John C. Mayer

Department of Mathematics   

E-mail: mayer@math.uab.edu

University of Alabama at Birmingham   

Fax: (205) 934-9025

Birmingham, Alabama 35294   

Telephone: (205) 934-2154

List of Publications

  1. D. K. Childers, J. C. Mayer, H. M. Tuncali, and E. D. Tymchatyn, Indecomposable continua and the Julia sets of rational maps, in preparation.
  2. D. K. Childers, J. C. Mayer, and J. T. Rogers, Jr., Indecomposable continua and the Julia sets of polynomials, II, to appear in Topology and Its Applications.
  3. H. Bell, J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn, Variation and uniqueness of outchannels, submitted.
  4. H. Bell, R. Fokkink, J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn, Fixed points for positively oriented mappings of the plane, submitted.
  5. J. C. Mayer, On being close, Alabama Journal of Mathematics 26 (2002), 3 15.
  6. A. O. Maner, J. C. Mayer, and L. G. Oversteegen, Cantor sets of arcs in decomposable local Siegel disk boundaries, Topology Appl. 112 (2001), 315 336.
  7. A. M. Blokh, J. C. Mayer, and L. G. Oversteegen, Recurrent critical points and typical limit sets for conformal measures, Topology Appl. 108 (2000), 233 244.
  8. J. M. Malaugh, J. C. Mayer, and D. K. Parris, Distribution of centers of triangles, preprint 1999, (undergraduate research paper).
  9. A. M. Blokh, J. C. Mayer, and L. G. Oversteegen, Recurrent critical points and typical limit sets for rational maps, Proc. Amer. Math. Soc. 127 (1999), 1215 1220.
  10. J. Grispolakis, J. C. Mayer, and L. G. Oversteegen, Building  blocks for quadratic Julia sets, Trans. Amer. Math. Soc. 351 (1999), 1171 1201.
  11. J. C. Mayer, Complex dynamics and continuum theory, in Continua: with the Houston Problem Book , ed. H. Cook, et al., Lecture Notes in Pure and Applied Mathematics 170 (Marcel Dekker, NY, 1995), 133--158.
  12. J. C. Mayer and L. G. Oversteegen, Continuum Theory, in Recent Progress in General Topology , ed. M. Husek and J. van Mill, North-Holland, Amsterdam, 1992, 453--492.
  13. J. C. Mayer and L. G. Oversteegen, Denjoy meets rotation on an indecomposable cofrontier, in Continuum Theory and Dynamical Systems, ed. Thelma West, Lecture Notes in Pure and Applied Mathematics 149 (Marcel Dekker, NY, 1993), 183--200.
  14. B. L. Brechner, M. D. Guay, and J. C. Mayer, The rotational dynamics of cofrontiers, in Continuum Theory and Dynamical Systems , ed. Thelma West, Lecture Notes in Pure and Applied Mathematics 149 (Marcel Dekker, NY, 1993), 59--82.
  15. J. C. Mayer and J. T. Rogers, Jr., Indecomposable continua and the Julia sets of polynomials, AMS Proceedings 117 (1993), 795--802.
  16. J. C. Mayer, J. Nikiel, and L. G. Oversteegen, Universal spaces for R-trees, AMS Transactions 334 (1992), 411--432.
  17. J. C. Mayer, L. K. Mohler, L. G. Oversteegen, and E. D. Tymchatyn, Characterization of separable metric R-trees, AMS Proceedings 115 (1992), 257--264.
  18. B. L. Brechner, M. D. Guay, and J. C. Mayer, Rotational dynamics on cofrontiers, in Contemporary Mathematics 117 (1991), ed. M. Brown, 39--48.
  19. J. C. Mayer, An explosion point for the set of endpoints of the Julia set of lambda exp(z), Ergodic Theory and Dynamical Systems 10 (1990), 177--183.
  20. J. C. Mayer and L. G. Oversteegen, A topological characterization of R-trees, AMS Transactions 320 (1990), 395--415.
  21. J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Mathematicae 300 (1990), 27pp.
  22. J. C. Mayer and E. D. Tymchatyn, Universal rational spaces, Dissertationes Mathematicae 293 (1990), 39pp.
  23. B. L. Brechner, J. C. Mayer, and E. D. Tymchatyn, Inaccessiblity, essential maps, and shape theory, Fundamenta Mathematicae 132 (1989), 1--23.
  24. B. L. Brechner and J. C. Mayer, Antoine's necklace, or how to keep a necklace from falling apart, The College Mathematics Journal 19 (1988), 306--320. (George Polya Award, MAA, 1989.)
  25. J. C. Mayer, L. G. Oversteegen, and E. D. Tymchatyn, The Menger curve: characterization and extension of homeomorphisms of non-locally-separating closed subsets, Dissertationes Mathematicae 252 (1986), 50 pages.
  26. J. C. Mayer, Inequivalent embeddings and prime ends, Topology Proceedings 8 (1983), 99--159.
  27. J. C. Mayer, Principal embeddings of atriodic plane continua, Continua, Decompositions, Manifolds, ed. R. H. Bing, W. T. Eaton, and M. R. Starbird (University of Texas Press, Austin, 1983), 34--61.
  28. J. C. Mayer, Embeddings and prime end structure of chainable continua, Houston Journal of Mathematics 8 (1982), 221--53.
  29. B. L. Brechner and J. C. Mayer, The prime end structure of indecomposable continua and the fixed point property, General Topology and Modern Analysis, ed. L. F. McAuley and M. M. Rao (Academic Press, NY, 1981), 151--168.
  30. J. C. Mayer, A misplaced thesis of conditional logic, Journal of Philosophical Logic 10 , 2 (1981), 235--238.


[ Top of this page      Curriculum Vitae      Home Page      Mathematics Home      UAB Home ]