Weighted Voting 2

Now that we understand the structure of a weighted voting system, we will introduce the ideas that will lead us to a mathematical definition of voting *power*. The new ideas are

• Coalitions

oWinning and losing coalitions

oCounting coalitions

• Banzhaf Power Index

oBanzhaf Power Distribution

Coalitions

- A *coalition* is a group (set) of players joining forces to vote the same way on a motion. (We allow one player alone to be a coalition.)
- The *weight* of a coalition is the sum of the weights of the players in it.
- A coalition is a *winning* coalition if its weight equals or exceeds the quota.
- A coalition is *losing* if its weight is less than the quota.

Our assumptions about weighted voting systems, in particular, the quota-weight inequality, imply the following facts:

- There is at least one winning coalition.
- There is at least one losing coalition.
- Given a winning coalition, the players **not** in it form a **losing** coalition.

Set Notation

We sometimes use set notation, namely curly brackets, to denote the members of a coalition. For example,

$\{\mathbf{P}_1,\mathbf{P}_2\}$

denotes the coalition consisting of players P_1 and P_2 .

In the weighted voting system [4: 3, 2, 1], what are the weights of the following coalitions?

$\{P_1, P_3\}$ $\{P_1\}$

Is {P₁, P₃} a winning or a losing coalition? What about the coalition {P₁}?

Coalition Table

A table of all the possible coalitions for a given weighted voting system, together with the weight of each coalition, and whether it is winning or losing, will be essential to determining **power**.

Being systematic in constructing the coalition table is the only way to make sure you do not forget to list any of the coalitions.

Consider the weighted voting system: [4: 3, 2, 1]

	How many		
Coalition	Weight	Winning or Losing?	_ players?
			How many coalitions? How many winning?

Determine the coalition table for the weighted voting system

[2: 1, 1, 1]

Coalition Table						
	Coantion Table					
Coalition	Weight	Winning or Losing?	players?			
			How many			
			coalitions?			
			How many			
			winning?			
			_			

Compare to the preceding example.

Compare to the example [101: 99, 98, 3].

How Many Coalitions?

Before we look at a specific example with four players, we pause to figure out how many coalitions there will be. Consider a weighted voting system with four players P_1 , P_2 , P_3 , and P_4 . We can divide the coalitions into two types.

coalitions into two typ	pes.	There are
Coalitions without P ₄	Coalitions with P ₄	$2^{*}(7) + 1 = 15$
$\{P_1\}$	$\{P_1, P_4\}$	coalitions when there
$\{P_2\}$	$\{P_2, P_4\}$	are 4 players.
$\{P_3\}$	$\{P_3, P_4\}$	This can also be
$\{\mathbf{P}_1,\mathbf{P}_2\}$	$\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_4\}$	written
$\{\mathbf{P}_1,\mathbf{P}_3\}$	$\{P_1, P_3, P_4\}$	$2^4 - 1 = 15$
$\{\mathbf{P}_2,\mathbf{P}_3\}$	$\{P_2, P_3, P_4\}$	
$\{\mathbf{P}_1,\mathbf{P}_2,\mathbf{P}_3\}$	$\{P_1, P_2, P_3, P_4\}$	In general, for n players:
{ }	$\{\mathbf{P}_4\}$	$2^{n}-1$

Example – four players

Find the coalition table for the weighted voting system

[5: 3, 2, 2, 1]

Coalition	Weight	Win/Lose?	Coalition	Weight	Win/Lose?

For each of the following examples

- What is the total number of possible coalitions
- Is each weighted voting system a reasonable one?
- Does any have a dictator, dummies, or player(s) with veto power?
 - 1. [5: 6, 2, 1]
 - 2. [10: 4, 3, 2, 1]
 - 3. [7: 3, 3, 1, 1, 1]
 - 4. [6: 3, 3, 1, 1, 1]
 - 5. [25: 9, 8, 7, 6, 5, 4]
 - 6. [58: 31, 31, 28, 21, 2, 2]
 - 7. [13: 4, 4, 2, 2, 1, 1, 1, 1, 1]
 - 8. [39: 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1]
 - 9. [62: 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2]

Recognizing Dictators

How does one recognize a dictator, player with veto power, or a dummy from the weighted voting system?

- A *dictator* has a weight that exceeds or equals the quota. • For example: [7: 8, 4, 2, 1]
- A player has *veto power* if the combined weight of all the other players does not meet the quota.

o A dictator automatically has veto power.

o For example: [7: 4, 3, 2, 1]

- A player is a *dummy* if he never makes a difference in a coalition being winning or losing. (He is never *critical* see below.)
 If there is a dictator, then all the other players are dummies.
 A player can be a dummy without there being any dictator.
 - For example: [7: 4, 3, 1, 1]

Critical Players

A player whose desertion from a winning coalition makes it a losing coalition is called a *critical player* for that coalition.

Example. Consider the weighted voting system

[5: 3, 2, 1]

Coalition	Weight	W/L?	Critical Players
$\{P_1\}$			
$\{P_2\}$			
$\{P_3\}$			
$\{\mathbf{P}_1,\mathbf{P}_2\}$			
$\{\mathbf{P}_1,\mathbf{P}_3\}$			
$\{\mathbf{P}_2,\mathbf{P}_3\}$			
$\{\mathbf{P}_1,\mathbf{P}_2,\mathbf{P}_3\}$			

Banzhaf Power Index

- Step 1. List all possible coalitions.
- Step 2. Determine the winning coalitions.
- Step 3. Determine the critical players in each winning coalition.
- Step 4. Count how many times a particular player P_i is critical and call this number B_i .
- Step 5. Count the total number of times players are critical and call this number T. Note T is the sum of all the B_i's.

The Banzhaf power index of player P_i is the fraction $\frac{B_i}{T}$.

The Banzhaf power distribution is the complete list of all players' Banzhaf power indexes (which always sums to 1).

 $P_1: \qquad P_2: \qquad P_3: \qquad \dots \qquad P_n:$

Example – one person, one vote

Consider the weighted voting system [2: 1, 1, 1]

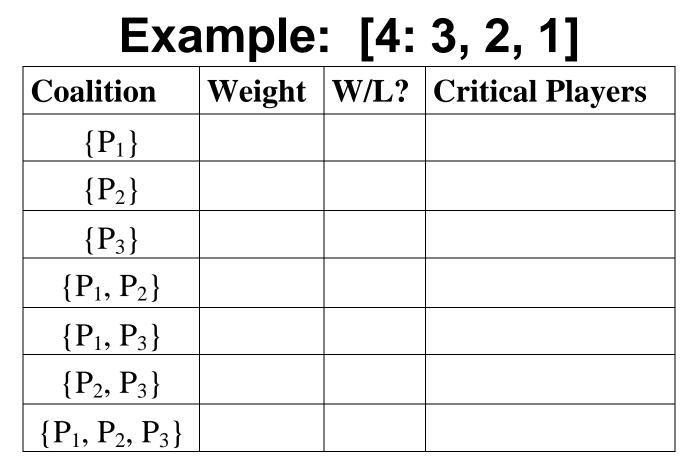
Coalition	Weight	W/L?	Critical Players
$\{P_1\}$			
$\{P_2\}$			
$\{P_3\}$			
$\{P_1, P_2\}$			
$\{P_1, P_3\}$			
$\{\mathbf{P}_2,\mathbf{P}_3\}$			
$\{P_1, P_2, P_3\}$			

 $B_1 = B_2 = B_3 = T =$

Banzhaf Power distribution:

 $\mathbf{P}_1: \qquad \mathbf{P}_2: \qquad \mathbf{P}_3:$

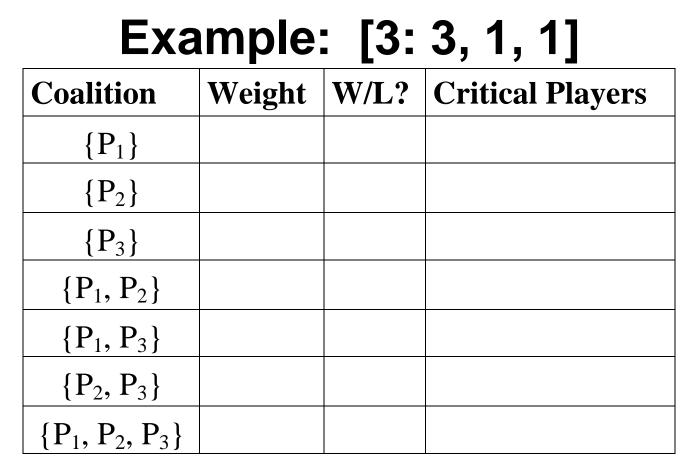
In a one person, one vote situation, all players have equal power.



 $B_1 = B_2 = B_3 = T =$

Banzhaf Power distribution:

 P_1 : P_2 : P_3 :Veto power?Dictator?Dummies?



 $B_1 = B_2 = B_3 = T =$

Banzhaf Power distribution:

 P_1 : P_2 : P_3 :Veto power?Dictator?Dummies?

Exa	Example: [4: 2, 2, 1]						
Coalition	Weight	W/L?	Critical Players				
$\{P_1\}$							
$\{P_2\}$							
$\{P_3\}$							
$\{\mathbf{P}_1, \mathbf{P}_2\}$							
$\{\mathbf{P}_1,\mathbf{P}_3\}$							
$\{P_2, P_3\}$							
$\{P_1, P_2, P_3\}$							

 $B_1 = B_2 = B_3 = T =$

Banzhaf Power distribution:

 P_1 : P_2 : P_3 :Veto power?Dictator?Dummies?

Example: [5: 3, 2, 2, 1]

Coalition	Weight	W/L	Critical Players	Coalition	Weight	W/L	Critical Players
$\{P_1\}$				$\{P_2, P_4\}$			
$\{P_2\}$				$\{P_3, P_4\}$			
$\{P_3\}$				$\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3\}$			
$\{P_4\}$				$\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_4\}$			
$\{\mathbf{P}_1,\mathbf{P}_2\}$				$\{\mathbf{P}_1, \mathbf{P}_3, \mathbf{P}_4\}$			
$\{\mathbf{P}_1,\mathbf{P}_3\}$				$\{P_2,P_3,P_4\}$			
$\{\mathbf{P}_1,\mathbf{P}_4\}$				$\{ P_1, P_2, P_3, \}$			
$\{P_2, P_3\}$				P ₄ }			

 $B_1=\qquad B_2=\qquad B_3=\qquad B_4=\qquad T=$

Banzhaf Power distribution:

 $P_1: \qquad P_2: \qquad P_3: \qquad P_4:$

Example: [6:4,3,2,1]

This time we will try a shortcut and list only the winning coalitions.

Winning Coalitions	Critical Players

 $\mathbf{B}_1 = \mathbf{B}_2 = \mathbf{B}_3 = \mathbf{B}_4 = \mathbf{T} =$

Banzhaf Power distribution:

 P_1 : P_2 : P_3 : P_4 :

Banzhaf Power Index Revisited

- Step 1. List all *winning* coalitions.
- Step 2. Determine the critical players in each winning coalition.
- Step 3. Count how many times a particular player P_i is critical and call this number B_i .
- Step 4. Count the total number of times players are critical and call this number T.

The Banzhaf power index of player P_i is the fraction $\frac{B_i}{T}$.

The Banzhaf power distribution is the complete list of all players' Banzhaf power indexes (which always sums to 1).

$$P_1: P_2: P_3: \dots P_n:$$