction That Are Female = 0.5{females/people} Reproducing_Females = .45 {rep females/female} Death Fraction = GRAPH(Population) (120000, 0.01), (125000, 0.011), (130000, 0.013),(135000, 0.015), (140000, 0.017), (145000, 0.019, (150000, 0.02)

Generic Processes

- Linear model with external resource
- Exponential growth or decay model

• Convergence

AB

model

Calculus Example

Connecting the Discrete to the Continuous

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1) * dt$
- $(\text{Stock}_X(t) \text{Stock}_X(t dt))/dt = \text{Flow}_1$

• Flow_1 = Constant_a*Stock_X(t - dt)

- (X(t) X(t dt))/dt = a X(t dt)
- Let dt go to 0
- dX/dt = a X(t) (a Differential Equation)

Solution to DE

- dX/dt = a X(t)
- dX/X(t) = a dt
- Integrate
- $\log (X(t)) = at + C$
- $X(t) = \exp(C) \exp(at)$
- $X(t) = X(0) \exp(at)$

AR

System Dynamics Stories and Projects

System Dynamics Stories and Projects

- Scenarios describing realistic situations to be modeled.
- Fully independent work.
- Construct model.
- Write 5-10 page technical paper (template provided).

Modeling a Dam 2

Boysen Dam

AR

- Boysen Dam has several purposes: It "provides regulation of the streamflow for power generation, irrigation, flood control, sediment retention, fish propagation, and recreation development." The United States Bureau of Reclamation, the government agency that runs the dam, would like to have some way of predicting how much power will be generated by this dam under certain conditions.
 - Clinton Curry

UAB

Modeling a Smallpox Epidemic

- One infected terrorist comes to town
- How does the system handle the epidemic under different assumptions?
- Alicia Wilson

Total original

population

Total deaths

immune suppresse

have smallpox