# **Statistics 3**

### **Qualitative Variables**

| Category  | Number of Students | Percentage | Pie Angle Size |
|-----------|--------------------|------------|----------------|
| Freshman  | 57                 |            |                |
| Sophomore | 8                  |            |                |
| Junior    | 13                 |            |                |
| Senior    | 44                 |            |                |
| Other     | 9                  |            |                |
| Total     | 131                | 100%       |                |

#### MA 101 Enrollment

**Categories** -- The values of a qualitative variable are often called categories or classes.

**Pie Chart --** An alternative to the bar graph in the case of a qualitative variable with a small number of categories.

## **Pie Chart of MA 101 Enrollment**

# **Turning Quantitative Variables into Qualitative Ones**

Class intervals, the intervals into which the data values of a quantitative variable are subdivided, are normally all the same size. However, Prof. Blackbeard used unequal ones in assigning letter grades.

| Class Intervals | Letter Grade | Frequency | Percentage |
|-----------------|--------------|-----------|------------|
| 0-8             | F            | 10        |            |
| 9-10            | D            | 26        |            |
| 11-13           | С            | 30        |            |
| 14-17           | В            | 8         |            |
| 18-25           | A            | 1         |            |
| Total           |              | 75        | 100%       |

#### **Stat 101 Mid Term Exam Grades**

We plot the resulting relative frequencies versus the assigned letter grades. By doing so, we have converted a quantitative variable (test scores) into a qualitative variable (letter grades).

## **Pie Chart of Stat 101 Letter Grades**

## **Histograms**

When the quantitative variable is continuous, we use a special type of bar graph called a *histogram*. In a histogram there are no gaps between the class intervals. **Endpoint convention** – we agree that salaries that fall exactly on a boundary between class intervals are placed in the lower class interval.

| Salary Range    | Nbr. Of Graduates | Percent |
|-----------------|-------------------|---------|
| 20,000 - 25,000 | 228               | 7%      |
| 25,000 - 30,000 | 456               | 14%     |
| 30,000 - 35,000 | 1043              | 32%     |
| 35,000 - 40,000 | 912               | 28%     |
| 40,000 - 45,000 | 391               | 12%     |
| 45,000 - 50,000 | 163               | 5%      |
| 50,000 - 55,000 | 65                | 2%      |
| Total           | 3258              | 100%    |

#### **Starting salaries of UAB graduates, 1992**

## **Histogram of UAB Graduate Starting Salaries**



# **Five Number Summary**

The following five numbers provide a useful numerical summary of a of a data set, and for that reason are called collectively the *five number summary*.

|                         | Stat 101 Exam |  |
|-------------------------|---------------|--|
|                         | Score         |  |
| • Minimum: <i>Min</i>   | 1             |  |
| • First Quartile: $Q_1$ | 9             |  |
| • Median: <i>M</i>      | 11            |  |
| • Third Quartile: $Q_3$ | 12            |  |
| • Maximum: <i>Max</i>   | 24            |  |

## **Box Plots**

A convenient and eye-catching way to display the five number summary is the *box plot*.

The *horizontal axis* is the scale on which the data values fall.

The *central box* runs from the first quartile  $Q_1$  to the third quartile  $Q_3$ .

The median is represented by a *vertical line* at its appropriate location inside the central box.

The *whiskers* on each side reach from the quartiles to the Min and Max data values.

**Example.** Recall that the star forward of UAB's basketball team in his first 12 games makes the following *sorted* scores.

3 18 20 21 22 24 25 26 27 29 33 39

Min = 3  $Q_1 = 20.5$  M = 24.5  $Q_3 = 28$  Max = 30

#### Basketball Player's Scores in 12 Games

# **Using Box Plots for Comparisons**

*Example.* Box plots are particularly useful for driving home comparisons for two or more populations.

| SCHOOL      | MIN    | $Q_1$  | MEDIAN | Q <sub>3</sub> | MAX    |
|-------------|--------|--------|--------|----------------|--------|
| Engineering | 28,000 | 35,000 | 40,000 | 44,000         | 49,000 |
| Humanities  | 22,000 | 25,000 | 34,000 | 39,000         | 54,000 |

# **Box Plots on Same Axis**



# Observations

- The starting salaries in the Humanities are more spread out.
- Three-fourths of Humanities graduates earn less than the median of Engineering graduates.

11