STELLA and Calculus

STELLA numerically simulates the solutions to systems of differential equations.

STELLA INTEGRATES!

Example 1 Graph

Question?

- Does the graph have an equation?
- "Obviously" X = 10t + 100

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1) * dt$
- $(\operatorname{Stock}_X(t) \operatorname{Stock}_X(t dt))/dt = \operatorname{Flow}_1$
 - Flow_1 = Constant_a
- (X(t) X(t dt))/dt = a
 - let $dt \rightarrow 0$
- dX/dt = a (a differential equation)
- Solution to DE:

$$X = at + X(0)$$

Example 2 Graph

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1) * dt$
- $(\operatorname{Stock}_X(t) \operatorname{Stock}_X(t dt))/dt = \operatorname{Flow}_1$

• Flow_1 = Constant_a*Stock_X

- (X(t) X(t dt))/dt = aX(t-dt)
- dX/dt = aX (differential equation)
- Solution to DE:

 $X = X(0) \exp(at)$

Calculus Example 3 STELLA Diagram

Two flows, an inflow and an outflow.

STELLA Equations 3

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1 Flow_2) * dt$
 - INIT Stock_X = 1000
- Flow_1 = Constant_a*Stock_X(t-dt)
- Flow_2 = Constant_b
 - Constant_a = .11
 - Constant_b = 100

Example 3 Graph

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1 Flow_2) * dt$
- $(\operatorname{Stock}_X(t) \operatorname{Stock}_X(t dt))/dt = \operatorname{Flow}_1 \operatorname{Flow}_2$
 - Flow_1 = Constant_a*Stock_X(t-dt)
 - Flow_2 = Constant_b
- dX/dt = aX b

Solution to DE: ?

Calculus Example 4 STELLA Diagram

Two flows, an inflow and an outflow.

Example 4 Graph

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1 Flow_2) * dt$
- $(\operatorname{Stock}_X(t) \operatorname{Stock}_X(t dt))/dt = \operatorname{Flow}_1 \operatorname{Flow}_2$
 - Flow_1 = Constant_a
 - Flow_2 = Constant_b*
- dX/dt = a bX

Solution to DE: ?

Calculus Example 5 STELLA Diagram

Two stocks, X and Y, and three flows.

The outflow from Stock X is the inflow to Stock Y.

STELLA Equations 5

- Stock_ $X(t) = Stock_X(t dt) + (Flow_1 Flow_2) * dt$
 - INIT Stock_X = 100
 - Flow_1 = Constant_a*Stock_X
 - Flow_2 = Constant_b*Stock_X*Stock_Y
- $Stock_Y(t) = Stock_Y(t dt) + (Flow_2 Flow_3) * dt$
 - INIT StockY = 100
 - Flow_2 = Constant_b*Stock_X*Stock_Y
 - Flow_3 = Constant_c*Stock_Y
 - Constant_a = .2
 - Constant_b = .001
 - Constant_c = .01

Example 5 Graph

How many differential equations do we need?

- $(\text{Stock}_X(t) \text{Stock}_X(t dt))/dt$ = Flow_1 - Flow_2
- $(\text{Stock}_Y(t) \text{Stock}_Y(t dt))/dt$ = Flow_2 - Flow_3
- dX/dt = aX bXY (A pair of differential
- dY/dt = bXY cY

differentia equations)

- dX/dt = -aXY
- dY/dt = aXY bY
- dZ/dt = bY

STELLA Diagram 6

STELLA Equations 6

- $Stock_X(t) = Stock_X(t dt) + (- Flow_1) * dt$
 - Flow_1 = Constant_a*Stock_X*Stock_Y /dt
- $Stock_Y(t) = Stock_Y(t dt) + (Flow_1 Flow_2) * dt$
 - Flow_1 = Constant_a*Stock_X*Stock_Y
 - Flow_2 = Constant_b*Stock_Y
- $Stock_Z(t) = Stock_Z(t dt) + (Flow_2) * dt$
 - Flow_2 = Constant_b*Stock_Y